Skip to main content
Log in

Dynamic blood cell contact with biomaterials: validation of a flow chamber system according to international standards

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The increasing number of patients requiring prosthetic substitution of segments of the vascular system strongly supports the need to optimize a relevant, standardized testing panel for new materials designed for synthetic vascular prostheses. The ISO gives the standard requirements for testing biomaterials provided for implantation. Our primary interest was the establishment of a reliable in vitro panel as a useful and relevant screening system for vascular implant devices to evaluate blood/device interactions under flow conditions. The aim of the present study was to evaluate influences of different flow conditions on blood cell–biomaterial interactions with special emphasis on the interactions of human granulocytes (PMN) and polymeric surfaces. PMN were isolated and vital cells were quantified by flow cytometrical analysis directly before, as well as immediately after the experiments. The viscosity of the final cellular suspension was analysed by using a computerized cone-plate rheometer. As reference materials we used FEP-teflon, PVC-DEHD, PU, PP and PE. Dacron and ePTFE synthetic vascular protheses were tested in a comparative way to those references. The adhesion processes were observed over a period of 40 minutes under arterial (shear stress 0.74 Pa) and venous (shear stress 0.16 Pa) flow conditions in a parallel plate flow chamber system under highly standardized conditions and laminar flow. The cells were observed with the help of inverse light microscopy. Cell behaviour was recorded and analysed in both analogue (video) and digital (imaging system) modes. Samples of the cell suspensions were obtained at regular time intervals and analysed by enzyme linked immuno sorbent assay (ELISA) to quantify LTB4 release. Irrespective of the material, approximately 3 to 4 times more PMN adhered to the biomaterial surfaces under venous flow conditions compared to the arterial. Shear intensity did not influence the running order of biomaterials with respect to cell numbers. This response in descending order at the end of the experiments was as follows: PU, PVC-DEHD, PP, PE and ePTFE. The biochemical analyses indicate that in the system used only a weak effect on LTB4 release induced by the different materials could be determined. A significant effect caused by flow conditions was not observed. Further experiments, both static as well as dynamic, must be performed for multiple, relevant parameters of haemocompatibility, for potential biomaterials as well as those currently in use in vascular prostheses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. E. STEHBENS and J. T. LIE, “Vascular pathology” (Chapman & Hall, London, 1995).

    Google Scholar 

  2. ISO, ISO 10993-4/5 (ISO 1992).

  3. T. G. VAN KOOTEN, J. M. SCHAKENRAAD, H. C. VAN DER MEI and H. J. BUSSCHER, J. Biomed. Mater. Res. 26 (1992) 725.

    Google Scholar 

  4. G. A. TRUSKEY and J. S. PIRONE, ibid. 24 (1990) 1333.

    Google Scholar 

  5. E. L. YEO, J. A. SHEPPARD and I. A. FEUERSTEIN, Blood 83 (1994) 2498.

    Google Scholar 

  6. D. C. DOOLEY, J. F. SIMPSON and H. T. MERRYMAN, Exp. Haematol. 10 (1982) 591.

    Google Scholar 

  7. M. G. ORMEROD, in “Flow cytometry, a practical approach“, edited by M.G. Ormerod (Oxford University Press, Oxford, 1990).

    Google Scholar 

  8. D. W. HOWARD, Food Technol. 45 (1991) 82.

    Google Scholar 

  9. ASTM, Annual Book of ASTM Standards, Vol. 15.06 (1991) D2556.

    Google Scholar 

  10. W. LEMM, “The reference materials of the European Communities” (Kluwer Academic, London, 1992).

    Google Scholar 

  11. C. L. KLEIN, Spezielle Methoden der Biomaterialtestung (Waxmann, Münster and New York, 1994).

    Google Scholar 

  12. K. HÖRSTMANN-JUNGEMANN, PhD Thesis, Aachen (1991).

  13. N. T. J. BAILEY, “Statistical methods in biology” (Hodder and Stoughton, London, 1981).

    Google Scholar 

  14. H. A. DAVID, H. O. HEARTLEY and E. S. PEARSON, Biometrica 41 (1954) 482493.

    Google Scholar 

  15. B. L. WELCH, Biometrica 34 (1947) 2835.

    Google Scholar 

  16. R. A. BROWN and J. SWANSON BECK, J. Clin. Pathol. 41 (1988) 12561262.

    Google Scholar 

  17. C. L. KLEIN, M. OTTO, H. KÖHLER, T. G. VAN KOOTEN, W. SLIWA-TOMCZOK, J. TOMCZOK and C. J. KIRKPATRICK, Colloids and Surfaces B: Biointerfaces 3 (1994) 229.

