Skip to main content
Log in

Effects of Processing Temperature on the Oxygen Quenching Behavior of Tris(4,7′-diphenyl-1,10′-phenanthroline) Ruthenium (II) Sequestered Within Sol-Gel-Derived Xerogel Films

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol-gel processing methods offer novel pathways for tailoring glasses. Amongst the issues that have received the least attention are the effects of the curing temperature on the behavior and photophysics of a dopant molecule sequestered within a sol-gel-derived xerogel. Of particular interest to our group are the effects of processing variables on the ability of a dopant molecule, that is sequestered within a xerogel glass, to be accessed by an analyte and the distribution of the dopant sites within the xerogel. The thermal stability of the luminophore tris(4,7′-diphenyl-1,10′-phenanthroline) ruthenium (II) ([Ru(dpp)3]2+) provides a convenient way to address these issues and develop an understanding of how one might best exploit curing temperature to construct improved chemical sensors. This paper focuses on quantifying how the film curing temperature affects the spectroscopy and O2 quenching of ([Ru(dpp)3]2+) sequestered within sol-gel-derived xerogel thin films. Our quenching data on films once they have been cured demonstrate that there is a dramatic increase in the sensitivity of the ([Ru(dpp)3]2+) molecules to O2 quenching when the films have been cured at elevated temperatures. This arises primarily because there are two main types of ([Ru(dpp)3]2+) microenvironments within the glass and higher temperature curing leads to an increase in the bimolecular quenching rate between O2 and ([Ru(dpp)3]2+). This is accomplished as follows. Below a curing temperature of 100–150°C, ∼15% of the xerogel-doped ([Ru(dpp)3]2+) molecules are not accessed to any detectable degree by the O2 molecules during the ([Ru(dpp)3]2+) excited-state luminescence lifetime. However, as the xerogel is cured at or above 150°C, residual silanol-bound waters (or other impurities) dissociate from the xerogel and those ([Ru(dpp)3]2+) molecules that were initially inaccessible become accessible to O2. The dissociation of these water molecules, plus other events, also causes the originally inaccessible ([Ru(dpp)3]2+) population to ultimately exhibit a quenching rate that is greater than the fraction of initially accessible ([Ru(dpp)3]2+) molecules that were formed under ambient curing conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L.L. Hench and J.K. West (Eds.), Chemical Processing of Advanced Materials (Wiley, New York, 1992).

    Google Scholar 

  2. L.L. Hench and J.K. West, Chem. Rev. 33, 90 (1992).

    Google Scholar 

  3. A. Paul, Chemistry of Glasses, 2nd edition (Chapman and Hall, New York, 1990), pp. 51-85.

    Google Scholar 

  4. C.J. Brinker and G.W. Scherer, Sol-Gel Science (Academic Press, New York, 1989).

    Google Scholar 

  5. B.C. Dave, B. Dunn, J.S. Valentine, and J.I. Zink, Anal. Chem. 66, 1121A (1994).

    Google Scholar 

  6. O. Lev, M. Tsionsky, L. Rabinovich, V. Glezer, S. Sampath, I. Pankratov, and J. Gun, Anal. Chem. 67, 22A (1995).

    Google Scholar 

  7. R. Reisfeld and C.K. Jorgenson (Eds.), Chemistry, Spectroscopy, and Applications of Sol-Gel Glasses (Springer-Verlag, Berlin, 1992).

    Google Scholar 

  8. D. Levy, in Proceedings of the First EuropeanWorkshop on Hybrid Organic-Inorganic Materials (Synthesis, Properties, Applications), edited by C. Sanchez and F. Ribot (1993), pp. 77-95.

