Skip to main content
Log in

Observing the lateral confinement of surface state electrons in room temperature stable metallic nanostructures

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The lateral confinement of the surface state electrons of Cu(111) has been studied by Scanning Tunnelling Microscopy and Spectroscopy at low temperature. The confining nanostructures are Cu(111) islands embedded in a semiconducting Cu3N(111) film which completely isolate them from each other. The standing wave pattern observed reflect the shape of the edge of the islands, i.e. the positions of the confining potential as long as the islands are larger than twice the Fermi wavelength of the surface electrons. The interference pattern in smaller islands is more complex, reflecting the collective behavior of the electrons. When the width of the islands is, at least in one dimension, smaller than the Fermi wavelength, there is a clear shift in the energy of the bottom of the surface band towards the Fermi level. The depopulation of the surface state produced by lateral confinement might have important consequences with respect to the reactivity of these nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Haruta, Catalysis Today 36, 153 (1997)

    Article  Google Scholar 

  2. R. Otero, A.L. Vázquez de Parga, R. Miranda, Phys. Rev. B 67, 115401 (2002)

    Article  Google Scholar 

  3. D.-A. Luh et al. , Science 292, 1131 (2001)

    Article  Google Scholar 

  4. J.E. Inglesfield, Rep. Prog. Phys. 45, 223 (1982)

    Article  Google Scholar 

  5. S.D. Kevan, J. Electr. Spec. Rel. Phen. 75, 175 (1995)

    Article  Google Scholar 

  6. M.F. Crommie, C.P. Lutz, D.M. Eigler, Nature 363, 524 (1993)

    Article  Google Scholar 

  7. L. Petersen et al. , Phys. Rev. B 57, R6858 (1998)

  8. L. Bürgi, H. Brune, O. Jeandupeux, K. Kern, J. Elec. Spectr. Rel. Phen. 109, 33 (2000)

    Article  Google Scholar 

  9. M.F. Crommie, C.P. Lutz, D.M. Eigler, Science 262, 216 (1993)

    Google Scholar 

  10. J. Li, W.-D. Schneider, R. Berndt, S. Crampin, Phys. Rev. Lett. 80, 3332 (1998)

    Google Scholar 

  11. A.L. Vázquez de Parga et al. , Phys. Rev. Lett. 80, 357 (1998)

    Google Scholar 

  12. L. Petersen et al. , J. Elec. Spec. Rel. Phen. 109, 97 (2000)

    Article  Google Scholar 

  13. D. Fujita et al. , Surface Sci. 423, 160 (1999)

    Article  Google Scholar 

  14. L. Petersen et al. , Surface Sci. 443, 154 (1999)

    Article  Google Scholar 

  15. S.D. Kevan, Phys. Rev. Lett. 450, 526 (1983)

    Article  Google Scholar 

  16. J.F. Skelly et al. , Surface Sci. 415, 48 (1998)

    Article  Google Scholar 

  17. S.M. Driver, D.P. Woodruff, Surf. Sci. 442, 1 (1999)

    Article  Google Scholar 

  18. V. Higgs et al. , J. Elec. Spectr. Rel. Phen. 39, 137 (1986)

    Article  Google Scholar 

  19. S.L. Silva, F.M. Leibsle, Surf. Sci. 441, L904 (1999)

  20. S. Pons, P. Mallet, J.Y. Veuillen, Phys. Rev. B 64, 193408 (2001)

    Article  Google Scholar 

  21. C. Nav\’io, J. Alvarez (private communication)

  22. J.M. Garc\’ia et al. , Appl. Phys. A 61, 609 (1995)

    Article  Google Scholar 

  23. O. Sánchez et al. , Phys. Rev. B 52, 7894 (1995)

    Article  Google Scholar 

  24. A. Bidermann et al. , Phys. Rev. Lett. 76, 4179 (1996)

    Google Scholar 

  25. Ji-Y. Park et al. , Phys. Rev. B 62, R16341 (2000)

  26. A. Bendounan et al. , Surf. Sci. 496, L43 (2002)

  27. G. Neuhold, K. Horn, Phys. Rev. Lett. 78, 1327 (1997)

    Google Scholar 

  28. R. Otero et al. , Surface Sci. 550, 65 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Miranda.

Additional information

Received: 15 December 2003, Published online: 10 August 2004

PACS:

68.37.Ef Scanning tunneling microscopy (including chemistry induced with STM) - 73.20.At Surface states, band structure, electron density of states - 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calleja, F., Hinarejos, J.J., Vázquez de Parga, A.L. et al. Observing the lateral confinement of surface state electrons in room temperature stable metallic nanostructures. Eur. Phys. J. B 40, 415–419 (2004). https://doi.org/10.1140/epjb/e2004-00249-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00249-y

Keywords

Navigation