Skip to main content
Log in

The characteristic crystal-chemical features of the structure of molecular charge-transfer complexes

  • Review
  • Published:
Journal of Structural Chemistry Aims and scope Submit manuscript

Summary

On the basis of the foregoing, we can reach the following conclusions.

  1. 1.

    In molecular AC with charge transfer, as in binary CTC, with the exception of AC with a 4-membered bridge, intermolecular plane-parallel (or almost plane-parallel) pairing of the planes of the donor and acceptor molecular fragments takes place, leading to intermolecular π~π* charge transfer.

  2. 2.

    The type of orientation of the resulting donor-acceptor pairs in the case of the AC crystal depends to a significant extent on the length of the isolating bridge. It is possible to observe either isolated DA pairs or DA subunits which are “cross-linked” by intramolecular nonvalence interaction, or the formation of mixed stacks of planes, similar to those of binary CTC. In AC crystals these stacks may be oriented in one or two directions.

  3. 3.

    At the same time, organization of the subunits of the binary CTC in columns is almost always observed.

  4. 4.

    An appreciable change in the donor or acceptor parts with preservation of the length of the isolating bridge in the molecules alters their configuration as a whole, the packing motif in the crystal, and hence the nature of the donor-acceptor interactions of the molecules.

  5. 5.

    In AC molecules, in addition to the intermolecular π~π* charge transfer characteristic of all CTC. it is possible in a number of cases to observe crystallographic features leading to intramolecular n~π* interaction, that is, to observe “double complex formation.” Both types of DA interaction have been proved by spectroscopy.

  6. 6.

    For all CTC, the presence of bulky substituents on the donor or acceptor fragments leads to loosening of the DA pairs or even to the disappearance of the stacks.

  7. 7.

    Increase in the length of the isolating bridge in AC leads to a decrease in the probability of intermolecular overlap. At the same time there may be an increase in the tendency of the DA fragments to show intramolecular “saturation.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  1. G. M. Bennet and G. H. Willis, J. Chem. Soc., 256 (1929).

  2. R. S. Mulliken, J. Phys. Chem.,56, 801 (1952).

    Google Scholar 

  3. G. Briegleb, Angew. Chem., Int. Ed., 617 (1964).

  4. S. Saha, A. Sekhar-Ghosh, and S. Basu, J. Chim. Phys. Physicochim. Biol.,65(4), 673 (1968).

    Google Scholar 

  5. S. G. Ardhendu and S. Satyabrata, Indian J. Chem.,11, (3), 260 (1973).

    Google Scholar 

  6. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc.70, 2382 (1948).

    Google Scholar 

  7. H. A. Benesi and R. M. Hildebrand, J. Am. Chem. Soc.,71, 2703 (1949).

    Google Scholar 

  8. L. J. Andrews and R. M. Keefer, in: Advances in Inorganic Chemistry and Radiochemistry (ed. by H. J. Emeléus and A. G. Sharpe), Vol. 3, Academic Press, New York (1961).