  9. U. Narang, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 229 (1993).

    Google Scholar 

  10. F.P. Schafer, Topics in Applied Physics, 2nd edition (Springer, Berlin, 1977).

    Google Scholar 

  11. R. Reisfeld, R. Zusman, Y. Cohen, and M. Eyal, Chem. Phys. Lett. 147, 142 (1988).

    Google Scholar 

  12. R. Reisfeld and R. Zusman, US Patent No. 4,666,649, 1987.

  13. Y. Zhang, P.N. Prasad, and R. Burzynski, in Chemical Processing of Advanced Materials, edited by L.L. Henon and J.K. West (Wiley, New York, 1992), p. 825.

    Google Scholar 

  14. B.D. MacCraith, Sensors Actuators B 11, 29 (1993).

    Google Scholar 

  15. C. Rotman, M. Ottolenghi, R. Zusman, O. Lev, M. Smith, G. Gong, M.L. Kagan, and D. Avnir, Mater. Lett. 13, 293 (1992).

    Google Scholar 

  16. R. Zusman, C. Rottman, M. Ottolenghi, and D. Avnir, J. Non-Cryst. Solids 122, 107 (1990).

    Google Scholar 

  17. B. Dunn and J.I. Zink, J. Mater. Chem. 1, 903 (1991).

    Google Scholar 

  18. S. Braun, S. Rappoport, R. Zusman, D. Avnir, and M. Ottolenghi, Mater. Lett. 10, 1 (1990).

    Google Scholar 

  19. L.M. Ellerby, C.R. Nishida, F. Nishida, S.A. Yamanaka, B. Dunn, J.S. Valentine, and J.I. Zink, Science 255, 1113 (1992).

    Google Scholar 

  20. D. Avnir, D. Levy, and R.J. Reisfeld, J. Phys. Chem. 88, 5956 (1984).

    Google Scholar 

  21. R. Wang, U. Narang, F.V. Bright, and P.N. Prasad, Anal. Chem. 65, 2671 (1993).

    Google Scholar 

  22. M.R. Shahriari and J.Y. Ding, in Sol-Gel Optics: Processing and Applications, edited by L.C. Klein (Kluwer Academic Publishers, New York, 1994), Chap. 13.

    Google Scholar 

  23. C.M. Ingersoll and F.V. Bright, CHEMTECH 27, 26 (1997).

    Google Scholar 

  24. E.R. Carraway, J.N. Demas, and B.A. DeGraff, Langmuir 7, 2991 (1991).

    Google Scholar 

  25. D. Avnir, S. Braun, O. Lev, and M. Ottolenghi, SPIE Sol-Gel Optics II 1758, 456 (1992).

    Google Scholar 

  26. U. Narang, R.A. Dunbar, F.V. Bright, and P.N. Prasad, Appl. Spectrosc. 47, 1700 (1993).

    Google Scholar 

  27. C.M. Ingersoll and F.V. Bright, Sol-gel based biosensors, Encyclopedia of Science & Technology (McGraw-Hill Yearbook of Science and Technology, 1997), pp. 47-48.

  28. J.E. Lee and S.S. Saavedra, Anal. Chim. Acta 285, 265 (1994).

    Google Scholar 

  29. N. Aharonson, M. Alstein, G. Avidan, D. Avnir, A. Bronshtein, A. Lewis, K. Lieberman, M. Ottolenghi, Y. Polevaya, C. Rottman, J. Samuel, S. Shyalom, A. Strinkovski, and A. Turniansky, in Better Ceramics Through Chemistry, VI, edited by C. Sanchez, M.L. Mecartney, C.J. Brinker, and A. Cheetham (Res. Soc. Proc. 1994), Vol. 346, pp. 1-12.

