Skip to main content
Log in

Four modes of optical parametric operation for squeezed state generation

  • Published:
The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics Aims and scope Submit manuscript

Abstract.

We report a versatile instrument, based on a monolithic optical parametric amplifier, which reliably generates four different types of squeezed light. We obtained vacuum squeezing, low power amplitude squeezing, phase squeezing and bright amplitude squeezing. We show a complete analysis of this light, including a full quantum state tomography. In addition we demonstrate the direct detection of the squeezed state statistics without the aid of a spectrum analyser. This technique makes the nonclassical properties directly visible and allows complete measurement of the statistical moments of the squeezed quadrature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Fabre, Phys. Rep. 219, 215 (1992), H.J. Kimble, Phys. Rep. 219, 227 (1992)

    Article  Google Scholar 

  2. K. McKenzie, D.A. Shaddock, D.E. McClelland, B.C. Buchler, P.K. Lam, Phys. Rev. Lett. 88, 231102 (2002)

    Article  Google Scholar 

  3. M. Xiao, L.A. Wu, H.J. Kimble, Phys. Rev. Lett. 59, 278 (1987)

    Article  Google Scholar 

  4. P. Grangier, R.E. Slusher, B. Yurke, A. La Porta, Phys. Rev. Lett. 59, 2153 (1987)

    Article  Google Scholar 

  5. E.S. Polzik, J. Carri, H.J. Kimble, Phys. Rev. Lett. 68 3020 (1992)

  6. Y.Q. Li, P. Lynam, M. Xiao, P.J. Edwards, Phys. Rev. Lett. 78, 3105 (1997)

    Article  Google Scholar 

  7. R. Bruckmeier, H. Hansen, S. Schiller, J. Mlynek, Phys. Rev. Lett. 79, 43 (1997)

    Article  Google Scholar 

  8. (a) B.C. Buchler, U.L. Andersen, P.K. Lam, H.-A. Bachor, T.C. Ralph, Phys. Rev. A 65, 011803(R) (2002)

    Article  Google Scholar 

  9. A. Furusawa, J.L. Sørensen, S.L. Braunstein, C.A. Fuchs, H.J. Kimble, E.S. Polzik, Science 282, 706 (1998)

    Article  Google Scholar 

  10. T. Ralph, P.K. Lam, Phys. Rev. Lett. 81, 5668 (1998)

    Article  Google Scholar 

  11. S.L. Braunstein, H.J. Kimble, Phys. Rev. Lett. 80, 869 (1998)

    Article  Google Scholar 

  12. S. Lloyd, S.L. Braunstein, Phys. Rev. Lett. 82, 1784 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. S.D. Bartlett, B. Sanders, S.L. Braunstein, K. Nemoto, Phys. Rev. Lett. 88, 097904 (2002)

