Skip to main content
Log in

Space charge sheath in plasma-neutral gas interaction

  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

A space charge sheath is found to be formed whenever a high-velocity magnetized plasma stream penetrates a gas cloud. The sheath is always located at the head of the plasma stream, and its thickness is very small compared to the length of the plasma stream. Soon after the sheath is formed it quickly slows down to the Alfvén critical velocity. The plasma behind the sheath continues to move at higher velocity until the whole plasma stream is retarded to the critical velocity. In the interaction at gas density ≈1019 m−3 the sheaths are observed to be accompanied by a single loop of current with current density of ≈105 Å m−2. Maximum potential in the sheath ranges between 50 and 200 V.

Presently available models for the sheath may explain the initiation of the sheath formation. Physical processes like heating of the electrons and ionization of the gas cloud which come into play at a later stage of the interaction are not included in these models. These processes considerably alter the potential structure in the sheath region. A schematic model of the observed sheath is presented here.

Experiments reveal a threshold value of the magnetic field for plasma retardation to occur. This seems to correspond to the threshold condition for excitation of the modified two-stream instability which can lead to the electron heating. The observed current are found sufficient to account for the plasma retardation at a gas density of ≈1017 m−3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alfvén, H.: 1954,On the Origin of the Solar System, Oxford University Press, Oxford.

    Google Scholar 

  • Alfvén, H.: 1960,Rev. Mod. Phys. 32, 10.

    Google Scholar 

  • Angerth, B., Block, L., Fahleson, U., and Soop, K.: 1962,Nucl. Fusion Suppl. 1, 39.

    Google Scholar 

  • Axnas, A.: 1972,Dept. of Electron and Plasma Physics, Royal Institute of Tech. Res. Report 72-31.

  • Buneman, O.: 1962,Plasma Phys. 4, 111.

    Google Scholar 

  • Chung, P. M., Talbot, R., and Touryan, K. J.: 1975,Electric Probes in Stationary and Flowing Plasma, Springer Verlag, New York.

    Google Scholar 

  • Colgate, S. A.: 1961, Univ. Cal. Lawrence Radn. Lab. Report, UCRL, No. 6176.

  • Colgate, S. A.: 1962, inElectromagnetics and Fluid Dynamics of Gaseous Plasmas, Polytechnic Press Inc., Brooklyn, New York.

    Google Scholar 

  • Danielsson, L.: 1970,Phys. Fluids 13, 2288.

    Google Scholar 

  • Danielsson, L.: 1973,Astrophys. Space Sci. 24, 459.

    Google Scholar 

  • Danielsson, L. and Brenning, N.: 1970,Phys. Fluids 18, 661.

    Google Scholar 

  • Eninger, J.: 1965,Proc. 7th Int. Conf. Ioniz. Phenom. Gases (Belgrade) 1, 520.

    Google Scholar 

  • Fahleson, U. V.: 1961,Phys. Fluids 4, 123.

    Google Scholar 

  • Himmel, G., Mobius, E., and Piel, A.: 1976,Z. Naturforsch. 31a, 934.

    Google Scholar 

  • Kanal, M.: 1964,J. Appl. Phys. 35, 1697.

    Google Scholar 

  • Krall, N. A. and Liewer, P. C.: 1971,Phys. Rev. A 4, 2094.

    Google Scholar 

  • Lehnert, B.: 1976,Phys. Fluids 10, 2216.

    Google Scholar 

  • Lindberg, L. and Kristofferson, L.: 1970,Plasma Phys. 12, 831.

    Google Scholar 

  • Mattoo, S. K. and Venkataramani, N.: 1980,Phys. Letters A 76, 257.

    Google Scholar 

  • McBride, J. B., Ott, E., Boris, J. P., and Orens, H.: 1972,Phys. Fluids 15, 2367.

    Google Scholar 

  • Mobius, E., Piel, A., and Himmel, G.: 1978, SFB Plasma Physik Bochum/Julich, Report 78-M2-36.

  • Mobius, E., Piel, A., and Himmel, G.: 1979,Z. Naturforsch. 34a, 405.

    Google Scholar 

  • Ott, E., McBride, J. B., Orens, H., and Boris, J. P.: 1972,Phys. Rev. Letters 28, 88.

    Google Scholar 

  • Piel, A., Mobius, E., and Himmel, G.: 1978, SFB Plasma Physik Bochum/Julich, Report 78-M2-037.

  • Piel, A., Mobius, E., and Himmel, G.: 1980,Astrophys. Space Sci. 72, 211.

    Google Scholar 

  • Raadu, M. A.: 1975,Roy. Inst. Techn. Rep., TRITA-EPP-75-28.

  • Raadu, M. A.: 1977,Roy. Inst. Techn. Rep., TRITA-EPP-77-18.

  • Raadu, M. A.: 1978,Astrophys. Space Sci. 55, 125.

    Google Scholar 

  • Raadu, M. A.: 1979,Roy. Inst. Techn. Rep., TRITA-EPP-70-14.

  • Raadu, M. A.: 1980,Roy. Inst. Techn. Rep., TRITA-EPP-80-05.

  • Sherman, J. C.: 1969,Roy. Inst. Techn. Rep., 69-29.

  • Sherman, J. C.: 1970,Roy. Inst. Techn. Rep., 70-15.

  • Sherman, J. C.: 1972, in Aina Elvius, Almqvist and Wiksell (eds.), Nobel Symp.21, 315.

    Google Scholar 

  • Sherman, J. C.: 1973,Astrophys. Space Sci. 24, 487.

    Google Scholar 

  • Tan, W. P. S.: 1973,J. Phys. D. — Appl. Phys. 6, 1188.

    Google Scholar 

  • Varma, R. K.: 1978,Astrophys. Space Sci. 55, 113.

    Google Scholar 

  • Venkataramani, N.: 1981, Ph.D. Thesis, Gujarat University, Ahmedabad, India.

  • Venkataramani, N. and Mattoo, S. K.: 1980a,Phys. Letters A79, 393.

    Google Scholar 

  • Venkataramani, N. and Mattoo, S. K.: 1980b,Pramana 15, 117.

    Google Scholar 

  • Venkataramani, N. and Mattoo, S. K.: 1980c,Indian Academy of Science Proceedings, EPS-89, 431.

  • Venkataramani, N. and Mattoo, S. K.: 1981,Ind. J. Pure Appl. Phys. 19, 56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkataramani, N., Mattoo, S.K. Space charge sheath in plasma-neutral gas interaction. Astrophys Space Sci 121, 83–103 (1986). https://doi.org/10.1007/BF00648264

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00648264

Keywords

Navigation