Skip to main content
Log in

Purification and characterization of the MUC1 mucin-type glycoprotein, epitectin, from human urine: structures of the major oligosaccharide alditols

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The MUC1 glycoprotein, epitectin, a component of the human bladder epithelium, was purified from human urine. Sedimentation equilibrium analysis and gel filtration using polysaccharide or protein standards revealed a polydisperse preparation with molecular weights ranging from about 0.9 to 1.3×106. This suggests that in the native state epitectin exists as aggregates of three or four monomer units of 350–400 kDa. Epitectin was found to have significant affinity to hexyl-, octyl- or phenyl agarose indicating that hydrophobic interactions and possibly carbohydrate-carbohydrate interactions may be responsible for the self-association. Chemical and enzymic deglycosylation of [125I]-labeled urine epitectin and metabolically labeled H.Ep.2 epitectin resulted in extremely polydisperse products. The buoyant densities of epitectin purified from urine and H.Ep.2 cells were found to be 1.39–1.40 g ml–1, suggesting that the total carbohydrate content of these preparations is not significantly different. The O-linked saccharides of epitectin were fractionated by HPLC and analyzed by permethylation and FAB-MS. The neutral saccharides from both sources 001contain three common structures, namely Gal1→3GalNAc, GlcNAc1→6 (Gal1→3) GalNAc and Gal1→4 GlcNAc→6 (Gal1→3)GalNAc. The sialic acid of urine epitectin consisted entirely of N-acetylneuraminic acid. The two sources of epitectin, in vitro labeled on sialic acid, were found to have the same sialyl oligosaccharides but in different proportions. Metabolic labeling and N-glycanase susceptibility experiments firmly established the presence of N-linked saccharides in epitectin as minor components. The remarkable similarities in the total carbohydrate content, the carbohydrate composition and structures of saccharides between epitectin from urine, a non-malignant source, and H.Ep.2 cells is surprising in view of the prevailing view that MUC1 glycoproteins of cancer cells are underglycosylated compared to those produced by non-malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ashall F, Bramwell ME, Harris H (1982) The ancet ii: 1.

    Google Scholar 

  2. Ceriani RL, Peterson JA, Lee JY, Moncada R, Blank EW (1983) Somatic Cell Genetics 9: 415–27.

    Google Scholar 

  3. Bramwell ME, Ghosh AK, Smith W, Wiseman G, Spriggs AI, Harris H (1985) Cancer 56: 105–10.

    Google Scholar 

  4. Hilken J (1988) Cancer Rev 11-12: 25–54.

    Google Scholar 

  5. Girling A, Bartkova J, Burchell 0 J, Gendler S, Gillett C, Taylor-Papadimitriou J (1989) Int J Cancer 43: 1072–76.

    Google Scholar 

  6. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Pea N, Burchell J, Pemberton L, Lalani E, Wilson D (1990) J Biol Chem 265: 15286–93.

    Google Scholar 

  7. Wreschner DH, Hareuveni M, Tsarfaty I, Smorodinsky N, Horev J, Zaretsky J, Kotkes P, Weiss M, Lathe R, Dion A, Keyda r I (1990) Eur J Biochem 189: 463–73.

    Google Scholar 

  8. Hull SR, Bright A, Carraway KL, Abe M, Hayes DF, Kufe DW (1989) Cancer Comm 1: 261–67.

    Google Scholar 

  9. Hanisch F, Uhlenbruck G, Peter-Katalinic J, Egge H, Dabrowski J, Dabrowski U (1989) J Biol Chem 264: 872–83.

    Google Scholar 

  10. Brockhausen I, Yang J-M, Burchell J, Whitehouse C, Taylor-Papadimitriou J (1995) Eur J Biochem 233: 607–17.

    Google Scholar 

  11. Bramwell ME, Bhavanandan VP, Wiseman G, Harris H (1983) Br J Cancer 48: 177–83.

    Google Scholar 

  12. Bardales R, Bhavanandan VP, Wiseman G, Bramwell ME (1989) J Biol Chem 264: 1980–87.

    Google Scholar 

  13. Swallow DM, Griffiths B, Bramwell M, Wiseman G, Burchell J (1986) Dis Markers 4: 247–54.

    Google Scholar 

  14. Zotter S, Hageman PC, Lossnitzer A, Mooi WJ, Hilgers J (1988) Cancer Rev 11-12: 55–101.

    Google Scholar 

  15. Patton S, Gendler SJ, Spicer AP (1995) Biochim Biophys Acta 1241: 407–24.

    Google Scholar 

  16. Finn OL, Jerome KR, Henderson RA, Pecher G, Domenech N, Magarian-Blander J, Barratt-Boyes SM (1995) Immunol Rev 145: 61–89.

