Skip to main content
Log in

Longitudinal electric response and loss-function of metallic microspheres and voids

  • Published:
Zeitschrift für Physik B Condensed Matter

Abstract

The response of a spherical metallic particle and a void in a metal on an arbitrary external electrical (gradient) field is given analytically within two models: a macroscopic dielectric description in terms of dielectric functions and a linearized hydrodynamic theory which takes into account boundary effects as well as spatial dispersion. From the response functions, the eigenfrequencies of the collective modes and the electron-energy-loss function are obtained. For small radii we found collective modes extending beyond the classical ℓ = ∞ limit of surface-plasmons up to the volume-plasmon. Concerning electron-energy-losses, our results demonstrate that the “blue-shift” on the collective modes which were observed in potassium clusters or calculated for voids in metals are almost of classical origin and stem from spatial dispersion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perenboom, J.A.A.J., Wyder, P., and Meier, F., Phys. Rep.78, 174 (1981)

    Google Scholar 

  2. Kreibig, U. and Genzel, L., Surf. Sci.156, 678 (1985)

    Google Scholar 

  3. Halperin, W., Rev. Mod. Phys.58, 533 (1986).

    Google Scholar 

  4. Brack, M., Rev. Mod. Phys.65, 677 (1993).

    Google Scholar 

  5. Mie, G., Ann. Phys. (Leipzig)25, 377 (1908). see: Born, M. and Wolf, E.,Principles of Optics, Pergamon (1959) p. 630.

    Google Scholar 

  6. Crowell, J. and Ritchie, R.H., Phys. Rev.172, 436 (1968).

    Google Scholar 

  7. Ferrell, T.L. and Echinique, P.M., Phys. Rev. Lett.55, 1526 (1985); Ferrell, T.L., Warmack, R.J., Anderson, V.E. and Echinique, P.M., Phys. Rev.B35, 7365 (1987).

    Google Scholar 

  8. Kramer, B., Ed.Quantum Coherence in Mesoscopic Systems, Nato ASI, series B, Phys. Vol. 254, Plenum, (1991).

  9. Ekardt, W., Phys. Rev.B32, 1961 (1985),B33, 8803 (1986),B36, 4483 (1987)

    Google Scholar 

  10. Beck, D.E., Phys. Rev.B43, 7301 (1991).

    Google Scholar 

  11. Bloch, F., Z. Phys.81, 363 (1933).

    Google Scholar 

  12. Forstmann, F. and Stenschke, H., Phys. Rev. Lett.38, 1365 (1977), Phys. RevB17, 1489, (1978), and references cited therein.

    Google Scholar 

  13. Jensen, H., Z. Phys.106, 620 (1937).

    Google Scholar 

  14. Fujimoto, F. and Komaki, K., J. Phys. Soc. Jap.25, 1679 (1968).

    Google Scholar 

  15. Lushnikov, A.A. and Simonov, A.J., Z. Phys.270, 17 (1974),B21, 357 (1975).

    Google Scholar 

  16. Ashley, J.C. and Ferrell, T.L., Phys. Rev.B14, 3277 (1976).

    Google Scholar 

  17. Boardman, A.D. and Paranjape, B.V., J. Phys.F 7, 1935 (1977).

    Google Scholar 

  18. Aers, G.C., Paranjape, B.V., and Boardman, A.D., Jour. Phys. Chem. Solids40, 319, (1979).

    Google Scholar 

  19. Barberán, N. and Bausells, J., Phys. Rev.B31, 6354 (1985).

    Google Scholar 

  20. Tran Thoai, D.B., phys. stat. sol. (b)136, 291 (1986).

    Google Scholar 

  21. Penn, D.R. and Apell, P., J. Phys. C16, 5729 (1983).

    Google Scholar 

  22. Feibelman, P.J., Prog. Surf. Sci.12, 287 (1982).

    Google Scholar 

  23. Penn, D.R. and Rendell, P.W., Phys. Rev. Lett.47, 1067 (1981).

    Google Scholar 

  24. Tanner, D.B., Phys. Rev.30, 1042 (1984).

    Google Scholar 

  25. Hua, Xia Ming and Gersten, J.F., Phys. Rev.B31, 855, (1985).

    Google Scholar 

  26. vom Felde, A., Fink, J., and Ekardt, W., Phys. Rev. Lett.61, 2249 (1988).

