Skip to main content
Log in

Microporous SiO2 and SiO2/MOx (M=Ti, Zr, Al) for ceramic membrane applications: A microstructural study of the sol-stage and the consolidated state

Code: E8

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Microporous SiO2 and SiO2/MO2 (M=Ti, Zr, Al; 10 mol% MOx) materials for gas separation membrane applications have been prepared from polymeric sols. Characterization of these sols with SAXS showed that the mean fractal dimension of the SiO2 sols is 1.3–1.4 with a radius of gyration of approximately 2.5 nm. The dried and calcined films are microporous and the pore size distribution was bimodal with maxima at diameters of 0.5 nm and 0.75 nm. For the SiO2/TiO2, SiO2/ZrO2 and SiO2/Al2O3 systems, much milder reaction conditions proved to be necessary to obtain sols with comparable fractal dimensions due to the high reactivity of the Ti/Zr/Al-alkoxides. Microporous supported membranes with molecular sieve-like gas transport properties can be prepared from a relatively wide range of sol structures: from polymers too small to characterize with SAXS to structures with fractal dimensions: 1<d f<2.04.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Moscou, L., Pierotti, R.A., Rouquérol, J., and Siemiewska, T., Pure & Appl. Chem., 57 [4], 603 (1985).

    Google Scholar 

  2. Bhave, R.R., Inorganic membranes: Synthesis, Characteristics and Applications, (Van Nostrand Reinhold, New York, 1991), Chapter 1.

    Google Scholar 

  3. Burggraaf, A.J., Keizer, K., de Lange, R.S.A., Vroon, Z.A.E.P., and Zaspalis, V.T., in: Proceedings 9th Int. Zeolites Conf., Montreal, Canada, July 5–10, (1992), edited by Higgins, J.B., von Ballmoos, R. and Treacy, M.M.J., (Butterworth-Heinemann, Stoneham M.A., 1993), in press.

    Google Scholar 

  4. Uhlhorn, R.J.R., Keizer, K., and Burggraaf, A.J., J. Membrane Sci., 66 [2 & 3], 271 (1992).

    Google Scholar 

  5. Kitao, S., Kameda, H., and Asaeda, M., Membrane, 15 [4], 222 (1990).

    Google Scholar 

  6. de Lange, R.S.A., Hekkink, J.H.A., Keizer, K., and Burggraaf, A.J., in Better Ceramics through Chemistry V, edited by Hampden-Smith, M.J., Klemperer, W.G., and Brinker, C.J., (Materials Research Society, Pittsburgh, 1992), 505.

    Google Scholar 

  7. Brinker, C.J., Ward, T.L., Sehgal, R., Raman, N.K., Hietala, S.L., Smith, D.M., Hua, D.-W., and Headley, T.J., J. Membrane Sci., 77, 165 (1993).

    Google Scholar 

  8. Brinker, C.J., Hurd, A.J., Schrunk, P.R., Frye, G.C., and Ashley, C.S., J. Non-Cryst. Solids, 147 & 148, 424 (1992).

    Google Scholar 

  9. Brinker, C.J., and Scherer, G.W., Sol-Gel Science. The Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).

    Google Scholar 

  10. Kallala, M., Jullien, R., and Cabane, B., J. Phys. II France, 2, 7 (1992).

    Google Scholar 

  11. Livage, J., Henry, M., and Sanchez, C., Prog. Solid St. Chem., 18, 259 (1988).

    Google Scholar 

  12. Schraml-Marth, M., Walther, K.L., Wokaun, H., Handy, B.E., and Baiker, A., J. Non-Cryst. Solids., 143, 93 (1992).

    Google Scholar 

  13. de Lange, R.S.A., Ph-D Thesis, University of Twente, Enschede, Nov. (1993).

    Google Scholar 

  14. Horváth, G. and Kawazoe, K., J. Chem. Eng. Japan, 16 [6], 470 (1983).

    Google Scholar 

  15. Saito, A. and Foley, H.C., AlChE Journal, 37, [3], 429 (1991).

    Google Scholar 

  16. Uhlhorn, R.J.R., Keizer, K., and Burggraaf, A.J., J. Membrane Sci., 66 [2 & 3], 259 (1992).

    Google Scholar 

  17. Dokter, W.H., Beelen, T.P.M., van Garderen, H.F., and van, Santen, R.A., submitted for publication in Proceedings IU-PAC Symp. COPS III, Marseille, France, May 9–12, (1993), edited by Rouquérol, J., Rodriguez-Reinoso, F., Sing, K.S.W., and Unger, K.K., (Elsevier, Amsterdam, 1993).

    Google Scholar 

  18. Lee, R.W., J. Chem. Phys., 38, 448 (1963).

    Google Scholar 

  19. Frye, G.C., Ricco, A.J., Martin, S.J., and Brinker, C.J., in Better Ceramics through Chemistry III, edited by Brinker, C.J., Clark, D.E., and Ulrich, D.R. (Materials Research Society, Pittsburgh, 1988), 349.

    Google Scholar 

  20. Brinker, C.J., Frye, G.C., Hurd, A.J., and Ashley, C.S., J. Non-Cryst. Solids, 147 & 148, 424 (1992).

    Google Scholar 

  21. Kumer, K-N.P., Keizer, K., Burggraaf, A.J., Okubo, T., and Nagamoto, H., J. Mater. Chem., (1993), in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lange, R.S.A., Kumar, K.N.P., Hekkink, J.H.A. et al. Microporous SiO2 and SiO2/MOx (M=Ti, Zr, Al) for ceramic membrane applications: A microstructural study of the sol-stage and the consolidated state. J Sol-Gel Sci Technol 2, 489–495 (1994). https://doi.org/10.1007/BF00486296

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486296

Keywords

Navigation