Skip to main content
Log in

Thermal convection in a cylindrical annulus with a non-Newtonian outer surface

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

This study presents the results of numerical simulations of a model for lithospheremantle coupling in a terrestrial type planet. To first order, a geologically active terrestrial type planet may consist of a metallic core, silicate mantle and lithosphere, with the lithosphere being rheologically different from the mantle. Therefore we have developed a numerical model consisting of a thin non-Newtonian fluid hoop that is dynamically coupled to a thick Newtonian fluid cylindrical annulus. Thus the rheological dichotomy between mantle and lithosphere is built into the model. Time-dependent calculations show the existence of at least two regimes of behaviors. In one regime, the behavior of the hoop switches between periods characterized by low or high speeds, in response to changes in convective vigor and planform. This regime may apply to the planet Venus where the available evidence indicates that prior to 500 myr ago, the planet was resurfaced on a time scale of <100 myr. Since that time, large-scale tectonic activity on Venus has been sharply curtailed. In the other regime, which is more like plate tectonics on Earth, the hoop speeds rise and fall on short time scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bercovici, D., Schubert, G., andGlatzmeir, G. A. (1992),Three-dimensional Convection of an Infinite-Prandtl Number Compressible Fluid in a Basally Heated Spherical Shell, J. Fluid Mech.239, 683–719.

    Google Scholar 

  • Bercovici, D. (1993),A Simple Model of Plate Generation from Mantle Flow, Geophys. J. Int.114, 635–650.

    Google Scholar 

  • Bercovici, D. (1995),A Source-sink Model of the Generation of Plate Tectonics from non-Newtonian Mantle Flow, J. Geophys. Res.100, 2013–2030.

    Google Scholar 

  • Cathles, L. M.,Viscosity of the Earth's Mantle (Princeton University Press, Princeton 1975).

    Google Scholar 

  • Christensen, U. R. (1983),Convection in a Variable Viscosity Fluid: Newtonian Versus Power-law, Earth. Planet. Sci. Lett.64, 153–162.

    Google Scholar 

  • Christensen, U. R. (1984),Convection with Pressure- and Temperature-dependent non-Newtonian Rheology, Geophys. J. R. Astr. Soc.77, 343–384.

    Google Scholar 

  • Christensen, U. R., andHarder, H. (1991),3-D Convection with Variable Viscosity, Geophys. J. Int.104, 213–226.

    Google Scholar 

  • Cserepes, L. (1982),Numerical Simulations of non-Newtonian Mantle Convection. Phys. Earth. Planet. Inter.30, 49–61.

    Google Scholar 

  • Davies, G. F. (1988),Role of the Lithosphere in Mantle Convection, J. Geophys. Res.93, 10,451–10,466.

    Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., andStein, S. (1990),Current Plate Motions, Geophys. J. Int.101, 425–478.

    Google Scholar 

  • Elsasser, W. M.,Convection and stress propagation in the upper mantle. InThe Application of Modern Physics to the Earth and Planetary Interiors (ed. Runcorn, S. K.) (Wiley Interscience, New York 1969) pp. 223–246.

    Google Scholar 

  • Hager, B. H., andO'Connell, R. J. (1981),A Simple Model of Plate Dynamics and Mantle Convection, J. Geophys. Res.86, 4843–4867.

    Google Scholar 

  • Jacoby, W. R., andSchmeling, H. (1982),On the Effects of the Lithosphere on Mantle Convection and Evolution, Phys. Earth Planet. Int.29, 305–319.

    Google Scholar 

  • King, S. D., andHager, B. H. (1990),The Relationship between Plate Velocity and Trench Viscosity in Newtonian and Power-law Subduction Calculations. Geophys. Res. Lett.12, 2409–2412.

    Google Scholar 

  • Minster, J. B., andJordan, J. H. (1978),Present-day Plate Motions, J. Geophys. Res.83, 5331–5354.

    Google Scholar 

  • Peltier, W. R.,Mantle convection and viscosity. InProceedings of the Enrico Fermi International School of Physics, Course LXXVIII (eds. Dziewonski, A. M., and Boschi, E.) (North Holland, Amsterdam 1980) pp. 362–431.

    Google Scholar 

  • Phillips, R. J., Raubertas, R. F., Arvidson, R. E., Sarkar, I. C., Herrick, R. R., Izenberg, N., andGrimm, R. E. (1992),Impact Craters and Venus Resurfacing History, J. Geophys. Res.97, 15,923–15,948.

    Google Scholar 

  • Solomon, S. C., Smrekar, S. E., Bindschadler, D. L., Grimm, R. E., Kaula, W. M., McGill, G. E., Phillips, R. J., Saunders, S., Schubert, G., Squyers, S. W., andStofan, E. (1992),Venus Tectonics: An Overview of Magellan Observations, J. Geophys. Res.97, 13,199–13,255.

    Google Scholar 

  • Solomon, S. C. (1993),The Geophysics of Venus, Phys. Today47, 48–55.

    Google Scholar 

  • Strom, R. G., Schaber, G. G., andDawson, D. D. (1994), The Global Resurfacing of Venus. J. Geophys. Res.99, 10,899–10,926.

    Google Scholar 

  • Surkov, Y. A., Kirnozov, F. F., Glazov, V. N., Dunchenko, A. G., Tasty, L. P., andSobornov, O. P. (1987),Uranium, Thorium and Potassium in the Venusian Rocks at the Landing Site of Vega 1 and 2, Proc. Lunar Planet. Sci. Conf. 17th, Part 2, J. Geophys. Res.92 Suppl., E537-E540.

    Google Scholar 

  • Turcotte, D. L. (1993),An Episodic Hypothesis for Venusian Tectonics, J. Geophys. Res.98, 17,061–17,068.

    Google Scholar 

  • Weinstein, S. A., andOlson, P. L. (1992),Thermal Convection with non-Newtonian Plates, Geophys. J. Int.109, 481–487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weinstein, S.A. Thermal convection in a cylindrical annulus with a non-Newtonian outer surface. PAGEOPH 146, 551–572 (1996). https://doi.org/10.1007/BF00874733

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874733

Key words

Navigation