Skip to main content
Log in

Calmodulin-dependent and -independent apoptosis in cells of a Drosophila neuronal cell line

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

This study was undertaken to reveal apoptotic pathways in neurons using a Drosophila neuronal cell line derived from larval central nervous system. We could induce apoptotic cell death in the cells by a Ca2+ ionophore (A23187), a protein kinase inhibitor (H-7), an RNA synthesis inhibitor (actinomycin D) and a protein synthesis inhibitor (cycloheximide). All the apoptosis induced by each chemical required Ca2+ ions, although the origin of Ca2+ ions were different: apoptosis induced by A23187 was dependent on extracellular Ca2+ ions whereas those by the other three chemicals utilized intracellular Ca2+ ions. Furthermore, different reactions to W-7, a calmodulin inhibitor, were found: W-7 prevented the cell death by each of the three chemicals but not by A23187. Based on the results, we proposed that the apoptotic pathways are classified into two types in individual cells. One pathway induced by H-7, actinomycin D or cycloheximide is calmodulin-dependent (pathway H), and another induced by A23187 is calmodulin-independent (pathway A).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Whillie AH, Kerr JFR, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 1980; 68: 251–305.

    PubMed  Google Scholar 

  2. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–1461.

    PubMed  Google Scholar 

  3. Alnemri ES, Livingston DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature. Cell 1996; 87: 171.

    Article  PubMed  Google Scholar 

  4. Kuida K, Sheng TS, Na S, et al. Decreased apoptosis in the brain and premature lethality in CPP32–deficient mice. Nature 1996; 384: 368–372.

    Article  PubMed  Google Scholar 

  5. Ui K, Nishihara S, Sakuma M, et al. Newly established cell lines from Drosophila larval CNS express neural specific characteristics. In Vitro Cell Dev Biol 1994; 30A: 209–216.

    Google Scholar 

  6. Ui-Tei K, Nishihara S, Sakuma M, Matsuda K, Miyake T, Miyata Y. Chemical analysis of neurotransmitter candidates in clonal cell lines from Drosophila central nervous system. I.ACh and L-DOPA. Neurosci Lett 1994; 174: 85–88.

    PubMed  Google Scholar 

  7. Song Z, McCall K, Steller H. DCP-1, a Drosophila cell death protease essential for development. Science 1997; 275: 536–540.

    Google Scholar 

  8. Frase AG, McCarthy NJ, Evan GI. drICE is essential caspase required for apoptotic activity in Drosophila cells. EMBO J 1997; 16: 6192–6199.

    PubMed  Google Scholar 

  9. Chen Po, Rodriguez A, Erskine R, Thach T, Abrams JM. Dredd, a novel effector of the apoptotic activators reaper, grim, hid in Drosophila Dev Biol 1998; 201: 202–216.

    Google Scholar 

  10. Ui-Tei K, Sato S, Miyake T, Miyata Y. Induction of apoptosis in a Drosophila neuronal cell line by calcium ionophore. Neurosci Lett 1996; 203: 191–194.

    PubMed  Google Scholar 

  11. Nagano M, Suzuki H, Ui-Tei K, Sato S, Miyake T, Miyata Y. H-7–induced apoptosis in the cells of a Drosophila neuronal cell line through affecting unidentified H-7–sensitive substance(s). Neurosci Res 1998; 31: 113–121.

    PubMed  Google Scholar 

  12. Ui-Tei K, Sato S, Miyake T, Miyata Y. Apoptosis in Drosophila neuronal cell lines. In: Fourth IBRO World Congress of Neuroscience. New York: Oxford, 1995: 238.

    Google Scholar 

  13. Ui-Tei K, Nagano M, Miyata Y. Zinc inhibits a molecule(s) upstream of apoptotic protease, caspase-3. Neurosci Res 1998; Suppl. 22: S328.

    Google Scholar 

  14. Davis RW, Thomas M, Cameron J, St. John TP, Scherer S, Padgett RA. Rapid DNA isolations for enzymatic and hybridization analysis. Methods Enzymol 1980; 65: 404–411.

    PubMed  Google Scholar 

  15. Enari M, Hase A, Nagata S. Apoptosis by a cytosolic extract from Fas-activated cells. EMBO J 1996; 14: 5201–5208.

    Google Scholar 

  16. Lockshin RA, Zakeri Z. Programmed cell death and apoptosis. In: Tomei LD, Cope FO, eds. Apoptosis: The molecular basis of cell death. New York: Cold Spring Harbor Laboratory Press 1991: 47–60.

    Google Scholar 

  17. Cohen J, Duke R. Apoptosis and programmed cell death in immunity. Annu Rev Immunol 1993; 10: 267–293.

    Google Scholar 

  18. Kroemer G, Petit P, Zamzami N, Vyssiere J, Mignotte B. The biochemistry of programmed cell death. FASEB J 1995; 9: 1277–1287.

    PubMed  Google Scholar 

  19. Kochi SK, Collier R. DNA fragmentation and cytolysis in U937 cells treated with diphtheria toxin or other inhibitors of protein synthesis. Exp Cell Res 1993; 208: 296–302.

    PubMed  Google Scholar 

  20. Martin SJ, Lennon SV, Bonham AM, Cotter TG. Induction of apoptosis (pogrammed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis. J Immunol 1990; 145: 1859–1867.