    Google Scholar 

  9. R. E. Merrifield and W. D. Phillips, J. Am. Chem. Soc.,80, 2778 (1958).

    Google Scholar 

  10. R. S. Mulliken and W. B. Person, Molecular Complexes, Wiley-Interscience, New York (1969).

    Google Scholar 

  11. P. Pfeiffer, Organische Molekulverbindungen (2nd edition), Ferdinand Enke, Stuttgart (1927).

    Google Scholar 

  12. G. Briegleb, Zwischenmolekulare Kräfte, G. Braun, Karlsruhe (1949).

    Google Scholar 

  13. J. Weiss, J. Chem. Soc., 462 (1943).

  14. M. J. S. Dewar, The Electronic Theory of Organic Chemistry, Oxford University Press, London (1949).

    Google Scholar 

  15. R. S. Mulliken, J. Am. Chem. Soc.,74, 811 (1952).

    Google Scholar 

  16. R. S. Mulliken and W. B. Person, J. Am. Chem. Soc.,91, 3409 (1969).

    Google Scholar 

  17. M. W. Hanna and D. E. Williams, J. Am. Chem. Soc.,90, 5358 (1968).

    Google Scholar 

  18. H. M. McConnel, B. M. Hoffman, and R. M. Metzger, Proc. Nat. Acad. Sci. USA,53, 46 (1965).

    Google Scholar 

  19. H. M. Powell, G. Huse, and P. W. Cooke, J. Chem. Soc., 153 (1943).

  20. H. M. Powell and G. Huse, J. Chem. Soc., 435 (1943).

  21. S. S. Chu, G. A. Jeffrey, and T. Sakurai, Acta Crystallogr.,15, 661 (1962).

    Google Scholar 

  22. S. C. Wallwork and T. T. Harding, Acta Crystallogr.,15, 810 (1962).

    Google Scholar 

  23. C. K. Prout and A. G. Wheeler, J. Chem. Soc., (A), 469 (1967).

  24. K. Yakushi, I. Ikemoto, and H. Kuroda, Acta Crystallogr.,B27, 1710 (1971).

    Google Scholar 

  25. C. K. Prout and I. J. Tikle, J. Chem. Soc., Perkin Trans. II,9, 1212 (1973).

    Google Scholar 

  26. S. C. Wallwork, J. Chem. Soc., 494 (1961).

  27. J. L. de Boer and A. Vos, Acta Crystallogr.,B24, 720 (1968).

    Google Scholar 

  28. B. Mayoh and C. K. Prout, J. Chem. Soc., Faraday Trans. II,6, 1072 (1972).

    Google Scholar 

  29. R. M. Williams and S. C. Wallwork, Acta Crystallogr.,22, 899 (1967).

    Google Scholar 

  30. S. Kumakura, F. Iwasaki, and Y. Saito, Bull. Chem. Soc. Jpn.,40, 1826 (1967).

    Google Scholar 

  31. R. S. Mulliken, Rec. Trav. Chim.,75, 845 (1956).

    Google Scholar 

  32. A. N. Aleksandrov, A. Karutts, I. V. Krivoshei, G. B. Litinskii, V. E. Starov, V. É. Umanskii, and Fan Lyong, Preprint of the FTINT, Academy of Sciences of the Ukrainian SSR, Khar'kov (1975).

  33. A. W. Hanson, Acta Crystallogr.,19, 19 (1965).

    Google Scholar 

  34. A. W. Hanson, Acta Crystallogr.,17, 559 (1964).

    Google Scholar 

  35. L. J. Andrews and R. M. Keefer, Molecular Complexes in Organic Chemistry, Holden-Day, San Francisco (1964) [Russian translation; Mir, Moscow (1967)].

