Skip to main content
Log in

Sequestration of plant secondary compounds by butterflies and moths

  • Seminar papers
  • Published:
CHEMOECOLOGY Aims and scope Submit manuscript

Summary

A number of aposematic butterfly and moth species sequester toxic substances from their host plants. Some of these insects can detect the toxic compounds during food assessment. Some pipevine swallowtails use aristolochic acids among the host finding cues during oviposition and larval feeding and accumulate the toxins in the body tissues throughout all life stages. Likewise, a danaine butterfly,Idea leuconoe, which sequesters high concentrations of pyrrolizidine alkaloids in the body, lays eggs in response to the specific alkaloid components contained in the apocynad host. Insect species sharing the same poisonous host plants may differ in the degree of sequestration of toxins. Two closely ralated aposematic geometrid moth species,Arichanna gaschkevitchii andA. melanaria, sequester a series of highly toxic diterpenoids (grayanotoxins) in different degrees, while a cryptic geometrid species,Biston robstus, does not sequester the toxins, illustrating the diversity in adaptation mechanisms even within the same subfamily. By contrast, a number of lepidopteran species store the same compounds though feeding upon taxonomically diverse plant species. A bitter cyanoglycoside, sarmentosin, was characterised from several moth species in the Geometridae, Zygaenidae and Yponomeutidae, and from the apollo butterflies,Parnassius spp. (Papilionidae), although each species feeds on different groups of plants.

Interspecific similarities and differences in life history and ecology are discussed in relation to variable characteristics of sequestration of plant compounds among these lepidopteran insects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe F, Yamauchi T (1987) Parsonine, a pyrrolizidine alkaloid fromParsonsia laevigata. Chem Pharm Bull 35:4661–4663

    Google Scholar 

  • Abe F, Nagao T, Okabe H, Yamauchi T, Marubayashi N, Ueda I (1990) Parsonsianine, a macrocyclic pyrrolizidine alkaloid from the leaves ofParsonsia laevigata (Studies onParsonsia. III). Chem Pharm Bull 38:2127–2129

    Google Scholar 

  • Abe F, Yamauchi T, Yaga S, Minato K (1991) Pyrrolizidine alkaloids fromParsonsia laevigata in Okinawa Island (Studies onParsonsia. V). Chem Pharm Bull 39:1576–1577

    Google Scholar 

  • Aplin RT, Benn MH, Rothschild M (1968) Poisonous alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobeae L.). Nature 219:747–748

    Google Scholar 

  • Aplin RT, d'Archy Ward R, Rothschild M (1975) Examination of the large white and small white butterflies (Pieris spp.) for the presence of mustard oil and mustard oil glycosides. J Entomol 30:73–78

    Google Scholar 

  • Blum MS (1981) Chemical Defenses of Arthropods. New York: Academic Press

    Google Scholar 

  • Boppré M (1978) Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies. Entomol exp appl 24:264–277

    Google Scholar 

  • Boppré M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26

    Google Scholar 

  • Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185

    Google Scholar 

  • Boros CA, Stermitz FR, McFarland N (1991) Processing of iridoid glycoside antirrinoside fromMaurandya antirrhiniflora (Scrophulariaceae) byMeris paradoxa (Geometridae) andLepipolys species (Noctuidae). J Chem Ecol 17:1123–1133

    Google Scholar 

  • Bowers MD (1984) Iridoid glycosides and host-plant specificity in larvae of the buckeye butterfly,Junonia coenia (Nymphalidae). J Chem Ecol 11:1567–1577

    Google Scholar 

  • Bowers MD, Collinge SK (1992) Fate of iridoid glycosides in different life stages of the buckeye,Junonia coenia (Lepidoptera: Nymphalidae). J Chem Ecol 18:817–831

    Google Scholar 

  • Brower JVZ (1958) Experimental studies of mimicry in some North American butterflies. II.Battus philenor andPapilio troilus, P. polyxenes andP. glaucus. Evolution 12:123–136

    Google Scholar 

  • Brower LP (1969) Ecological chemistry. Sci Am 220:22–29

    Google Scholar 

  • Brower LP (1984) Chemical defence in butterflies. Pp 109–134in Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. Symp R Entomol Soc Lond 11. GB-London: Academic Press

