Skip to main content
Log in

Quantification of control of microbial metabolism by substrates and enzymes

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The control of substrates or enzymes on metabolic processes can be expressed in quantitative terms. Most of the experimental material found in the literature, however, has been obtained under non-standardized conditions, precluding definite conclusions concerning the magnitude of control. A number of representative examples is discussed and it is concluded that a quantitative analysis of the factors that control metabolism is essential for understanding the microbial behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiking H & Tempest DW (1976) Growth and physiology of Candida utilisNCYC321 in potassium-limited chemostat culture. Arch. Microbiol. 108: 117–124

    Google Scholar 

  • Ataai MM & Shuler ML (1987) A mathematical model for prediction of plasmid copy number and genetic stability in Escherichia coli. Biotechnol. Bioeng. 30: 389–397

    Google Scholar 

  • Birkenhead K, Manian SS & O'Gara F (1988) Dicarboxylic acid transport in Bradyrhizobium japonicum: use of Rhizobium meliloti dct gene(s) to enhance nitrogen fixation. J. Bacl. 170: 184–189

    Google Scholar 

  • Bremer H & Dennis PP (1987) Modulation of chemical composition and other parameters of the cell by growth rate. In: Neidhart FC (Ed) Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Vol 2 (pp 1527–1542). ASM, Washington DC

    Google Scholar 

  • Brinkman U, Mueller RH & Babel W (1990) The growth ratelimiting reaction in methanol-assimilating yeasts. FEMS Microbiol. Rev. 87: 261–266

    Google Scholar 

  • Buurman ET, Pennock J, Tempest DW, Teixeira de Mattos MJ & Neijssel OM (1989) Replacement of potassium ions by ammonium ions in different microorganisms grown in potassium-limited chemostat culture. Arch. Microbiol. 152: 58–63

    Google Scholar 

  • Dabes JN, Finn RK & Wilke CR (1973) Equations of substrate-limited growth. Case for Blackman kinetics. Biotech. Bioeng. 15: 1159–1177

    Google Scholar 

  • Dean AM, Dykhuizen DE & Hartl DL (1986) Fitness as a function of β-galactosidase activity in Escherichia coli. Genet. Res. Camb. 48: 1–8

    Google Scholar 

  • Domach MM, Leung SK, Cahn RE, Cocks GG & Shuler ML (1984) Computer model for glucose-limited growth of a single cell of Escherichia coli B/r-A. Biotechnol. Bioeng. 26: 203–216

    Google Scholar 

  • Droop MR (1973) Some thoughts on nutrient limitation in algae. J. Phycol. 9: 264–272

    Google Scholar 

  • Dykhuizen DE, Dean AM & Hartl D (1987) Metabolic fluxes and fitness. Genetics 115: 25–31

    Google Scholar 

  • Erickson LE, Minkevich IG & Eroshin VK (1978) Utilization of mass-energy balance regularities in the analysis of continuous-culture data. Biotech. Bioeng. 20: 1595–1621

    Google Scholar 

  • Flint HJ, Porteous DJ & Kacser H (1980) Control of the flux in the arginine pathway of Neurospora crassa. Biochem. J. 190: 1–15

    Google Scholar 

  • Flint HJ, Tateson RW, Barthelmess IB, Porteous DJ, Donachie WD & Kacser H (1981) Control of the flux in the arginine pathway of Neurospora crassa. Biochem. J. 200: 231–246

    Google Scholar 

  • Galazzo JL & Bailey JE (1990) Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microb. Technol. 12: 162–172

    Google Scholar 

  • Groen AK (1984) Quantification of control studies on intermediary metabolism. PhD Thesis, University of Amsterdam

  • Hartl DL, Dykhuizen DE & Dean A (1985) Limits of adaption: the evolution of selective neutrality. Genetics 111: 655–674

    Google Scholar 

  • Heinrich R & Rapoport TA (1973) Linear theory of enzymatic chains: its application for the catalysis of the crossover theorem and of the glycolysis of human erythrocytes. Acta Biol. Med. Germ. 31: 479–494

    Google Scholar 

  • Herbert D (1961) The chemical composition of micro-organisms as a function of their environment. In: Meynell CG & Gooder H (Eds) Microbial Reaction to the Environment. Symp. Soc. Gen. Microbiol. 11: 391–416

  • Iwami Y & Yamada T (1985) Regulation of glycolytic rate in Streptococcus sanguis grown under glucose-limited and glucose-excess conditions in a chemostat. Infect. Immun. 50: 378–381

