Skip to main content
Log in

Residence time distributions and reaction kinetics in a fuel cell anode

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A method which treats the fuel cell anode as a chemical reactor is developed to predict fuel cell performance. The method is based on experimentally measured residence time distribution parameters and differential cell kinetic data. The apparatus and experimental technique used to obtain the gas-phase residence time distributions are described. Kinetic data obtained from differential cell tests of the electrodes are used to evaluate an empirical rate expression.

Axial dispersion model solutions for flow with volume change are obtained, based on the measured Peclet numbers and empirical rate expressions, and compared with experimental data from operating large high-temperature molten carbonate fuel cells. Agreement between the model and the experimentally determined data is very good, but only for low conversions of the fuel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

cross-sectional area, cm2

C :

concentration of hydrogen. (g mole/cm3)

c=C/C o :

dimensionless concentration of hydrogen

D :

dispersion coefficient cm2/s

d e :

equivalent diameter, cm

F :

Faraday's constant

I :

total current, A

J :

current density, mA/cm2

k :

reaction rate constant, appropriate units

L :

length, cm

M :

number of moles

N =D/UL :

dispersion number

n :

order of reaction

n e :

number of electrons transferred

−r:

rate of reaction based on volume of fluid, moles of reactant reacted/ cm3 s

S e :

surface of electrode, cm2

T :

absolute temperature, °K

\(\bar t = \int\limits_0^\infty {\bar tE(t)dt} \) :

mean residence time, s

U :

velocity component in Z direction, cm/s

u = U/U 0 :

dimensionless velocity

V a :

volume of system, cm3

V :

operating voltage, V

v :

volumetric flow rate, cm2/s

\(x = \frac{{M_0 - M}}{{M_0 }}\) :

fractional conversion, degree of conversion of hydrogen

y :

mole fraction of hydrogen

Z:

space coordinate, cm

z =Z/L :

fractional length

\(\varepsilon = \frac{{V_{x = 1} - V_{x = 0} }}{{V_{x = 0} }}\) :

coefficient of expansion

ρ m :

molar density of fuel, g mole/cm3

η :

overvoltage, V

\(\sigma _t^2 = \int\limits_0^\infty {(t - \bar t)^2 E(t)dt} \) :

dimensional variance, s2

σ 2 :

dimensionless variance

τ =Va/v 0 :

space time, s

References

  1. B. S. Baker, Ed., ‘Hydrocarbon Fuel Cell Technology’, Academic Press, New York (1965).

    Google Scholar 

  2. E. Baur, W. D. Treadwell, and G. Trumpler,Z. Elektrochem.,27 (1921) 199.

    Google Scholar 

  3. C. Berger, ‘Handbook of Fuel Cell Technology’, Prentice Hall, Englewood Cliffs, N. J. (1968).

    Google Scholar 

  4. J. O'M. Bockris, and S. Srinivasan, ‘Fuel Cells: Their Electrochemistry’, McGraw-Hill, New York (1969).

    Google Scholar 

  5. M. W. Breiter, ‘Electrochemical Processes in Fuel Cells’, Springer-Verlag, New York (1969).

    Google Scholar 

  6. G. H. J. Broers, and J. A. A. Ketelaar, ‘Fuel Cells’, G. J. Young, ed., Reinhold, New York (1960).

    Google Scholar 

  7. G. H. J. Broers, and M. Schenke,ibid.‘.

    Google Scholar 

  8. H. H. Chambers and A. D. S. Tantram,ibid.‘.

    Google Scholar 

  9. P. V. Danckwerts,Chem. Eng. Sci.,2 (1953) 1.

    Google Scholar 

  10. O. K. Davytan,Bull. Acad. Sci. U.S.S.R. dasse Sci. Tech.,107 (1946) 125.

    Google Scholar 

  11. M. Duduković, MS Thesis, Illinois Institute of Technology, Chicago (1970).

    Google Scholar 

  12. L. T. Fan, and R. C. Bailie.,Chem. Eng. Sci.,13 (1960) 63,

    Google Scholar 

  13. D. Gidaspow,A.I.Ch. E. J.,13 (1967) 4.

    Google Scholar 

  14. Institute of Gas Technology, ‘JP-4 Fueled Molten Carbonate Fuel Cells,’ Contract No.DA-44-009-AMC-1465 (T) for U.S. Army Mobility Equipment Research and Development Center, Fort Belvoir, Virginia (January 1968).

    Google Scholar 

  15. O. Levenspiel, ‘Chemical Reaction Engineering’, John Wiley, New York (1962).

    Google Scholar 

  16. O. Levenspiel, and K. B. Bischoff, ‘Patterns of Flow in Chemical Process Vessels’, in ‘Advances in Chemical Engineering’, Vol. 4, Academic Press, New York (1963).

    Google Scholar 

  17. H. A. Liebhafsky atd E. J. Cairns, ‘Fuel Cells and Batteries’, John Wiley, New York (1968).

    Google Scholar 

  18. R. W. Lyczkowski, D. Gidaspow, and C. W. Solbrig,Chem. Eng. Progr. Symp. Ser.,63, No.77 (1967).

  19. S. J. Oleksy, H. Weinstein, and A. B. Shaffer,J. Appl. Physiol.,26 (1969) 227.

    Google Scholar 

  20. R. K. Olson, MS Thesis, Illinois Institute of Technology, Chicago (1967).

    Google Scholar 

  21. A. D. S. Tantram, A. C. C. Tseung, and B. S. Harris, ‘Hydrocarbon Fuel Cell Technology’, B. S. Baker, ed., Academic Press, New York (1965).

    Google Scholar 

  22. Laan Van der,Chem. Eng. Sci.,7, (1958) 187.

    Google Scholar 

  23. J. F. Wehner, and R. H. W. Chelen,Chem. Eng. Sci.,6 (1965) 89.

    Google Scholar 

  24. K. R. Williams, ‘An Introduction to Fuel Cells’, Elsevier, Amsterdam (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duduković, M., Weinstein, H. & Ng, D.Y.C. Residence time distributions and reaction kinetics in a fuel cell anode. J Appl Electrochem 1, 219–230 (1971). https://doi.org/10.1007/BF00616945

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00616945

Keywords

Navigation