    Article  Google Scholar 

  14. S.L. Braunstein, H.J. Kimble, Phys. Rev. A 61, 042302-1 (2000)

    Article  Google Scholar 

  15. X. Li, Q. Pan, J. Jing, J. Zhang, C. Xie, K. Peng, Phys. Rev. Lett. 88, 047904 (2002)

    Article  Google Scholar 

  16. T.C. Ralph, Phys. Rev. A 61, 010303 (2000)

    Article  Google Scholar 

  17. M. Hillery, Phys. Rev. A 61, 022309 (2000)

    Article  Google Scholar 

  18. M.D. Reid, Phys. Rev. A 62, 062308 (2000)

    Article  Google Scholar 

  19. W.P. Bowen, R. Schnabel, H.-A. Bachor, P.K. Lam, Phys. Rev. Lett. 88, 093601 (2002)

    Article  Google Scholar 

  20. C. Fabre, J.B. Fouet, A. Maitre, Opt. Lett. 25, 76 (2000)

    Article  Google Scholar 

  21. N. Treps, U.L. Andersen, B. Buchler, P.K. Lam, A. Maitre, H.-A. Bachor, C. Fabre, Phys. Rev. Lett. 88, 203601 (2002)

    Article  Google Scholar 

  22. P.D. Drummond, K.J. McNeil, D.F. Walls, Opt. Acta 27, 321 (1980)

    MathSciNet  Google Scholar 

  23. H.-A. Bachor, A guide to experiments in quantum optics (Wiley, 1998)

  24. H. Takahashi, Adv. Commun. Syst. Theory Appl. 1 (Academic Press, New York, 1965), p. 227

  25. A. Heidmann, R. Horowicz, S. Reynaud, E. Giacobino, C. Fabre, G. Camy, Phys. Rev. Lett. 59, 2555 (1987)

    Article  Google Scholar 

  26. Z.Y. Ou, S.F. Pereira, H.J. Kimble, K.C. Peng, Phys. Rev. Lett. 68, 3663 (1992)

    Article  Google Scholar 

  27. L.A. Wu, H.J. Kimble, J.L. Hall, H. Wu, Phys. Rev. Lett. 57, 2520 (1986)

    Article  Google Scholar 

  28. G. Breitenbach, T. Muller, S.F. Pereira, J.-Ph. Poizat, S. Schiller, J. Mlynek, J. Opt. Soc. Am. B 12, 2304 (1995)

    Google Scholar 

  29. P.K. Lam, T.C. Ralph, B.C. Buchler, D.E. McClelland, H.-A. Bachor, J. Gao, J. Opt. B 1, 469 (1999)

    MATH  Google Scholar 

  30. K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, J. Mlynek, Opt. Lett. 21, 1396 (1996)

    Google Scholar 

  31. K. Schneider, M. Lang, J. Mlyenk, S. Schiller, Opt. Expr. 2, 59 (1997)

    MATH  Google Scholar 

  32. G. Breitenbach, S. Schiller, J. Mlynek, Nature 387, 471 (1997)

    Article  Google Scholar 

  33. Y. Zhang, H. Wang, X. Li, J. Jing, C. Xie, K. Peng, Phys. Rev. A 62, 023813 (2000)

    Article  Google Scholar 

  34. C.W. Gardiner, P. Zoller, Quantum Noise (Springer, 1999)

  35. R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Munley, H. Ward, Appl. Phys. B 31, 97 (1983)

    Google Scholar 

  36. D. Shaddock, M.B. Gray, D.E. McClelland, Opt. Lett. 24, 1499 (1999)

    Google Scholar 

  37. D.A. Shaddock, B.C. Buchler, W.P. Bowen, M.B. Gray, P.K. Lam, J. Opt. B 2, 1 (2000)

    Google Scholar 

  38. Perfect squeezing is obtained theoretically using linearized theory. However, the linearisation approximation brakes down near threshold were the squeezing is largest. Using a full quantum model without linearization of the operators, Chaturvedi [40] found that the squeezing scales with \(N^{-3/2} {\mathrm where} N\) is the photon number

  39. G. Breithenbach, S. Schiller, Mod. Opt. 44, 2207 (1997)

    Article  Google Scholar 

  40. S. Chaturvedi, K. Bechoum, P.D. Drummond, Phys. Rev. A 65, 033805 (2002)

    Article  Google Scholar 

  41. D.T. Smithey, M. Beck, M.G. Raymer, A. Faridani, Phys. Rev. Lett. 70, 1244 (1993)

    Article  Google Scholar 

  42. J.W. Wu, P.K. Lam, M.B. Gray, H.-A. Bachor, Opt. Exp. 3, 154 (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. L. Andersen.

Additional information

Received: 10 March 2003, Published online: 26 August 2003

PACS:

42.50.Dv Nonclassical states of the electromagnetic field, including entangled photon states; quantum state engineering and measurements

U.L. Andersen: Present address: Institute of Optics, Information and Photonics, Max-Planck Research Group, University of Erlangen-Nuernberg, 91058 Erlangen, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersen, U.L., Buchler, B.C., Lam, P.K. et al. Four modes of optical parametric operation for squeezed state generation. Eur. Phys. J. D 27, 181–191 (2003). https://doi.org/10.1140/epjd/e2003-00263-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2003-00263-9

Keywords

Navigation