Skip to main content
Log in

FTIR Spectroscopy, SAXS and Electrical Conductivity Studies of the Hydrolysis and Condensation of Zirconium and Titanium Alkoxides

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A continuous flowing-rapid mixing technique was combined with FTIR, SAXS and electrical conductivity to study the early stages of polymer formation and growth during the acid-catalyzed hydrolysis and condensation of titanium and zirconium alkoxides. Reaction times as short as 80 milliseconds were investigated. FTIR spectroscopy was used to monitor the water and M–OR concentrations during the reaction. Hydrolysis of ∼25–50% of the alkoxy groups was facile. The FTIR and SAXS data showed that condensation was also very rapid. The activity and mobility of the ions in the solution were monitored by electrical conductivity measurements. The decrease in the normalized solution conductivity during the reaction correlated with the loss of [M–OR]. Furthermore, the radius of gyration of the growing polymers increased rapidly in regimes where the conductivity and [M–OR] decreased fastest. This finding suggests that the mobility of some of the charge carrying species decreases because of the growth in size of the polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bradley, R. Gaze, and W. Wardlaw, J. Chem. Soc., 721 (1955).

  2. D. Bradley, R. Gaze, and W. Wardlaw, J. Chem. Soc., 469 (1957).

  3. D. Bradley and D. Carter, Can. J. Chem. 39, 1434 (1961).

    Google Scholar 

  4. V. Day, T. Eberspacher, A. Todd, W. Klemperer, C.W. Park, and F. Rosenberg, Chem. Process. Adv. Mater., 257 (1992).

  5. P.M. Smit, A. Van Zyl, and A.I. Kingon, Mat. Chem. Physics 17, 507 (1987).

    Google Scholar 

  6. J. Jean and T. Ring, Langmuir 2(2), 251 (1985).

    Google Scholar 

  7. E. Barringer and H. Bowen, Langmuir 1(4), 414 (1985).

    Google Scholar 

  8. J. Pouxviel, J. Boilot, and J. Lallemand, J. Non-Cryst. Solids 89, 345 (1987).

    Google Scholar 

  9. B.D. Kay and R.A. Assink, J. Non-Cryst. Solids 99, 359 (1988).

    Google Scholar 

  10. B.D. Kay and R.A. Assink, J. Non-Cryst. Solids 104, 112 (1988).

    Google Scholar 

  11. J.C. Pouxviel and J.P. Boilot, Mat. Res. Soc. Symp. Proc. 121, 37 (1988).

    Google Scholar 

  12. R.A. Assink and K. Bruce, Mat. Res. Soc. Symp. Proc. 121, 25 (1988). FTIR Spectroscopy 47

    Google Scholar 

  13. N.A. Peppas, A.B. Scanton, A.H. Taylor, and E. Edwards, Mat. Res. Soc. Symp. Proc. 121, 43 (1988).

    Google Scholar 

  14. W.G. Klemperer, V.V. Mainz, S.D. Ramaurthi, and F.S. Rosenberg, Mat. Res. Soc. Symp. Proc. 121, 15 (1988).

    Google Scholar 

  15. J.K. Bailey, M. Mecartney, and C.W. Macosko, J. Non-Cryst. Solids 125, 208 (1990).

    Google Scholar 

  16. B.W. Peace, K.G. Mayhan, and J.F. Montle, Polymers 14, 420 (1973).

    Google Scholar 

  17. L. Kelts, N. Elffinger, and S. Melpolder, J. Non-Cryst. Solids 83, 353 (1986).

    Google Scholar 

  18. I. Artaki, S. Sinha, A. Irwin, and J. Jones, J. Non-Cryst. Solids 72, 391 (1985).

    Google Scholar 

  19. J.L. Lippert, S.B. Melpolder, and L.M. Kelts, J. Non-Cryst. Solids 104, 139 (1988).

    Google Scholar 

  20. J.K. Bailey and M.L. McCartney, Colloids and Surfaces 63, 151 (1992).

    Google Scholar 

  21. K. Lee, J. Sanchez, S. Blaz, J.-L. Look, M.T. Harris, and A.V. McCormick, submitted to J. Colloid Interface Sci. (1995).

  22. J.L. Look, G.H. Bogush, and C.F. Zukoski, Faraday Discuss. Chem. Soc. 90, 345–357 (1990).

    Google Scholar 

  23. G. Bogush and C. Zukoski, J. Colloid Interface Sci. 142(1), 1 (1991).

    Google Scholar 

  24. D.C. Bradley, R. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, New York, 1978).

    Google Scholar 

  25. R. Feld and P. L. Cowe, The Organic Chemistry of Titanium (Butterworths, Boston, 1965).

    Google Scholar 

  26. K. Kustin, Methods in Enzymology, Vol XVI, Fast Reactions (Academic Press, New York, 1969).

    Google Scholar 

  27. K.A. Berglund, D.R. Tallant, and R.G. Dosh, Ceramic Chemical Processing, edited by L.L. Hench and Donald Ulrich (John Wiley and Sons, New York, 1986), p. 94.

    Google Scholar 

  28. J. Livage, M. Henry, and C. Sanchez, Prog. Solid St. Chem. 18, 259 (1988).

    Google Scholar 

  29. B.E. Yoldas, J. Mat. Sci. 21, 1087 (1986).

    Google Scholar 

  30. R.W. Hendricks, J. Appl. Cryst. 11, 15 (1978).

    Google Scholar 

  31. T.P. Russell, J.S. Lin, S. Spooner, and G.D. Wignall, J. Appl. Cryst. 21, 629 (1988).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harris, M.T., Singhal, A., Look, J.L. et al. FTIR Spectroscopy, SAXS and Electrical Conductivity Studies of the Hydrolysis and Condensation of Zirconium and Titanium Alkoxides. Journal of Sol-Gel Science and Technology 8, 41–47 (1997). https://doi.org/10.1023/A:1026422315834

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026422315834

Navigation