    Google Scholar 

  • Brown KS (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709

    Google Scholar 

  • Conner WE, Eisner T, Van der Meer RK, Guerrero A, Meinwald J (1981) Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): role of a pheromone derived from dietary alkaloids. Behav Ecol Sociobiol 9:227–235

    Google Scholar 

  • David WAL, Gardiner BOC (1962) Oviposition and the hatching of the eggs ofPieris brassicae (L.) in a laboratory culture. Bull Entomol Res 53:91–109

    Google Scholar 

  • Davis RH, Nahrstedt A (1979) Linamarin and lotaustralin as the source of cyanide inZygaena filipendulae L. (Lepidoptera). Comp Biochem Physiol 69B:903–904

    Google Scholar 

  • Davis RH, Nahrstedt A (1984) Cyanogenesis in insects. Pp 635–654in Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. II. Pharmacology. GB-Oxford: Pergamon Press

    Google Scholar 

  • Dethier VG (1941) Chemical factors determining the choice of food plants byPapilio larvae. Am Nat 75:61–73

    Google Scholar 

  • Dixon CA, Erickson JM, Kellett DN, Rothschild M (1978) Some adaptations betweenDanaus plexippus and its food plant, with notes onDanaus chrysippus andEuploea core (Insecta: Lepidoptera). J Zool (Lond) 185:437–467

    Google Scholar 

  • Duffey SS (1980) Sequestration of plant natural products by insects. Annu Rev Entomol 25:447–477

    Google Scholar 

  • Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the mothUtetheisa ornatrix. Proc Natl Acad Sci 85:5992–5996

    Google Scholar 

  • Dussourd DE, Harvis CA, Meinwald J, Eisner T (1989) Paternal allocation of sequestered plant pyrrolizidine alkaloids to eggs in the danaine butterfly,Danaus gilippus. Experientia 45:896–898

    Google Scholar 

  • Edgar JA (1982) Pyrrolizidine alkaloids sequestered by Solomon Island danaine butterflies. The feeding preferences of the Danainae and Ithomiinae. J Zool (Lond) 196:385–399

    Google Scholar 

  • Edgar JA (1984) Parsonsieae: ancestral larval foodplants of the Danainae and Ithomiinae. Pp 91–93in Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. Symp R Entomol Soc Lond 11. GB-London: Academic Press

    Google Scholar 

  • Edgar JA, Culvenor CCJ, Robinson GS (1973) Hairpencil dihydropyrrolizines of Danainae from the New Hebrides. J Austr Entomol Soc 12:144–150

    Google Scholar 

  • Edgar JA, Culvenor CCJ, Pliske TE (1974) Coevolution of danaid butterflies with their host plants. Nature 250:646–648

    Google Scholar 

  • Edgar JA, Eggers NJ, Jones AJ, Russell GB (1980) Unusual macrocyclic pyrrolizidine alkaloids fromParsonsia heterophylla A. Cunn andParsonsia spiralis Wall. (Apocynaceae). Tetrahedron Lett 21:2657–2660

    Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608

    Google Scholar 

  • Eisner T, Kluge AF, Ikeda MI, Meinwald YC, Meinwald J (1971) Defensive mechanisms of arthropods XXXIX. Sesquiterpenes in the osmeterial secretion of a papilionid butterffy,Battus polydamas. J Insect Physiol 17:245–250

    Google Scholar 

  • EI-Naggar SF, Doskotch RW, Odell TM, Girard L (1980) Antifeedant diterpenes for the gypsy moth larvae fromKalmia latifolia: Isolation and characterization of ten grayanoids. J Nat Products 43:617–631

    Google Scholar 

  • Euw von J, Reichstein T, Rothschild M (1968) Aristolochic acid-I in the swallowtail butterflyPachliopta aristolochiae Fabr. (Papilionidae). Isr J Chem 6:659–607

    Google Scholar 

  • Fang SD, Yan XQ, Li CF, Fan ZY, Xu XR, Xu JS (1982) Studies on the chemical constituents ofSedum sarmentosum Bunge. IV. The structure of sarmentosin and isosarmentosin. Acta Chimica Sinica 40:273–280

