Skip to main content
Log in

Structure evolution in the PbO-ZrO2-TiO2 sol-gel system: Part I — Characterization of prehydrolyzed precursors

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this investigation, several spectroscopic and analytical techniques were used to determine the chemical compositions and structures of the lead, zirconium, titanium, and Pb-(Zr, Ti) alkoxides involved in the sol-gel synthesis of PZT thin films. These techniques included 1H, 13C, and 207Pb NMR; FT-IR; gas chromatography; Karl Fischer titration; and number-average molecular weights (M n ) determined by cryoscopy. It was found that the titanium precursor had a M n of 548 and a formula of [Ti(OCH2CH2OCH3)4]1.6; the zirconium precursor had a M n of 1015 and a formula of [Zr(OCH2CH2OCH3)4]2.6; and the lead precursor had a formula Pb6(OOCCH3)5(OCH2CH2OCH3)7. 4 H2O and a molecular weight of 2131 (M n =2113). It was observed that residual water from the incomplete dehydration of lead acetate trihydrate coupled with released water due to the esterification of acetic acid caused M-O-M (M=Pb, Zr, Ti) bonds in the Pb-(Zr, Ti) alkoxide. Two possible isomeric structures of the Pb-(Zr, Ti) alkoxide have been proposed. They are both cyclic and have a formula of Pb2M′M″O2(OR)8(ROH)2, (M′M″=Zr and/or Ti) and a molecular weight of 1336 (M n =1386).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Sakka in Treatise on Materials Science and Technology Volume 22, (Academic Press, N.Y., 1982).

    Google Scholar 

  2. H. Dislich and P. Hinz, J. Non-Cryst. Solids 48, (1982).

  3. D.P. Partlow and B.E. Yoldas, J. Non-Cryst. Solids 46, 153 (1981).

    Google Scholar 

  4. Better Ceramics Through Chemistry IV, Materials Research Society Symposium Proceedings Volume 180, edited by B.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, Pittsburgh, PA, 1990).

    Google Scholar 

  5. L.T. Clark, S.K. Dey, and R.O. Grondin, Ferroelectrics 116, 205 (1991).

    Google Scholar 

  6. D. Bondurant, Ferroelectrics 108, 37 (1990).

    Google Scholar 

  7. S.K. Dey and R. Zuleeg, Ferroelectrics 108, 37 (1990).

    Google Scholar 

  8. J.M. Benedetto, R.A. Moore, F.B. McLean, P.S. Brody, and S.K. Dey, IEEE Trans. on Nuclear Science 37 [6], 1713 (1990).

    Google Scholar 

  9. S.K. Dey and J.J. Lee, IEEE Trans. on Electronic Devices 39 [7], 1607 (1992).

    Google Scholar 

  10. C.K. Barlingay and S.K. Dey in Ferroelectric Films, Ceramic Transactions Volume 25, edited by A.S. Bhalla and K.M. Nair (American Ceramic Society, Westerville, OH, 1992), p. 129.

    Google Scholar 

  11. A.R. Modak and S.K. Dey in Materials and Processes for Microelectronic Systems, Ceramic Transactions Volume 15, edited by K.M. Nair, R. Pohanka, and R.C. Buchanan (American Ceramic Society, Westerville, OH, 1990), p. 477.

    Google Scholar 

  12. C.K. Barlingay and S.K. Dey, Appl. Phys. Lett. 61 [11], 1278 (1992).

    Google Scholar 

  13. S. Li, R.A. Condrate, Sr., and R.M. Spriggs, Spectrosc. Lett. 21 [9–10], 969 (1988).

    Google Scholar 

  14. T.W. Dekleva, J.M. Hayes, L.E. Cross, and G. Geoffroy, J. Am. Ceram. Soc. 71 [5], C-280 (1988).

  15. K. Kezuka, Y. Hayashi, and T. Yamaguchi, J. Am. Ceram. Soc. 72 [9], 1660 (1989).

    Google Scholar 

  16. S.D. Ramamurthi and D.A. Payne, J. Am. Ceram. Soc. 73 [8], 2547 (1989).

    Google Scholar 

  17. C.D.E. Lakeman, J.-F. Campion, and D.A. Payne, Ceramic Transactions 25, 413 (1992).

    Google Scholar 

  18. J.B. Blum and S.R. Gurkovich, J. Mater. Sci. 20, 4479 (1985).

    Google Scholar 

  19. D.F. Shriver and M.A. Drezdzon, The Manipulation of Air-Sensitive Compounds (Wiley-Interscience, New York, 1986).

    Google Scholar 

  20. S.K. Dey and R. Zuleeg, Ferroelectrics 108, 37 (1990).

    Google Scholar 

  21. H. LeCat in Azeotropic Data III, Advances in Chemistry, Volume 116, edited by L.H. Horsley (American Chemical Society, Washington, D.C., 1973), p. 203.

    Google Scholar 

  22. P.G. Harrison, M.A. Healy, and Andrew T. Steel, J. Chem. Soc. Dalton Trans. 1983, 1845 (1983).

    Google Scholar 

  23. R. Papiernik, L.G. Hubert-Pfalzgraf, and M.-C. Massiani, Inorg. Chim. Acta. 165, 1 (1989).

    Google Scholar 

  24. R. Papiernik, L.G. Hubert-Pfalzgraf, and M.-C. Massiani, Polyhedron 10 [14], 1 (1991).

    Google Scholar 

  25. L.G. Hubert-Pfalzgraf, R. Papiernik, M.-C. Massiani, and B. Septe, in Better Ceramics Through Chemistry IV, Materials Research Society Symposium Proceedings Volume 180, edited by B.J.J. Zelinski, C.J. Brinker, D.E. Clark, and D.R. Ulrich (Materials Research Society, Pittsburgh, PA, 1990).

    Google Scholar 

  26. D.C. Bradley, R.C. Mehrotra, and D.P. Gaur, Metal Alkoxides (Academic Press, London, 1978) p. 117.

    Google Scholar 

  27. L.F. Francis, D.A. Payne, and S.R. Wilson, Chem. Mat. 2, 645 (1990).

    Google Scholar 

  28. M.A. Matchett, M.Y. Chiang, and W.E. Buhro, Inorg. Chem 29, 358 (1990).

    Google Scholar 

  29. S. Doeuff, M. Henry, C. Sanchez, and J. Livage, J. Non-Cryst. Solids 89, 206 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coffman, P.R., Dey, S.K. Structure evolution in the PbO-ZrO2-TiO2 sol-gel system: Part I — Characterization of prehydrolyzed precursors. J Sol-Gel Sci Technol 1, 251–265 (1994). https://doi.org/10.1007/BF00486168

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00486168

Key words

Navigation