Skip to main content
Log in

A two-stage model of fracture of rocks

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

In this paper we propose a two-stage model of rock fracture. In the first stage, cracks or local regions of failure are uncorrelated and occur randomly throughout the rock in response to loading of pre-existing flaws. As damage accumulates in the rock, there is a gradual increase in the probability that large clusters of closely spaced cracks or local failure sites will develop. Based on statistical arguments, a critical density of damage will occur where clusters of flaws become large enough to lead to larger-scale failure of the rock (stage two). While crack interaction and cooperative failure is expected to occur within clusters of closely spaced cracks, the initial development of clusters is predicted based on the random variation in pre-existing flaw populations. Thus the onset of the unstable second stage in the model can be computed from the generation of random, uncorrelated damage. The proposed model incorporates notions of the kinetic (and therefore time-dependent) nature of the strength of solids as well as the discrete hierarchic structure of rocks and the flaw populations that lead to damage accumulation. The advantage offered by this model is that its salient features are valid for fracture processes occurring over a wide range of scales including earthquake processes. A notion of the rank of fracture (fracture size) is introduced, and criteria are presented for both fracture nucleation and the transition of the failure process from one scale to another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albrecht, R., Schmidt, V., andBetekhtin, V. I. (1977),The Damage Process Preceding Semi-brittle Fracture in Dependence on Deformation—Part I, Phys. Statist. Sol.39, 621–630.

    Google Scholar 

  • Atkinson, B.K. (1984),Subcritical Crack Growth in Geological Materials, J. Geophys. Res.89, 4077–4114.

    Google Scholar 

  • Atkinson, B. K.,Fracture Mechanics of Rock, Academic Press Geology Series, (Academic Press, New York 1987).

    Google Scholar 

  • Betekhtin, V. I., Kadomtsev, A. G., Petrov, A. I., andVladimirov, V. I. (1976),Reversibility of the First Stage of Fracture in Metals, Phys. Stat. Sol. (a)34, 73–78.

    Google Scholar 

  • Dunning, J. D., andHuf, W. L. (1983),The Effects of Aqueous Chemical Environments on Crack and Hydraulic Fracture Propagation and Morphologies. J. Geophys. Res.88, 6491–6499.

    Google Scholar 

  • Gor, A. Y., Kuksenko, V. S., Tomilin, N. G., andFrolov, D. I. (1989),Applicability of the Concentration Criterion to Prediction of Rock Shocks, Phys. Tech. Problems of Mining3, 54–60.

    Google Scholar 

  • King, G. C. P., andSammis, C. G. (1992),The Mechanisms of Finite Brittle Strain, Pure Appl. Geophys.138, 611–640.

    Google Scholar 

  • Kranz, R. L. (1980),The Effects of Confining Pressure and Stress Difference on Static Fatigue of Granite, J. Geophys. Res.85, 1854–1866.

    Google Scholar 

  • Kuksenko, V. S., Ryskin, V. S., Betekhtin, V. I., andSlutsker, A. I. (1975),Nucleation of Submicroscopic Cracks in Stressed Solids, Internat. J. of Fracture11, 829–840.

    Google Scholar 

  • Lockner, D. A. (1993),Room Temperature Creep in Saturated Granite, J. Geophys. Res.98, 475–487.

    Google Scholar 

  • Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A., andSidorin, A.,Observations of quasistatic fault growth from acoustic emissions. InFault Mechanics and Transport Properties of Rocks (Evans, B., and Wong, T.-F., eds.) (Academic Press, London 1992a) pp. 3–31.

    Google Scholar 

  • Lockner, D. A., Moore, D. E., andReches,Z., Microcrack interaction leading to shear fracture. In33rd U.S. Rock Mechanics Symposium (Tillerson, J. R., and Wawersik, W. R., eds.) (Balkema, A. A., Rotterdam 1992b) pp. 807–816.

    Google Scholar 

  • Lockner, D. A., andMadden, T. R. (1991a),A Multiple Crack Model of Brittle Fracture—1. Non-time-dependent Simulations, J. Geophys. Res.96, 19623–19642.

    Google Scholar 

  • Lockner, D. A., andMadden, T. R. (1991b),A Multiple Crack Model of Brittle Fracture—2. Time-dependent Simulations, J. Geophys. Res.96, 19643–19654.

    Google Scholar 

  • Madden, T. R. (1983),Microcrack Connectivity in Rocks: A Renormalization Group Approach to the Critical Phenomena of Conduction and Failure in Crystalline Rocks, J. Geophys. Res.88, 585–592.

    Google Scholar 

  • Moore, D. E., andLockner, D. A. (1995),The Role of Microcracking in Shear Fracture Propagation in Granite, J. Struct. Geol.17, 95–114.

    Google Scholar 

  • Ovchinskii, A. S., andGusev, Y. S. (1981),Computer Modeling of Damage Accumulation in Solids under Load, Sov. Phys. Solid State (English translation)23, 1921–1924.