    Google Scholar 

  • Feeny P (1992) The evolution of chemical ecology: contribution from the study of herbivorous insects. Pp 1–44in Rosenthal GA, Janzen DH (eds) Herbivores: Their Interactions with Secondary Plant Metabolites. Vol I: The Chemical Participants. 2nd ed. New York: Academic Press

    Google Scholar 

  • Feeny P, Rosenberry L, Carter M (1983) Chemical aspects of oviposition behavior in butterflies. Pp 27–76in Ahmad S (ed) Herbivorous Insects. New York: Academic Press

    Google Scholar 

  • Frazer JFD, Rothschild M (1960) Defence mechanisms in warningly-coloured moth and other insects. Int Congr Entomol (11) 3:249–256

    Google Scholar 

  • Guilford T, Nicol C, Rothschild M, Moore B (1987) The biological roles of pyrazines: evidence for a warning odour function. Biol J Linn Soc 31:113–128

    Google Scholar 

  • Hikino H, Ogura M, Fushiya S, Konno C, Takemoto T (1977) Stereostructure of asebotoxin VI, VIII and IX, toxins ofPieris japonica. Chem Pharm Bull 25:523–524

    Google Scholar 

  • Hirashima Y, Yano K, Chujo M (1974) Insect pest ofRhododendron kiusianum Makino (Ericaceae), with special reference to out-breaks ofInurois sp. andArichanna melanaria Linnaeus (Lepidotera, Geometridae) on Mts. Kuju and Kirishima. Sci Bull Fac Agric Kyushu Univ 29:87–115

    Google Scholar 

  • Honda K (1980a) Odor of a papilionid butterfly. Odoriferous substances emitted byAtrophaneura alcinous alcinous (Lepidoptera: Papilionidae). J Chem Ecol 5:867–873

    Google Scholar 

  • Honda K (1980b) Osmeterial secretions of papilionid larvae in the generaLuehdorfia, Graphium and Atrophaneua (Lepidoptera). Insect Biochem 10:583–588

    Google Scholar 

  • Honda K, Hayashi N (1995) Chemical nature of larval osmeterial secretions of papilionid butterflies in the generaParnassius, Sericinus and Pachliopta. J Chem Ecol 21:859–867

    Google Scholar 

  • Hsiao TH, Hsiao C, Rothschild M (1980) Characterization of a protein toxin from dried specimens of the garden tiger moth (Arctia caja L.). Toxicon 18:291–299

    Google Scholar 

  • Huang PK (1980) A study on the bionomic characteristics and control of theBishofia burnet,Histia rhodope Cramer (Lepidoptera, Zygaenidae). J Fujian Agric College 61–79

  • Jones DA, Parsons J, Rothschild M (1962) Release of HCN from crushed tissues of all stages in the life cycle of species of the Zygaeninae. Nature 193:52–53

    Google Scholar 

  • Kaiya T, Sakakibara J (1982) Diterpenoids from ericaceous plants. Annu Rep Faculty of Pharmaceutical Sci, Nagoya City Univ 30:1–34

    Google Scholar 

  • Kettlewell BD (1961) The phenomenon of industrial melanism in Lepidoptera. Annu Rev Entomol 6:245–262

    Google Scholar 

  • Kim CS, Nishida R, Fukami H, Abe F, Yamauchi T (1994) 14-DeoxyparsonsianidineN-oxide: a pyrrolizidine alkaloid sequestered by the giant danaine butterfly,Idea leuconoe. Biosci Biotech Biochem 58:980–981

    Google Scholar 

  • Klockars GK, Bowers MD, Cooney B (1993) Leaf variation in iridoid glycoside content ofPlantago laceolata (Plantaginaceae) and oviposition of the buck eye,Junonia coenia (Nymphalidae). Chemoecology 4:72–78

    Google Scholar 

  • L'Empereur KM, Stermitz FR (1990) Iridoid glycoside metabolism and sequestration byPoladryas minuta (Lepidoptera:Nymphalidae)feeding on Penstimon virgatus (Scrophulariaceae).J Chem Ecol 16: 1495–1506