  30. A.K. McEvoy, C.M. McDonagh, and B.D. MacCraith, Analyst 121, 785 (1996).

    Google Scholar 

  31. M.K. Krihak and M.R. Shahriari, Electron. Lett. 32, 240 (1996).

    Google Scholar 

  32. A.N. Watkins, B.R. Wenner, J.D. Jordan, W. Xu, J.N. Demas, and F.V. Bright, Appl. Spectrosc. 52, 750 (1998).

    Google Scholar 

  33. J.N. Demas, E.W. Harris, and R.P. McBride, J. Am. Chem. Soc. 93, 3184 (1971).

    Google Scholar 

  34. S. Buell and J.N. Demas, J. Phys. Chem. 87, 4675 (1983).

    Google Scholar 

  35. E.R. Carraway, J.N. Demas, B.A. DeGraff, and J.R. Bacon, Anal. Chem. 63, 337 (1991).

    Google Scholar 

  36. B.D. MacCraith, G. O'Keeffe, C. McDonagh, and A.K. McEvoy, Electron. Lett. 30, 888 (1994).

    Google Scholar 

  37. P. Hartmann, M.J.P. Leiner, and M.E. Lippitsch, Anal. Chem. 67, 88 (1995).

    Google Scholar 

  38. I. KlimĂt and O.S. Wolfbeis, Anal. Chem. 67, 3160 (1995).

    Google Scholar 

  39. A. Mills and M. Thomas, Analyst 122, 63 (1997).

    Google Scholar 

  40. J.N. Demas and B.A. DeGraff, J. Chem. Educ. 74, 690 (1997).

    Google Scholar 

  41. H. Kautsky, Biochem. Z. 291, 271 (1937).

    Google Scholar 

  42. J.B. Birks, Photophysics of Aromatic Molecules (Wiley-Interscience, London, 1970), Chap. 10, pp. 492-527 and references cited therein.

    Google Scholar 

  43. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum Press, New York, NY, 1983).

    Google Scholar 

  44. M.R. Eftink, in Topics in Fluorescence Spectroscopy; edited by J.R. Lakowicz (Plenum Press, New York, 1991), Vol. 2, Chap. 2.

    Google Scholar 

  45. J.R. Lakowicz and G. Weber, Biochem. 12, 4161 (1973).

    Google Scholar 

  46. J.R. Lakowicz and G. Weber, Biochem. 12, 4171 (1973).

    Google Scholar 

  47. X. Zhang and M.A. Rodgers, J. Phys. Chem. 99, 12797 (1995).

    Google Scholar 

  48. S.S. Lehrer, Biochem. 10, 3254 (1970).

    Google Scholar 

  49. M.R. Eftink and C.A. Ghiron, Biochem. 15, 672 (1976).

    Google Scholar 

  50. U. Narang, J.D. Jordan, F.V. Bright, and P.N. Prasad, J. Phys. Chem. 98, 8101 (1994).

    Google Scholar 

  51. R.A. Dunbar, J.D. Jordan, and F.V. Bright, Anal. Chem. 68, 604 (1996).

    Google Scholar 

  52. J.N. Demas, B.A. DeGraff, and W. Xu, Anal. Chem. 67, 1377 (1995).

    Google Scholar 

  53. C.-T. Lin, W. Böttcher, M. Chou, C. Creutz, and N. Sutin, J. Am. Chem. Soc. 98, 6536 (1976).

    Google Scholar 

  54. J.D. Jordan, R.A. Dunbar, and F.V. Bright, Anal. Chim. Acta 326, 83 (1996).

    Google Scholar 

  55. T.M. Parrill, J. Mater. Res. 7, 2230 (1992).

    Google Scholar 

  56. N. Primeau, C. Vautey, and M. Langlet, Thin Solid Films 310, 47 (1997).

    Google Scholar 

  57. P. Innocenzi, H. Kozuka, and T. Yoko, J. Phys. Chem. B 101, 2285 (1997).

    Google Scholar 

  58. S.K. Lee and I. Okura, Analyst 122, 81 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baker, G.A., Wenner, B.R., Watkins, A.N. et al. Effects of Processing Temperature on the Oxygen Quenching Behavior of Tris(4,7′-diphenyl-1,10′-phenanthroline) Ruthenium (II) Sequestered Within Sol-Gel-Derived Xerogel Films. Journal of Sol-Gel Science and Technology 17, 71–82 (2000). https://doi.org/10.1023/A:1008765106291

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008765106291

Navigation