    Google Scholar 

  17. Ligtenberg MJL, Buijs F, Vos HL, Hilkens J (1992) Cancer Res 52: 2318–24.

    Google Scholar 

  18. Shimizu M, Tanimoto H, Azuma N, Yamauchi K (1990) Biochem Internatl 20: 147–54.

    Google Scholar 

  19. Erickson DR, Mast S, Odille S, Bhavanandan VP (1996) J Urol 156: 938–42.

    Google Scholar 

  20. DiIulio NA, Yamakami K, Washington S, Bhavanandan VP (1995) Glycosylation and Disease 1: 21–30.

    Google Scholar 

  21. Taylor-Papadimitriou J (1991) Int J Cancer 49: 1–5.

    Google Scholar 

  22. Bhavanandan VP, Katlic AW (1979) J Biol Chem 254: 4000–8.

    Google Scholar 

  23. Umemoto J, Bhavanandan VP, Davidson EA (1977) J Biol Chem 252: 8609–14.

    Google Scholar 

  24. Devaraj N, Devaraj H, Bhavanandan VP (1992) Anal Biochem 206: 142–46.

    Google Scholar 

  25. Bhavanandan VP, Hegarty JD (1987) J Biol Chem 262: 5913–17.

    Google Scholar 

  26. Woodward HD, Ringler NJ, Selvakumar R, Simet IM, Bhavanandan VP, Davidson EA (1987) Biochemistry 26: 5315–22.

    Google Scholar 

  27. Monsigny M, Petit C, Roche A (1988) Anal Biochem 175: 525–30.

    Google Scholar 

  28. van Lenten L, Ashwell G (1971) J Biol Chem 246: 1889–94.

    Google Scholar 

  29. Amano J, Nishimura R, Mochizuki M, Kobata A (1988) J Biol Chem 263: 1157–65.

    Google Scholar 

  30. Baenziger JU, Natowicz M (1981) Anal Biochem 112: 357–61.

    Google Scholar 

  31. Gupta R, Jentoff N (1989) J Chromatogr 474: 411–17.

    Google Scholar 

  32. Lee YC (1990) Anal Biochem 189: 151–62.

    Google Scholar 

  33. Ciucanu L, Kerek F (1984) Carbohydr Res 131: 209–17.

    Google Scholar 

  34. Fournet B, Strecker G, Leroy Y, Montreuil J (1981) Anal Biochem 116: 489–502.

    Google Scholar 

  35. Carraway KL, Spielman J (1986) Mol Cell Biochem 72: 109–20.

    Google Scholar 

  36. Duwe AK, Ceriani RL (1989) Biochem Biophys Res Commun 165: 1305–11.

    Google Scholar 

  37. Sarris AH, Palade GE (1982) J Cell Biol 93: 583–90.

    Google Scholar 

  38. Yphantis DA (1964) Biochemistry 3: 297–317.

    Google Scholar 

  39. Midura RJ, Hascall VC (1989) J Biol Chem 264: 1423–30.

    Google Scholar 

  40. Sachdev GP, Zodrow JM, Carubelli R (1979) Biochim Biophys Acta 580: 85–90.

    Google Scholar 

  41. Shankar V, Naziruddin B, de LaRocha SR, Sachdev GP (1990) Biochemistry 29: 5856–64.

    Google Scholar 

  42. Hill Jr. HD, Reynolds JA, Hill RL (1977) J Biol Chem 252: 3791–98.

    Google Scholar 

  43. Marianne T, Perini J, Houvenaghel M, Tramu G, Lamblin G, Roussel P (1986) Carbohydr Res 151: 7–19.

    Google Scholar 

  44. Byrd JC, Lamport DTA, Siddiqui B, Kuan S, Erickson R, Itzkowitz SH, Kim YS (1989) Biochem J 261: 617–25.

    Google Scholar 

  45. Gerken TA, Gupta R, Jentoft N (1992) Biochemistry 31: 639–48.

    Google Scholar 

  46. Manzi AE, Diaz S, Varki A (1990) Anal Biochem 188: 20–32.

    Google Scholar 

  47. Wang Y, Aberneththy JL, Eckhardt AE, Hill RL (1992) Biol Chem 18: 12709–16.

    Google Scholar 

  48. Elhammer AP, Poorman RA, Brown E, Maggiora LL, Hoogerheide JG, Kezdy FJ (1993) J Biol Chem 268: 10029–38.

    Google Scholar 

  49. Hansen JE, Lund O, Engelbrecht J, Bohr H, Nielsen JO, Hansen J-ES, Brunak S (1995) Biochem J 308: 801–13.

    Google Scholar 

  50. Hilkens J, Buijs F (1988) J Biol Chem 263: 4215–22.

    Google Scholar 

  51. Hayase T, Sheykhnazari M, Bhavanandan VP, Savage AV, Lee YC (1993) Anal Biochem 211: 72–80.

    Google Scholar 

  52. Hakomori S-I (1991) Pure Appl Chem 63: 473–82.

    Google Scholar 

  53. Scott JE, Heatley F, Wood B (1995) Biochemistry 34: 15467–74.

    Google Scholar 

  54. Carlstedt I, Sheehan JK, Corfield AP, Gallagher JT (1985) Essays Biochem 20: 40–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhavanandan, V., Zhu, Q., Yamakami, K. et al. Purification and characterization of the MUC1 mucin-type glycoprotein, epitectin, from human urine: structures of the major oligosaccharide alditols. Glycoconj J 15, 37–49 (1998). https://doi.org/10.1023/A:1006987315827

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1006987315827

Navigation