    Google Scholar 

  • Mager PP, Seese A, Takeya K (1981) Structure-toxicity relationships applied to grayanotoxins. Pharmazie 36:382–383

    Google Scholar 

  • Malcolm S, Rothschild M (1983) A danaid mullerian mimic,Euploea core amymone (Cramer) lacking cardenolides in the pupal and adult stage. Biol J Lin Soc 19:27–33

    Google Scholar 

  • Marsh N, Rothschild M (1974) Aposematic and cryptic Lepidoptera tested on the mouse. J Zool (Lond) 174:89–122

    Google Scholar 

  • Masutani T, Seyama I, T. Narahashi T, Iwasa J (1981) Strucure-activity relationship for grayanotoxin derivatives in frog skeletal muscle. J Pharmacol Exp Ther 217:812–819

    Google Scholar 

  • Matsumoto M (1994) 2′-Hydroxy-4′-methoxyacetophenone (paeonol) inExacum affine cv. Biosci Biotech Biochem 58:1892–1893

    Google Scholar 

  • Meinwald J, Meinwald YC, Wheeler JW, Eisner T, Brower LP (1966) Major components in the exocrine secretion of a male butterfly (Lycorea). Science 151:583–585

    Google Scholar 

  • Meinwald J, Meinwald YC, Mazzocchi PH (1969) Sex pheromone of the queen butterfly: Chemistry. Science 164:1174–1175

    Google Scholar 

  • Mix DB, Guinaudeau H, Shamma M (1983) The aristolochic acids and aristolactams. J Nat Prod 45:657–666

    Google Scholar 

  • Mooe BP, Brown WV, Rothschild M (1990) Methylalkypyrazines in aposematic insects, their host plants and mimics. Chemoecology 1:43–51

    Google Scholar 

  • Nago H, Matsumoto M (1994) An ecological role of volatiles produced byLasiodiplodia theobromae. Biosci Biotech Biochem 58:1267–1272

    Google Scholar 

  • Nahrstedt A (1988) Cyanogenesis and the role of cyanogenic compounds in insects. Pp 131–150in Evered D, Harnett S (eds) Cyanide Compounds in Biology. CIBA Symp 140. GB-Chichester: John Wiley & Sons

    Google Scholar 

  • Nahrstedt A, Davis RH (1986) Uptake of linamarin and lotaustralin from their food-plant by larvae ofZygaena trifolii. Phytochemistry 25:2299–2302

    Google Scholar 

  • Nahrstedt A, Walther A, Wray V (1982) Sarmentosin epoxide, a new cyanogenic compound fromSedum cepaea. Phytochemistry 21:107–110

    Google Scholar 

  • Nishida R (1995) Oviposition stimulants of swallowtail butterflies. Pp 17–26in Scriber JM, Tsubaki Y, Lederhous RC (eds) Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Gainesville/FL: Scientific Publishers

    Google Scholar 

  • Nishida R, Fukami H (1989a). Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly,Atrophaneura alcinous, to aristolochic acids. J Chem Ecol 15:2549–2563

    Google Scholar 

  • Nishida R, Fukami H (1989b) Oviposition stimulants of an Aristolochiaceae-feeding swallowtail butterfly,Atrophaneura alcinous. J Chem Ecol 15:2565–2575

    Google Scholar 

  • Nishida R, Rothschild M (1995) A cyanoglucoside stored by aSedum-feeding Apollo butterfly,Parnassius phoebus. Experientia 51:267–269

    Google Scholar 

  • Nishida R, Fukami H, Irie R. Kumazawa Z (1990a) Accumulation of highly toxic ericaceous diterpenoids by the geometrid moth,Arichanna gaschkevitchii. Agric Biol Chem 54:2347–2352

    Google Scholar 

  • Nishida R, Kim CS, Kawai K, Fukami H (1990b) Methyl hydroxy-benzoates as potent phagostimulants for a male danaid butterfly,Idea leuconoe. Chem Express 5:497–500

