Skip to main content
Log in

The growth of chondrocytes using Gelfoam® as a biodegradable scaffold

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Successful articular cartilage resurfacing must overcome several problems: the implant must easily fit the defect, it must be stable within the defect before full incorporation of repair tissue has occurred, and the reparative tissue must closely approximate the structure of normal hyaline cartilage. To this end, several natural and synthetic components have been used, both in vivo and in vitro, to provide a scaffold. These include isolated chondrocyte allografts, intact cartilage allografts, periossteal grafts, reconstructed collagen sponges, hydrogels and carbon fibres. However, promising results have been reported using three dimensional scaffolds in culture with isolated chondrocytes with subsequent implantation. This preliminary in vitro study utilizes Gelfoam® (a purified gelatin sponge) as such a scaffold. The biocompatibility of Gelfoam with both chondrocytes and osteoblast cells was first confirmed. The ability of chondrocytes to replicate and differentiate within Gelfoam scaffolds was assessed biochemically by measurement of the DNA content and glycosaminoglycans (GAG) production over 25 days in culture. The distribution of the cartilagenous matrix produced was observed by light microscopy, and the constituents of this matrix were assessed using specific antibodies and immunolocalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. BENTLEY, Critical Reviews in Biocompatibility 5 (1989) 245.

    Google Scholar 

  2. P. D. Benya, in “Methods in Cartilage Research”, (Academic Press, 1990) p. 85.

  3. M. BRITTBERG, A. LINDAHL, A. NILSSON, C. OHLSSON, O. ISAKSSON and L. PETERSON, N. Engl. J. Med. 331 (1994) 889.

    Google Scholar 

  4. M. CENTRA, R. E. RATYCH, G. L. CAO, J. LI, E. WILLIAMS, R. M. TAYLOR and M. ROSEN, FASEB J. 6 (1992) 3117.

    Google Scholar 

  5. M. C. COBEY, Clin. Orthop. 54 (1967) 139.

    Google Scholar 

  6. S. DOWNES, R. S. ARCHER and M. V. KAYSER, J. Mater. Sci. 5 (1994) 88.

    Google Scholar 

  7. R. W. FARNDALE, C. A. SAYERS and A. J. BARRETT, Conn. Tiss. Res. 9 (1982) 247.

    Google Scholar 

  8. L. E. FREED, J. C. MARQUIS, A. NOHRIA, J. EMMANUEL, A. G. MIKOS and R. LANGER, J. Biomed. Mat. Res. 27 (1993) 11.

    Google Scholar 

  9. D. A. GRANDE, M. I. PITMAN, L. PETERSON, D. MENCHE and M. KLEIN, J. Orthop. Res. 7 (1989) 208.

    Google Scholar 

  10. T. W. GREEN, Clin. Orthop. Rel. Res. 124 (1977) 237.

    Google Scholar 

  11. S. F. HULBERT and J. J. KLAWITTER, Mater. Res. Bull. 7 (1972) 1239.

    Google Scholar 

  12. A. K. JEFFREY, G. W. BLUNN, C. W. ARCHER and G. BENTLEY, J. Bone. Joint. Surg. 73B (1991) 795.

    Google Scholar 

  13. H. J. MANKIN, N. Engl. J. Med. 331 (1994) 940.

    Google Scholar 

  14. R. J. MINNS, D. S. MUCKLE and J. A. BETTS, Orthop. Int. Ed. 1 (1993) 414.

    Google Scholar 

  15. A. J. NIXON, A. E. SAMS, G. LUST, D. GRANDE and H. O. MOHAMMED, Amer. J. Vet. Res. 54 (1993) 349.

    Google Scholar 

  16. D. ROBINSON, M. EFRAT, D. MENDES, N. HALPERIN and Z. NEVO, Bull. Hosp. Joint Dis. 53 (1993) 75.

    Google Scholar 

  17. J. M. RUBAK, Acta Orthop. Scand. 53 (1982) 175.

    Google Scholar 

  18. M. SITTINGER, J. BUJIA, W. W. MINUTH, C. HAMMER and G. R. BURMESTER, Biomaterials 15 (1994) 451.

    Google Scholar 

  19. D. P. SPEER, M. CHVAPIL, R. G. VOLZRG and M. D. HOLMES, Clin. Orthop. and Re. Res. 144 (1979) 326.

    Google Scholar 

  20. C. A. VACANTI, R. LANGER, B. SCHLOO and J. P. VACANTI, Plast. Reconstr. Surg. 88 (1991) 753.

    Google Scholar 

  21. S. WAKITANI, T. KIMURA, A. HIROOKA, T. OCHI, M. YONDEA, N. YASUI, H. OWAKI and K. ONO, J. Bone Joint. Surg. 71B (1989) 74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanton, S., Salih, V., Bentley, G. et al. The growth of chondrocytes using Gelfoam® as a biodegradable scaffold. J Mater Sci: Mater Med 6, 739–744 (1995). https://doi.org/10.1007/BF00134310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00134310

Keywords

Navigation