Skip to main content
Log in

Dehydroxylation and the Crystalline Phases in Sol-Gel Zirconia

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The formation and evolution with temperature of the crystalline phases in sol-gel ZrO2 was analyzed by using X-ray powder diffraction, refinement of the crystalline structures, ESR, and UV-Vis spectroscopy. The precursor phase of crystalline zirconia was amorphous Zr(OH)4 with the same local order as the tetragonal crystalline phase. This amorphous phase dehydroxylated with temperature, generating nanocrystalline tetragonal zirconia, and producing point defects that stabilized the tetragonal structure, generated a paramagetic ESR signal with g values like the free electron, and had a light absorption band at 310 nm. When the sample was annealed at higher temperatures, it continued dehydroxilating, and the point defects disappeared, causing the transformation of the nanocrystalline tetragonal phase into nanocrystalline monoclinic zirconia. The two crystalline nanophases coexisted since the beginning of crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Srunivasan, and B.H. Davis, Catal. Lett. 14, 165 (1992).

    Google Scholar 

  2. M.J. Torralvo, M.A. Alario, and J. Soria, J. Catal. 86, 473 (1984).

    Google Scholar 

  3. G.T. Mamott, P. Barnes, S.E. Tarling, S.L. Jones, and C.J. Norman, J. Mat. Sci. 26, 4054 (1991).

    Google Scholar 

  4. D.R. Acosta, O. Novaro, T. Lopez, and R. Gomez, J. Mat. Res. 10, 1397 (1995).

    Google Scholar 

  5. G. Glimblett, A.A. Rahman, and K.S.W. Sing, J. Chem. Tech. Biotechnol. 30, 51 (1980).

    Google Scholar 

  6. D.A. Ward and E.I. Ko, Chem. Mat. 5, 956 (1993).

    Google Scholar 

  7. T. Lopez, J. Navarrete, R. Gomez, O. Novaro, F. Figueras, and H. Armendaris, Appl. Catal. A 125, 217 (1995).

    Google Scholar 

  8. R. Suyama, T. Ashida, and S. Kume, J. Am. Ceram. Soc. 68, c–134 (1985).

    Google Scholar 

  9. A. Clearfield, and P.A. Vaughan, Acta Crystallogr. 9, 555 (1956).

    Google Scholar 

  10. T.C.W. Mak, Can J. Chem. 46, 3491 (1968).

    Google Scholar 

  11. T. Lopez, M. Asomoza, and R. Gomez, Thermochim. Acta. 223, 233 (1993).

    Google Scholar 

  12. R. Gomez, T. Lopez, G. Ferrat, J.M. Dominguez, and I. Schifter, Chem. Lett., p. 1941 (1992).

  13. R. Gomez, F. Tzompantzi, T. Lopez, and O. Novaro, React. Kinet. Catal. Lett. 53, 245 (1994).

    Google Scholar 

  14. R.A. Young, A. Sakthivel, T.S. Moss, and C.O. Paiva-Santos, J. Appl. Crystallogr. 28, 366 (1995).

    Google Scholar 

  15. Margarita Schneider EDV-Vertrieb, Starnbergweg 18, D-8134 Pöcking, Germany, 1992. Tel. 0049-8157-8727, Fax. 0049-8157-4527.

  16. P. Thompson, D.E. Cox, and J.B. Hastings, J. Appl. Crystallogr. 20, 79 (1987).

    Google Scholar 

  17. E. Prince, J. Appl. Crystallogr. 14, 157 (1981).

    Google Scholar 

  18. P.F. Becher, J. Am. Ceram. Soc. 75, 493 (1992).

    Google Scholar 

  19. P. Duran, M. Gonzalez, C. Moure, J.R. Jurado, and C. Pascual, J. Mat. Sci. 25, 5001 (1990).

    Google Scholar 

  20. E. Sanchez, T. Lopez, R. Gomez, J.L. Boldu, E. Muñoz, and O. Novaro, in Sol-gel Science and Technology, edited by E.J.A. Pope, S. Sakka, and L.C. Klein, Ceramic Transactions 55, 391 (Am. Ceram. Soc. Ohio, 1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gómez, R., López, T., Bokhimi, X. et al. Dehydroxylation and the Crystalline Phases in Sol-Gel Zirconia. Journal of Sol-Gel Science and Technology 11, 309–319 (1998). https://doi.org/10.1023/A:1008666531404

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008666531404

Navigation