    Google Scholar 

  • Nishida R, Kim CS, Fukami H, Irie R (1991) IdeamineN-oxides: Pyrrolizidine alkaloids sequestered by a danaine butterfly,Idea leuconoe. Agric Biol Chem 55:1787–1797

    Google Scholar 

  • Nishida R, Weintraub JD, Feeny P, Fukami H (1993) Aristolochic acids fromThottea spp. (Aristolochiaceae) and the osmeterial secretions ofThottea-feeding troidine swallowtail larvae (Papilionidae). J Chem Ecol 19:1587–1594

    Google Scholar 

  • Nishida R, Rothschild M, Mummery R (1994) A cyanoglucoside, sarmentosin, from the magpie moth,Abraxas grossulariata, Geometridae: Lepidoptera. Phytochemistry 36:37–38

    Google Scholar 

  • Nishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, Hayashi N (1995) Male pheromone of a giant danaine butterfly,Idea leuconoe. J Chem Ecol: submitted

  • Pereyra PC, Bowers MD (1988) Iridoid glycosides as oviposition stimulants for the buckeye butterfly,Junonia coenia (Nymphalidae). J Chem Ecol 14:917–928

    Google Scholar 

  • Pliske TE, Eisner T (1969) Sex pheromone of the queen butterfly: biology. Science 164:1170–1172

    Google Scholar 

  • Pliske TE, Edgar JA, Culvenor CCJ (1976) The chemical basis of attraction of ithomiine butterflies to plants containing pyrrolizidine alkaloids J Chem Ecol 2:255–262

    Google Scholar 

  • Poulton EB (1890) The Colour of Animals. 2nd ed. GB-London: Kegan Paul

    Google Scholar 

  • Reichstein T, Euw Jv, Parsons JA, Rothschild M (1968) Heart poison in the monarch butterfly. Science 161:861–866

    Google Scholar 

  • Rothschild M (1961) Defensive odours and Müllerian mimicry among insects. Trans R Entomol Soc Lond 113:101–121

    Google Scholar 

  • Rothschild M (1967) Mimicry, the deceptive way of life. Nat Hist (NY) 76:44–51

    Google Scholar 

  • Rothschild M (1973) Secondary plant substances and warning coloration in insects. Symp R Entomol Soc Lond 6:59–83

    Google Scholar 

  • Rothschild M (1979) Mimicry, butterflies and plants. Symb Bot Upsal 22:82–99

    Google Scholar 

  • Rothschild M, Edgar JA (1978) Pyrrolizidine alkaloids fromSenecio vulgaris sequestered and stored byDanaus plexippus. J Zool (Lond) 186:347–349

    Google Scholar 

  • Rothschild M, Mummery R (1985) Carotenoids and bile pigments in danaid and swallowtail butterflies. Biol J Linn Soc 24:1–14

    Google Scholar 

  • Rothschild M, Reichstein RT, Euw Jv, Aplin RT, Harman RRM (1970) Toxic Lepidoptera. Toxicon 8:293–299

    Google Scholar 

  • Rothschild M, Euw Jv, Reichstein T (1972) Aristolochic acids stored byZerynthia polyxena (Lepidoptera). Insect Biochem 2:334–343

    Google Scholar 

  • Rothschild M, Aplin RT, Cockrum PA, Edgar JA, Fairweather P, Lees R (1979) Pyrrolizidine alkaloids in arctiid moth with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biol J Linn Soc 12:305–326

    Google Scholar 

  • Rothschild M, Moore BP, Brown WV (1984) Pyrazines as warning odour components in the Monarch butterfly, Danaus plexippus, and in moths of the generaZygaena andAmata (Lepidoptera). Biol J Linn Soc 23:375–380

    Google Scholar 

  • Rothschild M, Mummery R, Farrell C (1986a) Carotenoids of butterfly models and their mimics (Lep: Papilionidae and Nymphalidea) Biol J Linn Soc 28:359–372

    Google Scholar 

  • Rothschild M, Nash RJ, Bell EA (1986b) Cycasin in the endangered butterflyEumaeus atala florida. Phyochemistry 25:1853–1854

