Skip to main content
Log in

Holographic velocimetry for flow diagnostics

  • Published:
Experimental Mechanics Aims and scope Submit manuscript

Abstract

Currently, there are a number of flow diagnostic tools available for the evaluation of fluid dynamic systems. In spite of its great potential, holographic velocimetry is one technique which has not been widely used. It does, however, have great potential in this area due to its inherent three-dimensionality. As demonstrated in this study of fully developed turbulent flow in a pipe, full three-dimensional mapping can be achieved at any instant in a flow cycle. Comparisons of holographic results with analytical predictions and laser-Doppler-anemometry (LDA) measurements demonstrate the accuracy of the technique as well as some of its advantages and disadvantages relative to LDA. Although relatively poor spatial resolution is obtained, the fact that holographic velocimetry is both an instantaneous and full volume measuring tool makes it useful for a range of complex and high-speed flow-measurement applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Skidmore, R., “Basic Techniques in Doppler Cardiology,” Proc. Physical Techniques in Cardiological Imaging, 47–54 (1982).

  2. Hwang, N., “Flow Dynamics of Natural Valves in the Left Heart,”Cardiovascular Flow Dynamics and Measurements, ed. N. Hwang andN.A. Normann, University Park Press, Baltimore, Ch. 21, 825–850 (1977).

    Google Scholar 

  3. Fabris, G., “Probe and Method for Simultaneous Measurements of ‘True’ Instantaneous Temperature and Three Velocity Components in Turbulent Flow,”Rev. Sci. Instr.,49 (5),654–664 (May 1978).

    Google Scholar 

  4. Tombach, I.H., “An Evaluation of the Heat Pulse Anemometer for Velocity Measurement in Inhomogeneous Turbulent Flow,”Rev. Sci. Instr.,44 (2),141–148 (Feb. 1973).

    Google Scholar 

  5. Drain, L.E., The Laser Doppler Technique, John Wiley & Sons, New York, Ch. 1, 4–5 (1980).

    Google Scholar 

  6. Huffaker, R.M., “Laser Doppler Detection Systems for Gas Velocity Measurement,”Appl. Opt.,9 (5),1026–1039 (May 1970).

    Google Scholar 

  7. Grant, G.R. andOrloff, K.L., “Two-Color Dual-Beam Backscatter Laser Doppler Velocimeter,”Appl. Opt.,12 (12),2913–2916 (Dec. 1973).

    Google Scholar 

  8. Blake, K.A., “Simple Two-Dimensional Laser Velocimeter Optics,”J. of Physics E: Sci. Instru.,5 (7),623–624 (July 1972).

    Google Scholar 

  9. Privette, R.M., Tiederman, W.G. andPhillips, W.M., “Cycle-To-Cycle Variation in Pulsatile Valve Flows,”Proc. ACEMB,39,130 (1986).

    Google Scholar 

  10. Barker, D.B. andFourney, M.E., “Measuring Fluid Velocities with Speckle Patterns,”Opt. Lett.,1 (4),135–137 (Oct. 1977).

    Google Scholar 

  11. He, Z.H., Sutton, M.A., Ranson, W.F. andPeters, W.H., “Two-dimensional Fluid-velocity Measurements by Use of Digital-speckle Correlation Techniques,” experimental mechanics,24 (2),117–121 (June 1984).

    Google Scholar 

  12. Yoganathan, A.P., Cardiovascular Fluid Mechanics, PhD Thesis, Cal. Inst. of Tech., Pasadena (1978).

    Google Scholar 

  13. Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill, New York, 214–218 (1968).

    Google Scholar 

  14. Collier, R.J., Burckhardt, C.B. andLin, L.H., Optical Holography, Academic Press, Inc., Orlando, Ch. 11, 328–330 (1971).

    Google Scholar 

  15. Neumann, D.B., “Holography of Moving Scenes,”J. Opt. Soc. Amer.,58 (4),447–454 (April 1968).

    Google Scholar 

  16. Kurtz, R.L. andPerry, L.M., “Real-Time Holographic Motion Picture Camera Capable of Recording Front Surface Detail from a Random Velocity Vector,”Appl. Opt. 12 (12),2815–2821 (Dec. 1973).

