Skip to main content
Log in

Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Plasma activation of polyetheretherketone (PEEK) surfaces and the influence on coating formation in a supersaturated calcium phosphate solution was investigated in this study. It was observed that plasma treatment in a N2/O2 plasma had a significant effect on the wettability of the PEEK surface. The contact angle decreased from 85° to 25° after plasma treatment. Cell culture testing with osteoblastic cell lines showed plasma activation not to be disadvantageous to cell viability. X-ray photoelectron spectroscopy (XPS) analysis was performed to characterize the chemical composition of the PEEK surfaces. It was observed that the O1s intensity increased with plasma activation time. At the C1s peak the appearance of a shoulder at higher binding energies was observed. Coating of PEEK was performed in a supersaturated calcium phosphate solution. Coating thicknesses of up to 50 μm were achieved after 24 days of immersion. Plasma activation followed by nucleation in a highly saturated hydroxyapatite solution had a positive effect on the growth rate of the layer on PEEK. Chemical analysis revealed that the coating consists of a carbonate-containing calcium phosphate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. VAUGHAN and S. J. SUTTON, Polymer 36 (1995) 1549.

    Google Scholar 

  2. D. F. WILLIAMS, A. McNAMARA and R. M. TURNER, J. Mater. Sci. Lett. 6 (1987) 188.

    Google Scholar 

  3. E. WINTERMANTEL and J. MAYER, in “Encyclopedia of biomaterials and bioengineering”, Part B, Vol. 1, edited by D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser and E. R. Schwartz (M. Dekker Inc., New York, 1995) p. 342.

    Google Scholar 

  4. A. J. GOLDBERG, C. J. BURSTONE, I. HANDJINIKOLAOU and J. JANCAR, J. Biomed. Mater. Res. 28 (1994) 167.

    Google Scholar 

  5. K. B. KWARTENG and C. STARK, Sampe Quart. 22 (1990) 10.

    Google Scholar 

  6. M. WIDMER, J. ISLER, T. CALLENBACH, M. FRÖHLICH, D. MEIER, J. MAYER, E. WINTERMANTEL, P. TSCHANZ, H. LÜMAZENAUER and L. KLOSTERMANN, Oberflächen Werkstoffe 5 (1995) 34.

    Google Scholar 

  7. K. A. JOCKISCH, S. A. BROWN, T. W. BAUER and K. MERRITT, J. Biomed. Mater. Res. 26 (1992) 133.

    Google Scholar 

  8. T. TERJESEN and K. APALSET, J. Orthop. Res. 6 (1988) 293.

    Google Scholar 

  9. C. A. ENGH and J. D. BOBYN, Clin. Orthop. Rel. Res. 231 (1988) 7.

    Google Scholar 

  10. H. OGUCHI, K. ISHIKAWA, K. MIZOUE, K. SETO and G. EGUCHI, Biomaterials 16 (1995) 33.

    Google Scholar 

  11. G. T. GEESINK, Clin. Orthop. Rel. Res. 261 (1990) 39.

    Google Scholar 

  12. J. F. OSBORN, in “Biomaterials degradation”, edited by M. A. Barbosa (Elsevier Science Publishers B.V., Amsterdam, 1991) p. 185.

    Google Scholar 

  13. S.-W. HA, J. MAYER, B. KOCHI and E. WINTERMANTEL, J. Mater. Sci. Mater. Med. 5 (1994) 481.

    Google Scholar 

  14. S. EVANS, R. G. PRITCHARD and J. M. THOMAS, J. Electr. Spectrosc. Rel. Phenom. 14 (1978) 341.

    Google Scholar 

  15. W. J. BRENNAN, W. J. FEAST, H. S. MUNRO and S. A. WALKER, Polymer 32 (1991) 1527.

    Google Scholar 

  16. H. S. MUNRO and D. I. MCBRIAR, J. Coatings Technol. 60 (1988) 41.

    Google Scholar 

  17. D. BRIGGS and M. P. SEAH, “Practical surface analysis” (John Wiley and Sons, Chichester, 1983) p. 359.

    Google Scholar 

  18. A. BAALMANN, K. D. VISSING, E. BORN and A. GROSS, J. Adhesion 46 (1994) 57.

    Google Scholar 

  19. D. J. PAWSON, A. P. AMEEN, R. D. SHORT, P. DENISON and F. R. JONES, Surf. Interf. Anal. 18 (1992) 13.

    Google Scholar 

  20. H. HINSKEN, S. MOSS, J. R. PAUQUET and H. ZWEIFEL, Polym. Degrad. Stabil. 34 (1991) 279.

    Google Scholar 

  21. W. O. DRAKE, J. R. PAUQUET, R. V. TODESCO and H. ZWEIFEL, Angew. Makromolek. Chemie 176 / 177 (1990) 215.

    Google Scholar 

  22. P. GIJSMAN and J. HENNEKENS, Polym. Degrad. Stabil. 42 (1993) 95.

    Google Scholar 

  23. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA, T. NAKAMURA and T. YAMAMURO, J. Mater. Sci. Mater. Med. 4 (1993) 127.

    Google Scholar 

  24. T. KOKUBO, M. TANAHASHI, T. YAO, M. MINODA, T. MIYAMOTO, T. NAKAMURA and T. YAMAMURO, in “Bioceramics 6”, edited by P. Ducheyne and D. Christiansen (Butterworth-Heinemann, Ltd, Philadelphia, 1993) p. 327.

    Google Scholar 

  25. G. DACULSI, R. Z. LEGEROS, M. HEUGHEBAERT and I. BARBIEUX, Calcified Tissue Int. 46 (1990) 20.

    Google Scholar 

  26. P. DUCHEYNE, S. RADIN and L. KING, J. Biomed. Mater. Res. 27 (1993) 25.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

HA , SW., KIRCH , M., BIRCHLER , F. et al. Surface activation of polyetheretherketone (PEEK) and formation of calcium phosphate coatings by precipitation. Journal of Materials Science: Materials in Medicine 8, 683–690 (1997). https://doi.org/10.1023/A:1018535923173

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018535923173

Keywords

Navigation