    PubMed  Google Scholar 

  21. Lindenboim L, Haviv R, Stein R. Inhibition of drug-induced apoptosis by survival factors in PC12 cells. J Neurochem 1995; 64: 1054–1063.

    PubMed  Google Scholar 

  22. Martin SJ. Apoptosis: Suicide, execution or murder? Trends Cell Biol 1993; 3: 141–144.

    PubMed  Google Scholar 

  23. Pronk GJ, Ramer K, Amiri P, Williams LT. Requirement of ICE-like protease for induction of apoptosis and ceramide generation by REAPER. Science 1996; 271: 808–810.

    PubMed  Google Scholar 

  24. Chang TC, Tsai LC, Hung MW, Chu LL, Chu JT, Chen YC. Effects of transcription and translation inhibitors on a human gastric carcinoma cell line. Potential role of Bcl-X(S) in apoptosis triggered by these inhibitors. Biochem Pharmacol 1997; 4: 969–977.

    Google Scholar 

  25. Grand RJ, Milner AE, Mustoe T, et al. Anovel protein expressed in mammalian cells undergoing apoptosis. Exp Cell Res 1995; 218: 439–451.

    PubMed  Google Scholar 

  26. McPhalen CA, Strynadka NCJ, James MNG. Calcium-binding sites in proteins: A structural perspective. In: Antinsen CB, Edsall JT, Richards FM, Eisenberg DS, eds. Advances in protein chemistry. Metalloproteins: Structural aspects vol. 42, San Diego: Academic Press 1991: 77–144.

    Google Scholar 

  27. Vito P, Lacana E, D'Adamio L. Interfering with apoptosis: Ca2+-binding protein ALG-2 and Alzheimer's disease gene ALG-3. Science 1996; 271: 521–525.

    PubMed  Google Scholar 

  28. Deiss LP, Feinstein E, Berissi H, Cohen O, Kimchi A. Identification of a novel serine/threonine kinase and a novel 15–kD protein as potential mediators of the ° interferon-induced cell death. Genes Dev 1995; 9: 15–30.

    PubMed  Google Scholar 

  29. Cohen O, Feinstein E, Kimchi A. DAP-kinase is a Ca2+/calmodulin-dependent, cytoskeletal-associated protein kinase, with cell death-inducing functions that depend on its catalytic activity. EMBO J 1997; 16: 998–1008.

    PubMed  Google Scholar 

  30. Smith VL, Doyle KE, Maune JF, Munjaal RP, Beckingham K. Structure and sequence of the Drosophila melanogaster calmodulin gene. J Mol Biol 1987; 196: 471–485.

    PubMed  Google Scholar 

  31. Klee CB, Vanaman TC. Calmodulin. Adv Protein Chem 1982; 35: 213–321.

    PubMed  Google Scholar 

  32. Lu KP, Rasmussen CD, May GS, Means AR. Cooperative regulation of cell proliferation by calcium and calmodulin in Aspergillus nidulans. Mol Endocrinol 1992; 6: 365–374.

    PubMed  Google Scholar 

  33. Lu KP, Osmani SA, Osmani AG, Means AR. Essential roles for calcium and calmodulin in G2/M progression in Aspergillus nidulans. J Cell Biol 1993; 121: 621–630.

    PubMed  Google Scholar 

  34. Brockerhoff SE, Stevens RC, Davis TN. The unconventional myosin, Myo2p, is a calmodulin target at sites of cell growth in Saccharomyces cerevisiae. J Cell Biol 1994; 124: 315–323.

    PubMed  Google Scholar 

  35. Geiser JR, Sundberg HA, Chang BH, Muller EGD, Davis TN. The essential mitotic target of calmodulin is the 110–kilodalton component of the spindle pole body in Saccharomyces cerevisiae. Mol Cell Biol 1993; 13: 7913–7924.

    PubMed  Google Scholar 

  36. Ohya Y, Botstein D. Diverse essential functions revealed by complementing yeast calmodulin mutants. Science 1994; 263: 963–966.

    PubMed  Google Scholar 

  37. Hinrichsen RD, Burgess-Cassler A, Soltvedt BC, Hennessey T, Kung C. Restoration by calmodulin of a Ca2+-dependent K+ current missing in a mutant of Paramecium. Science 1986; 232: 503–506.

    PubMed  Google Scholar 

  38. Kink JA, Maley ME, Preston RR, et al. Mutations in paramecium calmodulin indicate functional differences between the C-terminal and N-terminal lobes in vivo. Cell 1990; 62: 165–174.

    PubMed  Google Scholar 

  39. McConkey DJ, Nicotera P, Hrtzell P, Bellomo G, Wyllie AW, Orrenius S. Glucocorticoid activate a suicide process in thymocytes through an increase in cytosolic Ca2+ concentration. Arch Biochem Biophys 1989; 269: 365–370.

    PubMed  Google Scholar 

  40. Dowd DR, MacDonald PN, KommBS, Haussler MR, Miesfeld R. Evidence for early induction of calmodulin gene expression in lymphocytes undergoing glucocorticoid-mediated apoptosis. J Biol Chem 1991; 266: 18423–18426.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ui-Tei, K., Nagano, M., Sato, S. et al. Calmodulin-dependent and -independent apoptosis in cells of a Drosophila neuronal cell line. Apoptosis 5, 133–140 (2000). https://doi.org/10.1023/A:1009676528805

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009676528805

Navigation