    Google Scholar 

  • Jensen KF & Pedersen S (1990) Metabolic growth rate control in Escherichia coli may be a consequence of subsaturation of the macromolecular biosynthetic apparatus with substrates and catalytic components. Microbiol. Rev. 54: 89–100

    Google Scholar 

  • Jensen PR (1991) Growth physiology of Escherichia colistrains with variable expression of the atp operon. PhD Thesis, Danmarks Tekniske Hojskole

  • Joshi A & Palsson BO (1988) Escherichia coli growth dynamics: a three-pool biochemically based description. Biotech. Bioeng. 31: 102–116

    Google Scholar 

  • Kacser H & Burns JA (1973) Control of [enzyme] flux. In: Davies DD (Ed) Rate Control of Biological Processes (pp 65–104). Cambridge University Press

  • Kell DB, Westerhoff HV & van Dam K (1989) Control analysis of microbial growth and productivity. In: 44th Symp. Soc. Gen. Microbiol, Baumberg S, Hunter L & Rhodes M (Eds) (pp 61–93). Cambridge University Press

  • Kleman GL, Chalmers JJ, Luli GW & Strohl WR (1991) Glucose-stat, a glucose-controlled continuous culture. Appl. Environ. Microbiol. 57: 918–923

    Google Scholar 

  • Marr AG (1991) Growth rate of Escherichia coli. Microbiol. Rev. 55: 316–333

    Google Scholar 

  • Minkevich IG, Krinitzkaya AY & Eroshin VK (1988) A double substrate limitation zone of continuous microbial growth. In: Kyslic P, Dawes EA, Klumphanzl V & Novak M (Eds) Continuous Culture (pp 171–184). Academic Press, London

    Google Scholar 

  • Monod J (1942) Recherches sur la croissance des cultures bacteriennes. Herman et Cie, Paris

    Google Scholar 

  • Mulder MM (1988) Energetic aspects of bacterial growth; a mosaic non-equilibrium thermodynamic approach. PhD thesis, University of Amsterdam

  • Mulder MM, van der Gulden HML, Postma PW & van Dam K (1989) Macromolecular composition of Klebsiella aerogenesNCTC 418 under glucose- and ammonia-limiteed conditions in continuous culture. Biochim. Biophys. Acta 936: 406–412

    Google Scholar 

  • Neijssel OM, Hueting S & Tempest DW (1977) Glucose transport capacity is not the rate-limiting step in the growth of some wild-type strains of Escherichia coli and Klebsiella aerogenes in chemostat culture. FEMS Microbiol. Lett. 2: 1–3

    Google Scholar 

  • O'Brien RW, Neijssel OM & Tempest DW (1980) Glucose: phosphoenolpyruvate phosphotransferase activity and glucose uptake rate of Klebsiella aerogenes growing in chemostat culture. J. Gen. Microbiol. 116: 305–314

    Google Scholar 

  • Owens JD & Legan JD (1987) Determination of the Monod substrate saturation constant for microbial growth. FEMS Microbiol. Rev. 46: 419–432

    Google Scholar 

  • Poolman B, Bosman B, Kiers J & Konings WN (1987) Control of glycolysis by glyceraldehyde-3-phosphate dehydrogenase in Streptococcus cremoris and Streptococcus lactis. J. Bact. 169: 5887–5890

    Google Scholar 

  • Poolman B & Konings WN (1988) Relation of growth of Streptococcus lactis and Streptococcus cremoristo amino acid transport. J. Bact. 170: 700–707

    Google Scholar 

  • Portillo F & Serrano R (1989) Growth control strength and active site of yeast plasma membrane ATPase studied by site-directed mutagenesis. Eur. J. Biochem. 186: 501–507

    Google Scholar 

  • Postma E, Scheffers WA & van Dijken JP (1988) Adaptation of the kinetics of glucose transport to environmental conditions in the yeast Candida utilis CBS621: a continuous culture study. J. Gen. Microbiol. 134: 1109–1116

    Google Scholar 

  • Postma PW & Lengeler J (1985) Phosphoenolpyruvate: carbohydrate phosphotransferase system of bacteria. Microbiol. Rev. 49: 232–269

    Google Scholar 

  • Powell EO (1967) Microbial physiology and continuous culture; In: Powell EO, Evans CGT, Strange RE & Tempest DW (Eds) Proceedings of the Third Int.Symp. (pp 34–55). HMSO, London