    Google Scholar 

  • Paterson, M.,Experimental Rock Deformation—The Brittle Field (Springer-Verlag, New York 1978).

    Google Scholar 

  • Petrov, V. A. (1979),Mechanisms and Kinetics of Macrofracture, Soviet Phys. Solid State (English translation)21, 2123–2126.

    Google Scholar 

  • Petrov, V. A. andOrlov, A. N. (1975),Contribution of Thermal Fluctuations to the Scattering and the Gauge Effect of Longevity, Int. J. Fract.11, 881–886.

    Google Scholar 

  • Pollard, D. D., andSegall, P.,Theoretical displacements and stresses near fratures in rock: With applications to faults, joints, veins, dikes, and solution surfaces. InFracture Mechanics of Rock (Atkinson, B. K., ed.) (Academic Press, New York 1987), pp. 277–349.

    Google Scholar 

  • Reches, Z., andLockner, D. A. (1994),Nucleation and Growth of Faults in Brittle Rocks, J. Geophys. Res.99, 18159–18173.

    Google Scholar 

  • Regel, V. R., Slutcker, A. I., andTomashevskii, E. E.,Kinetic Natuare of Solids Strength (Nauka, Moscow 1974).

    Google Scholar 

  • Sadovskiy, M. A., Golubeva, T. V., Pisarenko, V. F., andShnirman, M. G. (1984),Characteristic Dimensions of Rock and Hierarchical Properties of Seismicity, Izv. Adac. Sci., USSR, Phys. Solid Earth (in English)20, 87–96.

    Google Scholar 

  • Sobolev, G. A., andZavialov, A. D.,A concentration criterion for seismically active faults. InEarthquake Prediction—An International Review (Am. Geophys. Union, 1981), pp. 377–380.

  • Sornette, D., andSammis, C. G. (1995),Complex Critical Exponents from Renormalization Theory of Earthquakes: Implications for Earthquake Predictions, J. Phys. France (in press).

  • Stavrogin, A. N., andPevzner, E. D. (1983),Conditions of Limiting States of Rocks in Case of Variation of Deformation Rates, Phys. Tech. Problems of Mining5, 3–11.

    Google Scholar 

  • Stepanov, W. A., Peschanskaya, N. N., Shpeizman, V. V., andNikonov, G. A. (1975),Longevity of Solids at Complex Loading, Int. J. of Fract.11, 851–867.

    Google Scholar 

  • Tamuzh, V. P., andKuksenko, V. S.,Fracture Micromechanics of Polymer Materials, (Martinus Nighoff Pub., The Hague, Boston, London 1981).

    Google Scholar 

  • Tomashevskaya, I. S., andKhadimulin, Y. N. (1972),Precursors of the Destruction of Rock Specimens, Izv. Acad. Sci. USSR, Physics Solid Earth (in English)5, 276–281.

    Google Scholar 

  • Tomashevskii, E. E., Zakrevskii, V. A., Novak, I. I., Korsukov, V. E., Regel, V. R., Pozdnyakov, O. F., Slutsker, A. I., andKuksenko, V. S. (1975),Kinetic Micromechanics of Polymer Fracture, Int. J. Fracture11, 803–815.

    Google Scholar 

  • Weibull, W. (1989),A Statistical Theory of Strength of Materials, Ingvetensk. Acad. Handl.151, 163.

    Google Scholar 

  • Weibull, W. (1951),A Statistical Distribution Function of Wide Applicability, J. Appl. Mech.18 293–297.

    Google Scholar 

  • Weibull, W. (1952),A Survey of “Statistical Effects” in the Field of Material Failure, Appl. Mech. Reviews5, 449–451.

    Google Scholar 

  • Zhu, W., David, C., andWong, T.-F. (1995),Network Modeling of Permeability Evolution during Cementation and Hot Isostatic Pressing, J. Geophys. Res. (in press).

  • Zhurkov, S. N. (1965),Kinetic Concept of the Strength of Solids, Int. J. Fracture Mech.1, 311–323.

    Google Scholar 

  • Zhurkov, S. N., Kuksenko, V. S., andPetrov, V. A. (1984),Principles of the Kinetic Approach of Fracture Prediction, Theor. Appl. Frac. Mech1, 271–274.

    Google Scholar 

  • Zhurkov, S. N., Kuksenko, V. S., Petrov, V. A., Savelyev, V. N., andSultanov, U. (1977),On the Problem of Prediction of Rock Fracture, Izv. Acad. Sci. USSR, Phys. Solid Earth (in English)13, 374–379.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuksenko, V., Tomilin, N., Damaskinskaya, E. et al. A two-stage model of fracture of rocks. PAGEOPH 146, 253–263 (1996). https://doi.org/10.1007/BF00876492

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876492

Key words

Navigation