    Google Scholar 

  • Sachdev-Gupta K, Feeny PP, Carter M (1993) Oviposition stimulants for the pipevine swallowtail butterfly,Battus philenor (Papilionidea), from anAristolochia host plant: synergism between inositols, aristolochic acids and monogalactosyl diglyceride. Chemoecology 4:19–28

    Google Scholar 

  • Schneider D, Boppré M, Schneider H, Thompson WR, Boriack CJ, Petty RL, Meinwald J (1975) A pheromone precursor and its uptake in maleDanaus butterflies. J Comp Physiol 97:245–256

    Google Scholar 

  • Schulz S, Nishida R (1995) Composition of the pheromone system of the male danaine butterfly,Idea leuconoe. Tetrahedron: in press

  • Schulz S, Francke W, Edgar J, Schneider D (1988) Volatile compounds from androconial organs of danaine and ithomiine butterflies. Z Naturforsch 43c:99–104

    Google Scholar 

  • Schulz S, Boppré M, Vane-Wright RI (1993) Specific mixture of secretions from male scent organs of African milkweed butterflies (Danainae). Phil Trans R Soc Lond B 342:161–181

    Google Scholar 

  • Scriber JM, Feeny P (1979) Growth of herbivorous caterpillars in relation to feeding specialization and to the growth form of their food plants. Ecology 60:829–850

    Google Scholar 

  • Seyama I, Narahashi T (1981) Modulation of sodium channels of squid nerve membranes by grayanotoxin I. J Pharmacol Exp Ther 219:614–624

    Google Scholar 

  • Siegler DS (1991) Cyanide and cyanogenic glycosides. Pp 35–77in Rosenthal GA, Janzen DH (eds) Herbivores: Their Interactions with Secondary Plant Metabolites. Vol I: The Chemical Participants. 2nd ed. New York: Academic Press

    Google Scholar 

  • Stermitz FR, Gardner DR, Odendaal FJ, Ehrlich PR (1986)Euphydryas anicia (Lepidoptera: Nymphalidae) utilization of iridoid glycosides fromCastilleja andBesseya (Scrophulariaceae) host plants. J Chem Ecol 12:1459–1468

    Google Scholar 

  • Stermitz FR, Gardner DR, McFarland N (1988) Iridoid glycoside sequestration by two aposematicPenstimon-feeding geometrid larvae. J Chem Ecol 14:435–441

    Google Scholar 

  • Trigo JR, Brown KS (1990) Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1:22–29

    Google Scholar 

  • Uesugi K (1995) Mimicry inPapilio polytes and its ecological meaning. Pp 165–172in Scriber JM, Tsubaki Y, Lederhous RC (eds) Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Gainesville/FL: Scientific Publ

    Google Scholar 

  • Urzúa A, Priestap H (1985) Aristolochic acids fromBattus polydamas. Biochem Syst Ecol 13:169–170

    Google Scholar 

  • Urzúa A, Salgado G, Gassels BK, Eckhardt G (1983) Aristolochic acids inAristolochia chilensis and theAristolochia-feeder,Battus archidamas (Lepidoptera). Collect Czech Chem Commun 48:1513–1519

    Google Scholar 

  • Verschaffelt E (1811) The cause determining the selection of food in some herbivorous insects. Proc Acad Sci Amsterdam 13:536–542

    Google Scholar 

  • Witthohn K, Naumann CM (1987) Cyanogenesis — a general phenomenon in the Lepidoptera? J Chem Ecol 13:1789–1809

    Google Scholar 

  • Wray V, David RH, Nahrstedt A (1983) Biosynthesis of cyanogenic glycosides in butterflies and moths: incorporation of valine and isoleucine into linamarin and lotaustralin byZygaena andHeliconius species (Lepidoptera). Z Naturforsch 38c:583–588

    Google Scholar 

  • Zushi S, Miyagawa J, Yamamoto M, Kataoka K, Seyama I (1993) Effect of grayanotoxin on the frog neuromuscular junction. J Pharmacol Exp Ther 226:269–275

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishida, R. Sequestration of plant secondary compounds by butterflies and moths. Chemoecology 5, 127–138 (1994). https://doi.org/10.1007/BF01240597

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01240597

Key words

Navigation