    Google Scholar 

  • Roels JA (1980) Bioengineering report. Application of macroscopic principles to microbial metabolism. Biotech. Bioeng. 22: 2457–2514

    Google Scholar 

  • Ruijter G, Postma PW & van Dam K (1991) Control on glucose metabolism by Enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. J. Bacteriol. (in press)

  • Rutgers M (1990) Control and thermodynamics of microbial growth PhD Thesis, University of Amsterdam

  • Rutgers M, Teixeira de Mattos MJ, Postma PW & van Dam K (1987) Establishment of the steady state in glucose-limited chemostat cultures of Klebsiella pneumoniae. J. Gen. Microbiol. 133: 445–451

    Google Scholar 

  • Rutgers M, Balk PA & van Dam K (1989) Effect of concentration of substrates and products on the growth of Klebsiella pneumoniae in chemostat cultures. Biochim. Biophys. Acta 977: 142–149

    Google Scholar 

  • Rutgers M, Balk PA & van Dam K (1990) Quantification of multiple-substrate controlled growth. Simultaneous ammonium and glucose limitation in chemostat culturs of Klebsiella pneumoniae. Arch. Microbiol. 153: 478–484

    Google Scholar 

  • Schaaff I, Heinisch J & Zimmermann FK (1989) Overproduction of glycolytic enzymes in yeast. Yeast 5: 285–290

    Google Scholar 

  • Schulze KL & Lipe RS (1964) Relationship between substrate concentration, growth rate and respiration rate of Escherichia coli in continuous culture. Archiv. für Mikrobiol. 48: 1–20

    Google Scholar 

  • Senn HP (1989) Kinetik und Regulation des Zuckerabbaus von Escherichia coli ML30 bei tiefen Zuckerkonzentrationen; PhD thesis, ETH Zürich

  • Shu J & Shuler ML (1989) A mathematical model for the growth of a single cell of E.coli on a glucose/glutamine/ammonium medium. Biotechnol. Bioeng. 33: 1117–1126

    Google Scholar 

  • Shuler ML, Leung S & Dick CC (1979) A mathematical model for the growth of a single bacterial cell. Ann. N. Y. Acad. Sci. 326: 35–55

    Google Scholar 

  • Stouthamer AH (1973) A theoretical study on the amount of ATP required for synthesis of microbial cell material. Antonie van Leeuwenhoek 39: 545–565

    Google Scholar 

  • Stouthamer AH, Bulthuis B & Van Verseveld HW (1990) Energetics of growth at low growth rates and its relevance for the maintenance concept. In: Poole RK, Bazin MJ & Keevil CW (Eds) Microbial Growth Dynamics, Vol 28 (pp 85–102). SGM Publications

  • Stueland CS, Gorden K & LaPorte DC (1988) The isocitrate dehydrogenase phosphorylation cycle; identification of the primary rate-limiting step. J. Biol. Chem. 263: 19475–19479

    Google Scholar 

  • Valinger R, Braus G, Niederberger P, Künzler M, Paravicini G, Schmidheini T & Hütter R (1989) Cloning of the LEU2 gene of Saccharomyces cerevisiae by in vivo recombination. Arch. Microbiol. 152: 263–268

    Google Scholar 

  • Walsh K & Koshland D (1985) Characterization of rate-controlling steps in vivo by use of an adjustable expression vector. J. Biol. Chem. 82: 3577–3581

    Google Scholar 

  • Westerhoff HV, Lolkema JS, Otto R & Hellingwerf KJ (1982) Thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Biochim. Biophys. Acta 683: 181–220

    Google Scholar 

  • Westerhoff HV & van Dam K (1987) Thermodynamics and Control of Biological Free-energy Transduction. Elsevier, Amsterdam

    Google Scholar 

  • Westerhoff HV, van Heeswijk W, Kahn D & Kell DB (1992) Antonie van Leeuwenhoek 60 (this issue)

  • Westerhoff HV, Koster JG, van Workum M & Rudd KE (1990) On the control of gene expression. In: Cornish-Bowden A & Luz Cardenas M (Eds) Control of Metabolic Processes. NATO ASI Series A: Life Sciences, Vol 190 (pp 399–412)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Dam, K., Jansen, N. Quantification of control of microbial metabolism by substrates and enzymes. Antonie van Leeuwenhoek 60, 209–223 (1991). https://doi.org/10.1007/BF00430366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00430366

Key words

Navigation