    Google Scholar 

  18. S. S. KAPLAN, R. E. BASFORD, E. MORA, M. H. JEONG and R. L. SIMMONS, J. Biomed. Mater. Res. 26 (1992) 1039.

    Google Scholar 

  19. A. S. G. CURTIS, J. V. FORRESTER and P. CLARK, J. Cell Sci. 86 (1986) 9.

    Google Scholar 

  20. C. CERLETTI, V. EVANGELISTA, M. MOLINO, P. PICCARDONI, N. MAUGERI and G. DEGAETANO, in “The role of platelets in blood-biomaterial interactions” edited by Y. F. Missierlis and J.-L. Wautier (Kluwer Academic, Dordrecht, 1993).

    Google Scholar 

  21. N. MAUGERI, V. EVANGELISTA, A. CELERADO, G. DELL’ELBA, N. MARTINELLI, P. PICCARDONI, G. DE-GAETANO and C. CERLETTI, Thromb. Haemotol. 72 (1994) 450.

    Google Scholar 

  22. P. RENESTO and M. CHIGNARD, Blood 82 (1993) 139.

    Google Scholar 

  23. H. M. RINDER, J. L. BONAN, C. S. RINDER, K. A. AULT and B. R. SMITH, Blood 78 (1991) 1730.

    Google Scholar 

  24. M. HIRAFUJI and H. SHINODA, Brit. J. Pharmacol. 103 (1991) 1333.

    Google Scholar 

  25. H. L. GOLDSMITH and V. T. TURITTO, Thromb. Haemotol. 55 (1986) 415.

    Google Scholar 

  26. K. M. MÜLLER and G. DASBACH, in “The pathology of devices”, edited by C. L. Berry (Springer Verlag, Berlin, Heidelberg, 1994).

    Google Scholar 

  27. C. L. KLEIN, H. KÖHLER and C. J. KIRKPATRICK, Pathobiology 62 (1994) 90.

    Google Scholar 

  28. B. LINDBLAD, N. JENSEN, P. DOUGAN and D. BERGQUIST, Eur. J. Vasc. Surg. 4 (1990) 341.

    Google Scholar 

  29. A. LUNDELL, D. BERGQUIST and B. LINDBLAD, ibid. 7 (1993) 698.

    Google Scholar 

  30. J. TOMCZOK, W. SLIWA-TOMCZOK, C. L. KLEIN, T. G. VAN KOOTEN and C. J. KIRKPATRICK, Biomaterials, in press.

  31. C. J. KIRKPATRICK and C. MITTERMAYER, J. Mater. Sci. Mater. Med. 1 (1990) 9.

    Google Scholar 

  32. C. L. KLEIN, M. OTTO, H. KÖHLER and C. J. KIRKPATRICK, Infusionsther. Transfusionsmed. 22 (1995) 155.

    Google Scholar 

  33. D. F. WILLIAMS, in “Progress in biomedical engineering”, Vol. 4, definitions in biomaterials (Elsevier, Amsterdam, 1993).

    Google Scholar 

  34. S. M. SLACK and V. T. TURITTO, Thromb. Haemotol. 72 (1994) 777.

    Google Scholar 

  35. O. ABBASSI, T. K. KISHIMOTO, L. V. MCINTIRE, D. C. ANDERSON and C. W. SMITH, J. Clin. Invest. 92 (1993) 2719.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

OTTO , M., KLEIN , C.L., KOHLER , H. et al. Dynamic blood cell contact with biomaterials: validation of a flow chamber system according to international standards. Journal of Materials Science: Materials in Medicine 8, 119–129 (1997). https://doi.org/10.1023/A:1018515001850

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018515001850

Keywords

Navigation