    Google Scholar 

  36. I. Ikemoto and H. Kuroda, Bull. Chem. Soc. Jpn.,40, 2009 (1967).

    Google Scholar 

  37. D. S. Brown, S. C. Wallwork, and A. Wilson, Acta Crystallogr.,17, 168 (1964).

    Google Scholar 

  38. R. M. Williams and S. C. Wallwork, Acta Crystallogr.,21, 406 (1966).

    Google Scholar 

  39. F. Iwasaki and Y. Saito, Acta Crystallogr.,B26, 251 (1970).

    Google Scholar 

  40. C. S. Choi and J. Abel, Acta Crystallogr.,B28, 193 (1972).

    Google Scholar 

  41. J. Trotter, Tetrahedron,8, 13 (1960).

    Google Scholar 

  42. Y. Ohashi, H. Iwasaki, and Y. Saito, Bull. Chem. Soc. Jpn.40, 1789 (1967).

    Google Scholar 

  43. N. Niimura, Y. Ohashi, and Y. Saito, Bull. Chem. Soc., Jpn.,41, 1815 (1968).

    Google Scholar 

  44. H. Tsuchiya, F. Marumo, and Y. Saito, Acta Crystallogr.,B28, 1935 (1972).

    Google Scholar 

  45. H. Tsuchiya, F. Marumo, and Y. Saito, Acta Crystallogr.,B29, 659 (1973).

    Google Scholar 

  46. S. Iwata, J. Tanaka and S. Nagakura J. Am. Chem. Soc.,89, 2813 (1967).

    Google Scholar 

  47. S. Iwata, J. Tanaka, and S. Nagakura, J. Am. Chem. Soc.,88, 894 (1966).

    Google Scholar 

  48. H. Kuroda, T. Amano, I. Ikemoto, and H. Akamatu, J. Am. Chem. Soc.,89, 6056 (1967).

    Google Scholar 

  49. H. Kuroda, I. Ikemoto, and H. Akamatu, Bull. Chem. Soc. Jpn.,39, 547 (1966).

    Google Scholar 

  50. U. Schmueli and I. Goldberg, Acta Crystallogr.,B30, 573 (1974).

    Google Scholar 

  51. E. Adman, M. Rosenblum, S. Sullivan, and T. Margulis, J. Am. Chem. Soc.,89, 4540 (1967).

    Google Scholar 

  52. J. Bernstein and K. Trueblood, Acta Crystallogr.,B27, 2078 (1971).

    Google Scholar 

  53. I. Goldberg and U. Schmueli, Acta Crystallogr.,B29, 432 (1973).

    Google Scholar 

  54. R. E. Long, R. A. Sparks, and K. N. Trueblood, Acta Crystallogr.,18, 932 (1965).

    Google Scholar 

  55. H. T. Joukman and J. K. Kommandeur, Chem. Phys. Lett.,15, 496 (1972).

    Google Scholar 

  56. I. Goldberg and U. Schmueli, Acta Crystallogr.,B29, 440 (1973).

    Google Scholar 

  57. R. M. Williams and S. C. Wallwork, Acta Crystallogr.,B24, 168 (1968).

    Google Scholar 

  58. I. Goldberg and U. Schmueli, Acta Crystallogr.,B29, 421 (1973).

    Google Scholar 

  59. T. T. Harding and S. C. Wallwork, Acta Crystallogr.,6, 791 (1953).

    Google Scholar 

  60. H. Matsuda, K. Osaki, and I. Natta, Bull. Chem. Soc. Jpn.,31, 611 (1958).

    Google Scholar 

  61. T. Sakurai, Acta Crystallogr.,19, 320 (1965).

    Google Scholar 

  62. T. Ito, M. Mikobe, and T. Sakurai, Acta Crystallogr.,B26, 1145 (1970).

    Google Scholar 

  63. T. Sakurai and H. Tagawa, Acta Crystallogr.B27, 1453 (1971).

    Google Scholar 

  64. G. G. Shipley and S. C. Wallwork, Acta Crystallogr.,22, 585 (1967).

    Google Scholar 

  65. G. G. Shipley and S. C. Wallwork, Acta Crystallogr.,22, 593 (1967).

    Google Scholar 

  66. N. D. Sokolov, Ann. Chim.10, 497 (1965).

    Google Scholar 

  67. J. Gaultier, C. Hauw, and M. Schvoerer, Acta Crystallogr.,B27, 2199 (1971).

    Google Scholar 

  68. B. Rees, Acta Crystallogr.,B26, 1304 (1970).

    Google Scholar 

  69. B. Rees, R. Haser, and R. Weiss, Bull. Soc. Chim. France,8, 2658 (1966).

    Google Scholar 

  70. J. Gaultier and C. Hauw, Acta Crystallogr.,18, 604 (1965).

    Google Scholar 

  71. H. Breton-Lacombe, Acta Crystallogr.,6, 1031 (1967).

    Google Scholar 

  72. J. C. Metras, Acta Crystallogr.,14, 153 (1961).

    Google Scholar 

  73. O. Hassel and C. Romming, Quart. Rev. (London),16, 1 (1962).

    Google Scholar 

  74. V. A. Izmail'skii and V. E. Limanov, Zh. Obshch. Khim.,29, 2927 (1959).

    Google Scholar 

  75. L. E. Berzin, D. J. Murniece, J. J. Dregeris, and J. F. Freimanis, Izv. Akad. Nauk Latv. SSR, Ser. Khim., 460 (1971).

  76. C. K. Prout and E. E. Castellano, J. Chem. Soc., A, 2775 (1970).

  77. M. Meyers and K. N. Trueblood, Acta Crystallogr.B25, 2588 (1969).

    Google Scholar 

  78. J. R. Herriot, A. Camerman, and D. A. Deranleau, J. Am. Chem. Soc.,96, 1585 (1974).

    Google Scholar 

  79. J. Karle, I. L. Karle, and D. Mitchell, Acta Crystallogr.,B25, 866 (1969).

    Google Scholar 

  80. J. F. Freimanis, J. J. Dregeris, et al., Zh. Obshch. Khim.,42, 603 (1972).

    Google Scholar 

  81. A. E. Shvets, J. J. Bleidelis, and J. F. Freimanis, Zh. Strukt. Khim.,15, 504 (1974).

    Google Scholar 

  82. A. E. Milliaresi and V. A. Izmail'skii, Zh. Obshch. Khim.,35, 776 (1965).

    Google Scholar 

  83. A. E. Shvets, J. J. Bleidelis, and J. F. Freimanis, Zh. Strukt. Khim.,16, 98 (1975).

    Google Scholar 

  84. J. Freimanis, J. Dregeris, et al., Adv. Mol. Relax. Proc.,5, 33 (1973).

    Google Scholar 

  85. J. F. Freimanis, J. J. Dregeris, et al., Summaries of Papers Presented at the Second All-Union Conference on Charge-Transfer Complexes and Radical-Ion Salts, Riga, 1973 [in Russian], p. 45.

  86. A. E. Shvets, J. J. Bleidelis, and J. F. Freimanis, Zh. Strukt. Khim.,16, 415 (1975).

    Google Scholar 

  87. J. F. Freimanis and L. E. Berzin, Dokl. Akad. Nauk SSSR,185, 139 (1969).

    Google Scholar 

  88. J. F. Freimanis, A. J. Malmanis, and J. J. Dregeris, Bull. Chem. Soc. Jpn. (in press).

  89. A. E. Shvets, J. J. Bleidelis, and J. F. Freimanis, Zh. Strukt. Khim.,16, 640 (1975).

    Google Scholar 

  90. V. G. Rumyantsev, L. M. Blinov, J. F. Freimanis, and J. J. Dregeris, Zh. Strukt. Khim.,16, 222 (1975).

    Google Scholar 

Download references

Authors

Additional information

Institute of Organic Synthesis, Academy of Sciences of the Latvian SSR. Translated from Zhurnal Strukturnoi Khimii, Vol. 17, No. 6, pp. 1096–1110, November–December, 1976.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleidelis, J.J., Shvets, A.E. & Freimanis, J.F. The characteristic crystal-chemical features of the structure of molecular charge-transfer complexes. J Struct Chem 17, 930–944 (1976). https://doi.org/10.1007/BF00746241

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00746241

Keywords

Navigation