Skip to main content
Log in

Application of the Pi theorem to the wear rate of gouge formation in frictional sliding of rocks

  • Frictional Slip, Failure, and Deformation Mechanics: Laboratory Studies
  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

A simple law of wear rate is examined for the process of gouge generation during the frictional sliding of simulated faults in rocks, by use of the Pi theorem method (dimensional analysis) and existing experimental data. The relationship between wear rate (t/d) and the applied stress can be expressed by the power-law relations

$$\frac{t}{d} = C_\sigma \sigma ^{m\sigma } ,\frac{t}{d} = C_\tau \tau ^{m\tau }$$

wheret is the thickness of the gouge generated on the frictional surfaces,d is the fault displacement, σ and τ are normal stress and shear stress, respectively, andC σ,C τ,m σ andm τ are constants. These results indicate that the exponent coefficientsm σ andm τ and the coefficientsC σ andC τ depend on the material hardness of the frictional surfaces. By using the wear rates of natural faults, these power-law relationships may prove to be an acceptable palaeopiezometer of natural faults and the lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allègre, C. J., Le Mouel, J. L., andProvost, A. (1982),Scaling Rules in Rock Fracture and Possible Implications for Earthquake Prediction, Nature297, 47–49.

    Google Scholar 

  • Archard, J. F. (1953),Contact and Rubbing of Flat Surface, J. Appl. Phys24, 981–988.

    Google Scholar 

  • Archard, J. F.,Wear. InInterdisciplinary Approach to Friction and Wear (ed. Ku, P. M.) (NASA Sp-181, Washington, 1968).

  • Archard, J. F., andHirst, D. (1956),The Wear of Metal Under Unlubricated Conditions, Proc. Roy. Soc. London, Ser. A.236, 397–410.

    Google Scholar 

  • Aviles, C. A., Scholz, C. H., andBoatwright, J. (1987),Fractal Analysis Applied to Characteristic Segments of the San Andreas Fault, J. Geophys. Res.92, 331–344.

    Google Scholar 

  • Birkhoff, G.,Hydrodynamics (Princeton Univ. Press, New York, N.Y., revised edition 1960).

    Google Scholar 

  • Bridgman, P. W.,Dimensional Analysis (Yale Univ. Press, New Haven, Conn. 2nd ed. 1931).

    Google Scholar 

  • Brown, S. R., andScholz, C. H. (1985),Broad Bandwidth Study of the Topography of Natural Rock Surfaces, J. Geophys. Res.90, 12572–12582.

    Google Scholar 

  • Buckingham, E. (1914),On Physically Similar Systems; Illustrations of the Use of Dimensional Equations, Phys. Rev.4, 345–376.

    Google Scholar 

  • Burwell, J. T. (1957),Survey of Possible Wear Mechanisms, Wear1, 119–141.

    Google Scholar 

  • Burwell, J. T. (1958),Wear of Metals, Wear1, 317–332.

    Google Scholar 

  • Burwell, J. T., andStrang, C. D. (1952),On the Empircal Law of Adhesive Wear, J. Appl. Phys23, 18–28.

    Google Scholar 

  • Czichos, H.,Tribology, Tribology Series. 1 (Elsevier Sci. Publ. Comp., Amsterdam 1978).

    Google Scholar 

  • Ebihara, K., andHayashi, K. (1959),An Application of Dimensional Analysis to the Characteristics of Wear in Absence of Lubricant, Trans. Japan Soc. Mech. Engrs.25, 458–464 [in Japanese with English abstract].

    Google Scholar 

  • Engelder, J. T. (1974),Cataclasis and the Generation of Fault Gouge, Bull. Geol. Soc. Am.85, 1515–1522.

    Google Scholar 

  • Focken, C. M.,Dimensional Analysis and their Applications (Edward Arnold and Co., London 1953).

    Google Scholar 

  • Fletcher, P., andGay, N. C. (1971),Analysis of Gravity Sliding and Orogenic Translation: Discussion, Bull. Geol. Soc. Am.82, 2677–2682.

    Google Scholar 

  • Holm, R.,Electric Contacts (H. Gebers Föralag, Stockholm 1946).

    Google Scholar 

  • Hubber, K. (1937),Theory of Scale Models as Applied to the Study of Geological Structures, Bull. Geol. Soc. Am.48, 1459–1520.

    Google Scholar 

  • Hull, J. (1988),Thickness-displacement Relationships for Deformation Zones, J. Struct. Geol.10, 431–435.

    Google Scholar 

  • Jaeger, J. C., andCook, N. G. W., Fundamentals of Rock Mechanics (Chapman and Hall, London 1969).

    Google Scholar 

  • Kojima, K., Ohtsuka, Y., andYamada, T. (1981),Distributions of Fault Density and “Fault Dimension” in Rockmass and Some Trials to Estimate Them, J. Japan Soc. Engr. Geol.22, 88–103 [in Japanese with English abstract].

