Skip to main content
Log in

Electrolytic manganese metal from chloride electrolytes. I. Study of deposition conditions

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Results of beaker scale and large laboratory scale experiments on the deposition of manganese from chloride electrolytes are reported for conditions where chlorine is the secondary anode product.

Manganese concentration in the catholyte was found to be the most significant variable, with higher manganese levels (to 33 g Mn l−1) resulting in higher current efficiency (65–70%) and lower power consumption (5.5 kWh kg−1). Temperature (30–60°C) and current density (1.0–2.0 kAm−2) had opposing effects on current efficiency and power consumption. In the ranges studied, lower temperatures and higher current densities gave rise to increases in current efficiency and power consumption.

The literature on the electrowinning of manganese from chloride electrolytes is reviewed and the anomalies in previous reports discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. George,South East Asian Iron and Steel Institute Quarterly 4 (1973) 31.

    Google Scholar 

  2. Z. Kulig,Giessereitechnik 16 (1970) 375.

    Google Scholar 

  3. K. Sugimoto,Nippon Kinzoku Gakkai Kaiho 10 (1971) 44.

    Google Scholar 

  4. K. Sugimoto, ‘Manganese Ores, Alloys, Metal and compounds: World Survey of Production, Consumption and Prices’, Roskill Information Services Limited, England, August 1972.

    Google Scholar 

  5. J. H. Jacobset al., U.S. Bureau of Mines R.I. 4817 (1951).

  6. C. A. Hampel (Ed.), ‘The Encyclopaedia of Electrochemistry’, Reinhold Publishing Corporation, New York (1964).

    Google Scholar 

  7. V. N. Lisovet al., J. Appl. Chem. USSR 37 (1964) 1498.

    Google Scholar 

  8. E. V. Mulin and S. A. Zaretskii,Elektrokhim. Margantsa 3 (1967) 337.

    Google Scholar 

  9. W. W. Cooley and P. R. Lohnes, ‘Multivariate Data Analysis’, John Wiley and Sons, New York (1971) 168.

    Google Scholar 

  10. V. Aravamuthan and S. Gopal,Indian Mining J. 1 (1950) 5.

    Google Scholar 

  11. W. J. Sakowski, U.S. Patent 2, 810, 685, 22 October 1957.

  12. Olin Mathieson, U.S. Paten 2, 798, 038, 2 July 1957.

  13. C. M. Kooi and L. Louissen, Brit. Patent 1, 096, 979, 3 August 1966.

  14. I. V. Gamaliet al., J. Appl. Chem. USSR 41 (1968) 2531.

    Google Scholar 

  15. S. A. Zaretskiiet al., ‘Electrochemistry of Manganese’, Vol 3, Akad. Nauk. Graz. SSR (1967) 239.

  16. M. A. Qazi and J. Leja,J. Electrochem. Soc. 118 (1971) 548.

    Google Scholar 

  17. R. S. Dean, U.S. Patent 2, 798, 038, 2 July 1957.

  18. R. S. Dean, U.S. Patent 2, 814, 591, 26 November 1957.

  19. P. P. Yurev and V. M. Mozhaev,Tr. Leningrad Politekh. Inst. (1967) 272.

  20. V. V. Stender and Yu. M. Loshkarev,J. Appl. Chem. USSR 36 (1963) 984.

    Google Scholar 

  21. R. I. Agladze (Ed.), ‘Electrochemistry of Manganese’, Izd. Akad. Nauk. Gruz. SSR, Tbilisi 1957.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewis, J.E., Scaife, P.H. & Swinkels, D.A.J. Electrolytic manganese metal from chloride electrolytes. I. Study of deposition conditions. J Appl Electrochem 6, 199–209 (1976). https://doi.org/10.1007/BF00616142

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616142

Keywords

Navigation