Skip to main content
Log in

Porosified Silicon Wafer Structures Impregnated With Platinum Anti-Tumor Compounds: Fabrication, Characterization, and Diffusion Studies

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

In this work, the incorporation and characterization of cis-platin (cis-diammine dichloroplatinum(II)), carbo-platin [cis-diammine(cyclobutane-1,1-dicarboxylato] platinum(II)), and Pt(en)Cl2 (ethylenediamminedichloro platinum(II)) within layers of calcium phosphate on porous Si/Si substrates are described. These materials have been characterized by scanning electron microscopy, secondary ion mass spectrometry, and X-ray energy dispersive spectroscopy. The diffusion of platinum species from the doped calcium phosphate layers has also been investigated by UV-visible absorption spectrometry and inductively-coupled plasma spectroscopy. The influence of initial platinum concentration, the impact of thermal annealing of the calcium phosphate/porous Si/Si matrix, as well as the effect of varying the ligand coordination sphere of the Pt complex on its ability to be delivered to the surroundings have also been analyzed. For the case of cis-platin, it is found that increasing the concentration of platinum complex in the electrolyte during cathodic growth of calcium phosphate results in a relatively greater concentration of Pt incorporated into the calcium phosphate layers and a larger amount of Pt which subsequently can be delivered to the surrounding medium upon exposure to solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.D. Wise and K. Najafi, in VLSI in Medicine, N.G. Einspruch, and R.D. Gold, (eds), (Academic Press, New York, 1989), Chap. 10.

    Google Scholar 

  2. T.A. Desai, D.J. Hansford, L. Kulinsky, A.H. Nashat, G. Rasi, J. Tu, Y. Wang, M. Zhang, and M. Ferrari, Biomed. Microdevices 2, 11 (1999).

    Google Scholar 

  3. S.S. Stensas and L.J. Stensas, Acta Neuropathologica 41, 145 (1978).

    Google Scholar 

  4. D.J. Edell, V.V. Toi, and V.M. McNeil, IEEE Trans. Biomed. Engr. 39, 635 (1992).

    Google Scholar 

  5. L.T. Canham, Adv. Mater. 7, 1003 (1995). (b) L.T. Canham, J.P. Newey, C.L. Reeves, M.R. Houlton, A. Loni, A.J. Simons, and T.I. Cox, Adv. Mater. 8, 847 (1996). (c) L.T. Canham, J.P. Newey, C.L. Reeves, D.O. King, P.J. Branfield, J.G. Crabb, and M.C.L. Ward, Adv. Mater. 8, 850 (1996).

    Google Scholar 

  6. The SynchroMed® infusion system from Medtronic, Inc.

  7. J.D. Benjamin, A.L. Mears, and J.C. White, US Patent, 4,793,825 (1988).

  8. I. Kaetsu, Y. Morita, A. Otori, and Y. Naka, Trans. Am. Soc. Artif. Int. Organs 85, 75 (1990).

    Google Scholar 

  9. J.T. Santini, M.J. Cima, and R.S. Langer, US Patent, 5,797,898 (filed 2 July 1996).

  10. X. Li, J.L. Coffer, Y. Chen, R.F. Pinizzotto, J.P. Newey, and L.T. Canham, J. Am. Chem. Soc. 120, 11706 (1998).

    Google Scholar 

  11. M. Itokzu, M. Esaki, K. Yamamoto, T. Tanemori, and T. Kasai, J. Mater. Res.: Mater. Med. 10, 249 (1999).

    Google Scholar 

  12. C.J. Langer, Semin. Radiat. Oncol. 9, 108 (1999).

    Google Scholar 

  13. G. Sersa, M. Cemazar and D. Miklavcic, Cancer Res. 55, 3450 (1995). (b) G.A. Hofman, S.B. Dev and G.S. Nanda, IEEE Eng. Med. Biol. 1245 (1996).

    Google Scholar 

  14. B. Rosenberg, in Cisplatin: Its History and Possible Mechanisms of Action, A.W. Prestayko, S.T. Crooke, S.K. Carter (eds), (Academic Press, New York, 1980), Ch. 2, p. 9.

    Google Scholar 

  15. R.B. Weiss, Drugs 46, 360 (1993).

    Google Scholar 

  16. P.J. O'Dweyer, S.W. Johnson, and T.C. Hamilton, in Cancer; Principles and Practice of Oncology, V.T. DeVita, S.A. Rosenberg, S. Hellman (eds), (Lippincott-Raven, Philadelphia, 1996), Ch. 19, pp. 418-432.

    Google Scholar 

  17. E. Wong and C.M. Giandomenico, Chem. Rev. 99, 2451 (1999).

    Google Scholar 

  18. T. Kokubo, H. Kushitrani, S. Sakka, T. Kitsigi, and T. Yamamuro, J. Biomed. Mater. Res. 24, 721 (1990).

    Google Scholar 

  19. Standards were formed from Analytical Standards 1000 ppm Pt solution using 5% HNO3 in mili-Q H2O (boiled/N2 Purge). Two sets of calibration standards were prepared: one using 5 ppb, 10 ppb, 20 ppb, 40 ppb, 80 ppb, and 0.1 ppm solutions and another with 3.75, 7.5, 15, 30, and 60 ppm Pt solution standards.

  20. S.E. Millar and D.A. House, Inorg. Chim. Acta 166, 189 (1989).

    Google Scholar 

  21. D.P. Bancroft, C.A. Lepre, and S.J. Lippard, J. Am. Chem. Soc. 112, 6860 (1990).

    Google Scholar 

  22. A. Uchida, Y. Shinto, N. Araki, and K. Ono, J. Orthopedic Res. 10, 445 (1992).

    Google Scholar 

  23. M.K. Wolpert-Defilippes, in Cisplatin: Antitumor Activity of Cisplatin Analogs, A.W. Prestayko, S.T. Crooke, S.K. Carter (eds), (Academic Press, New York, 1980) Chap. 11, p. 183.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., St. John, J., Coffer, J.L. et al. Porosified Silicon Wafer Structures Impregnated With Platinum Anti-Tumor Compounds: Fabrication, Characterization, and Diffusion Studies. Biomedical Microdevices 2, 265–272 (2000). https://doi.org/10.1023/A:1009951121205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1009951121205

Navigation