    Google Scholar 

  17. Redman, J.D., “Holographic Velocity Measurement,”J. Sci. Instr.,44 (12),1032–1033 (Dec. 1967).

    Google Scholar 

  18. Fourney, M.E., “Aerosol Size and Velocity Determination via Holography,”Rev. Sci. Instr.,40 (2),205–213 (Feb. 1969).

    Google Scholar 

  19. Trolinger, J.D., Belz, R.A. and Farmer, W.M., “Holographic Techniques for the Study of Dynamic Particle Fields,” AEDC-TR-68-215 (Sept. 1968).

  20. Shofner, F.M., Menzel, R. and Russell, T.G., “Fundamentals of Holographic Velocimetry,” AFFDL-TR-68-140 (Nov. 1968).

  21. Shofner, F.M., Webb, R.O. and Fradenburg, R.L., “Optical Data Processors for Holographic Velocimetry,” Laser J., 13–17 (March/April 1970).

  22. Menzel, R., Russell, T.G. andShofner, F.M., “Recording Fluid Velocity Fields Holographically,”Proc. Soc. Photo-optical Instr. Eng.,15,167–170 (May 1968).

    Google Scholar 

  23. Thompson, B.J., Parrent, G.B., Ward, J.H. andJusth, B., “A Readout Technique for the Laser Fog Disdrometer,”J. Appl. Meteor.,5 (3),343–348 (June 1966).

    Google Scholar 

  24. Hjelmfelt, A.T., Jr. andMockros, L.F., “Motion of Discrete Particles in a Turbulent Fluid,”J. Appl. Sci. Res. 16,149–161 (1966).

    Google Scholar 

  25. Yoganathan, A.P., personal communication (Dec. 1987).

  26. Agfa-Gevaert NDT/Holography Technical Information (1983).

  27. Knox, C., “Holographic Microscopy as a Technique for Recording Dynamic Microscopic Subjects,”Sci. 153,989–990 (Aug. 1966).

    Google Scholar 

  28. Haussmann, G. andLauterborn, W., “Determination of Size and Position of Fast Moving Gas Bubbles in Liquids by Digital 3-D Image Processing of Hologram Reconstructions,”Appl. Opt.,19 (20),3529–3535 (Oct. 1980).

    Google Scholar 

  29. Lauterborn, W. andHentschel, W., “Cavitation Bubble Dynamics Studied by High Speed Photography and Holography: Part Two,”Ultrasonics,24 (2),59–65 (March 1986).

    Google Scholar 

  30. Thompson, B.J., Ward, J.H. andZinky, W.R., “Application of Hologram Techniques for Particle Size Analysis,”Appl. Opt.,6 (3),519–526 (March 1967).

    Google Scholar 

  31. Silverman, B.A., Thompson, B.J. andWard, J.H., “A Laser Fog Disdrometer,”J. Appl. Meteor.,3 (6),792–801 (Dec. 1964).

    Google Scholar 

  32. Briones, R.A., Heflinger, R.O. andWuerker, R.F., “Holographic Microscopy,”Appl. Opt.,17 (6),944–950(March 1978).

    Google Scholar 

  33. Ebeling, K.J., “Application of High Speed Holocinematographical Methods in Cavitation Research,”Proc. of the First International Conf. on Cavitation and Inhomogeneities in Underwater Acoustics, ed. W. Lauterborn, Springer-Verlag, Heidelberg, Part I, 35–41 (1980).

    Google Scholar 

  34. Hecht, E. andZajac, A., Optics, Addison-Wesley Publishing Company, Reading, Ch. 10 350–352 (1979).

    Google Scholar 

  35. Parrent, G.B., Jr. andThompson, B.J., “On the Fraunhofer (Far Field) Diffraction Patterns of Opaque and Transparent Objects with Coherent Background,”Opt. Acta,11,183–193 (Feb. 1964).

    Google Scholar 

  36. Hecht, E. andZajac, A., Optics, Addison-Wesley Publishing Company, Reading, Ch. 10, 387–388 (1979).

    Google Scholar 

  37. DeVelis, J.B., Parrent, G.B., Jr. andThompson, B.J., “Image Reconstruction with Fraunhofer Holograms,”J. Opt. Soc. Amer.,56 (4),423–427 (April 1966).

    Google Scholar 

  38. Brighton, J.A. andHughes, W.F., Fluid Dynamics, McGraw-Hill Book Company, New York, Ch., 5, 87–90 (1967).

    Google Scholar 

  39. Golden Software, Inc. Surfer Manual Technical Information (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuster, P.R., Wagner, J.W. Holographic velocimetry for flow diagnostics. Experimental Mechanics 28, 402–408 (1988). https://doi.org/10.1007/BF02325183

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02325183

Keywords

Navigation