Skip to main content
Log in

Theoretical study of fluoromethane photoionization cross sections and angular distributions

  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Conclusions

The valence-orbital photoionization cross sections show a nonmonotone behavior near threshold, which indicates that there are quasistationary states in the continuum. The features in the sections are more pronounced when there are more fluorine atoms [9].

Xα systematically underestimates the cross sections. MSAA gives better agreement with experiment, since the method is parameterized by means of atomic cross sections. The overestimated cross sections near threshold in MSAA are due to the use of phases calculated for the ground-state potential. It is better to calculate the phases for the ionized state, which should shift the virtual level responsible for the overestimation in the continuum.

The Xα asymmetry parameters for the upper valency orbitals agree well with measurements. Relaxation and correlation make it problematic to use Xα (essentially a one-electron method) for the inner valency orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  1. C. R. Brundle, N. B. Robin, and H. J. Basch, J. Chem. Phys.,53, 2196–2213 (1970).

    Google Scholar 

  2. H. J. T. Preston and J. J. Kaufman, Chem. Phys. Lett.,50, No. 1, 157–161 (1977).

    Google Scholar 

  3. F. C. Brown, R. Z. Bachrach, and A. Bianconi, Chem. Phys. Lett.,54, No. 3, 425–429 (1978).

    Google Scholar 

  4. G. De Alti, F. Decleva, and A. Sgamellotti, J. Electron Spectrosc. Relat. Phenom.,12, No. 2/3, 249–257 (1977).

    Google Scholar 

  5. M. S. Banna and D. A. Shirley, Chem. Phys. Lett.,33, No. 3, 441–446 (1975).

    Google Scholar 

  6. W. R. Harshbarger, M. B. Robin, and E. N. Lassettre, J. Electron Spectrosc. Relat. Phenom.,1, 319–325 (1973).

    Google Scholar 

  7. R. Cambi, G. Cuillo, A. Sgamellotti, et al., Chem. Phys. Lett.,80, 295–300 (1981).

    Google Scholar 

  8. B. P. Pullen, T. H. Carlson, W. E. Moddeman, et al., J. Chem. Phys.,53, No. 2, 768–782 (1970).

    Google Scholar 

  9. M. Rosi, A. Sgamellotti, F. Tarantelli, et al., J. Electron Spectrosc. Relat. Phenom.,41, No. 3/4, 439–452 (1986).

    Google Scholar 

  10. S. T. Manson and D. Dill, Electron Spectroscopy: Theory, Techniques, and Applications, edited by G. R. Brundle and A. D. Baker, Academic Press, London (1978), Vol. 2, pp. 158–185.

    Google Scholar 

  11. W. Thiel, Chem. Phys.,57, 227–243 (1981).

    Google Scholar 

  12. D. Dill and D. L. Dehmer, J. Chem. Phys.,61, No. 2, 692–699 (1974).

    Google Scholar 

  13. K. H. Johnson, Adv. Quantum Chem.,7, 143–185 (1973).

    Google Scholar 

  14. R. Latter, Phys. Rev.,99, No. 2, 510–519 (1955).

    Google Scholar 

  15. M. M. Gofman, V. I. Nefedov, V. L. Kraizman, and R. V. Vedrinski, J. Electron Spectrosc. Relat. Phenom.,32, No. 1, 59–72 (1983).

    Google Scholar 

  16. T. A. Carlson, G. E. McGuire, A. E. Jonas, et al., Electron Spectroscopy: Proceedings of the International Conference on Electron Spectroscopy, North Holland, Amsterdam (1972).

    Google Scholar 

  17. I. Novak, A. W. Potts, F. Quinn, et al., J. Phys. B,18, 1581–1588 (1985).

    Google Scholar 

  18. V. G. Yarzhemsky, V. I. Nefedov, M. Ya. Smusia, et al., J. Electron Spectrosc. Relat. Phenom.,19, No. 1, 123–154 (1980).

    Google Scholar 

  19. V. G. Yarzhemsky, V. I. Nefedov, M. Ya. Amusia, et al., J. Electron Spectrosc. Relat. Phenom.,23, No. 2, 175–186 (1981).

    Google Scholar 

  20. L. C. Snyder and H. Basch, Molecular Wave Functions and Properties: Tabulated from SCF Calculations in a Gaussian Basis Set, Wiley, New York (1972).

    Google Scholar 

  21. C. Y. R. Wu, L. C. Lee, and D. L. Judge, J. Chem. Phys.,71, 5221–5226 (1979).

    Google Scholar 

  22. J. W. Cooper, Phys. Rev.,128, No. 2, 681–693 (1962).

    Google Scholar 

  23. S. T. Manson and J. W. Cooper, Phys. Rev.,165, No. 1, 126–138 (1968).

    Google Scholar 

  24. P. R. Keller, J. W. Taylor, T. A. Carlson, and F. A. Grimm, Chem. Phys.,79, No. 2 269–276 (1983).

    Google Scholar 

Download references

Authors

Additional information

Deceased.

Far East University. Translated from Zhurnal Strukturnoi Khimii, Vol. 30, No. 1, pp. 80–86, January–February, 1989.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Padeletti, G., Rosi, M., Sgamellotti, A. et al. Theoretical study of fluoromethane photoionization cross sections and angular distributions. J Struct Chem 30, 66–71 (1989). https://doi.org/10.1007/BF00748184

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00748184

Keywords

Navigation