    Google Scholar 

  27. Keldysh, L.V., Kirshnits, D.A., and Maradudin, A.A., Eds.The dielectric function of condensed systems. North Holland (1989).

  28. Jackson, J.D.,Classical Electrodynamics, Wiley (1962).

  29. Abramowitz, M. and Stegun, I.Handbook of Mathematical Functions, Dover Publications, INC, New York (1968).

    Google Scholar 

  30. Zohm, H.,Linearer Response eines Metallkügelchens und Verlustfunktion für Elektronenemergieverlustspektroskopie, Diplomarbeit, Universität Karlsruhe (1988), unpublished.

  31. Mensch, M.,Größenabhängigkeit der dielektrischen Eigenschaften kugel-förmiger Metallcluster, Diplomarbeit, Universität Karlsruhe (1990), unpublished.

  32. Hall, R.B., Am. J. Phys.31, 696 (1963).

    Google Scholar 

  33. Melnyk, A.R. and Harrison, M.J., Phys. Rev. Lett.21, 85 (1968).

    Google Scholar 

  34. vom Felde, A., Sprösser-Prou, J., and Fink, J., Phys. Rev.B40, 10181 (1989).

    Google Scholar 

  35. Genzel, L., Martin, T., and Kreibig, U., Z. Phys.B21, 339 (1975).

    Google Scholar 

  36. Wu, King-Sum David and Beck, D.E., Phys. Rev.B36, 998 (1987).

    Google Scholar 

  37. Serra, LI, Garcias, F., Navarro, J., Barberán, N., Barranco, M., and Pi, M., Phys. Rev.B46, 9369 (1992).

    Google Scholar 

  38. Fink, J.,Advances in Electronics and Electron Physics, Vol. 75, p. 121, Academic Press. (1989).

    Google Scholar 

  39. Egerton, R.F.,Electron Energy Loss Spectroscopy in the Electron Microscope. Plenum Press, New York (1986).

    Google Scholar 

  40. Kreibig, u. and Zacharias, P. Z. Physik231, 128 (1970).

    Google Scholar 

  41. Das, P.C. and Gersten, J.I., Phys. Rev.B27, 5412 (1983).

    Google Scholar 

  42. Natta, M., Sol. State Commun.7, 823 (1969).

    Google Scholar 

  43. Manzke, R, Crezelius, G, and Fink, J, Phys. Rev. Lett51 1095 (1983).

    Google Scholar 

  44. vom Felde, A, Fink, J, Müller-Heinzerling, Th, Pflüger, J, Scheer, B, Linker, G, and Kaletta, D, Phys. Rev. Lett53, 922 (1984).

    Google Scholar 

  45. Sprösser-Prou, J., vom Felde, A., and Fink, J., Phys. Rev.40, 5799 (1989).

    Google Scholar 

  46. Daniels, A., v. Festenberg, C., Raether, H., and Zeppenfeld, K.,Springer Tracts in Modern Physics 54, 57, (1970).

    Google Scholar 

  47. Apell, P. and Ljungbert, Å., Sol. State Commun.46, 47 (1983).

    Google Scholar 

  48. Saito, S., Bertsch, G.F. and Tománek, D., Phys. Rev.B43, 6804 (1991).

    Google Scholar 

  49. Brechignac, C., Cahuzac, Ph., Kebaili, N., Leygnier, J., and Sarfati, A., Phys. Rev. Lett.68, 3916 (1992).

    Google Scholar 

  50. Malov, Yu, A, and Zaretzky, D.F., Phys. LettA177, 379 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

v. Baltz, R., Mensch, M. & Zohm, H. Longitudinal electric response and loss-function of metallic microspheres and voids. Z. Physik B - Condensed Matter 98, 151–161 (1995). https://doi.org/10.1007/BF01324520

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01324520

PACS

Navigation