    Google Scholar 

  • Lanchester, F. W.,Theory of Dimensions and its Application for Engineers (Crossby, Lockwood and Sons, London 1936).

    Google Scholar 

  • Langhaar, H. L.,Dimension Analysis and Theory of Models (Wiley, New York, N.Y. 1951).

    Google Scholar 

  • Lätzig, W.,Die Grundlagen und ihre praktische Anwendung (Carl Hanser, München 1950).

    Google Scholar 

  • Matsunaga, M.,Lapping (Seibundo Shinkousha, Tokyo 1957) [in Japanese].

    Google Scholar 

  • Mitra, G. (1984),Brittle to Ductile Transition due to Large Strains along White Rock Thrust, Wind River Mountains, Wyoming, J. Struct. Geol.6, 51–61.

    Google Scholar 

  • Miyata, T. (1978),Movement Picture of the Median Tectonic Line along the Southern Margin of the Izumi Mountain-range, MTL (Publication of Median Tectonic Line Research Group), no.3, 73–77 [in Japanese].

  • Morohashi, S., Kato, S., Sawahata, Y., andYashima, S. (1973a),Formation of Ultrafine Powders by a Reciprocating Friction Mill, J. Res. Assoc. Powder Tech. Japan10, 316–323 [in Japanese with English abstract].

    Google Scholar 

  • Morohashi, S., Sawahata, Y., andYashima, S. (1973b),Effect of Operational Conditions on the Formation of Ultrafine Powder by a Reciprocating Friction Mill, J. Soc. Mater. Sci. Japan22, 689–692 [in Japanese with English abstract].

    Google Scholar 

  • Nagahama, H. (1991),Fracture in the Solid Earth, Sci. Rep. Tohoku Univ., 2nd ser. (Geol.)61, 103–126.

    Google Scholar 

  • Otsuki, K. (1978),On the Relationship between the Width of Shear Zone and the Displacement along Fault, J. Geol. Soc. Japan84, 661–669.

    Google Scholar 

  • Power, W. L., Tullis, T. E., Brown, S. R., Boitnott, G. N., andScholz, C. H. (1987),Roughness of Natural Fault Surfaces, Geophys. Res. Lett.14, 291–294.

    Google Scholar 

  • Power, W. L., Tullis, T. E., andWeek, J. D. (1988),Roughness and Wear during Brittle Faulting, J. Geophys. Res.93, 15268–16278.

    Google Scholar 

  • Queener, C. A., Smith, T. C., andMitchell, W. L. (1965),Transient Wear of Machine Parts, Wear8, 391–400.

    Google Scholar 

  • Quinn, T. F. J. (1967),The Effects of “Hot Spot” Temperature on the Unlubricated Wear of Steel, ASLE Trans.10, 158.

    Google Scholar 

  • Rabinowicz, E.,Friction and Wear of Materials (John Wiley and Sons, Inc. New York 1965).

    Google Scholar 

  • Robertson, E. C.,Continuous formation of gouge and breccia during fault displacement. InIssues in Rock Mechanics (eds. Goodman, R. E., and Scholz, C.) (Amer. Inst. Mining Engineering, New York 1982) pp 397–404.

    Google Scholar 

  • Robertson, E. C. (1983),Relationship of Fault Displacement to Gouge and Breccia Thickness, Mining Engineering35, 1426–1432.

    Google Scholar 

  • Rowe, C. N. (1966),Some Aspects of Heat of Absorption in the Function of a Boundary Lubricant, Trans. Am. Soc. Lubric Engrs.9, 100–111.

    Google Scholar 

  • Scholz, C. H. (1987),Wear and Gouge Formation in Brittle Faulting, Geology15, 493–495.

    Google Scholar 

  • Scholz, C. H., andAviles, C. A.,The fractal geometry of faults and faulting. In:Earthquake Source Mechanics (eds. Das, S., Boatwright, J., and Scholz, C. H.) (Geophysical Monogr. 37, Maurice Ewing. 6. AGU. Washington D.C. 1986) pp. 147–155.

    Google Scholar 

  • Segall, P., andPollard, D. (1983),Nucleation and Growth of Strike-slip Faults in Granite, J. Geophys. Res.88, 555–568.

    Google Scholar 

  • Segall, P., andSimpson, C. (1986),Nucleation of Ductile Shear Zones on Dilatant Fractures, Geology14, 56–59.

    Google Scholar 

  • Shimamoto, T. (1974),Application of the Pi Theorem to the Similarity Criteria of Slow Deformation of Inhomogeneous Viscous Fluids, Tectonophysics22, 253–263.

    Google Scholar 

  • Skoglund, V. J.,Similitude Theory and Applications (International Textbook, Scranton, Pa. 1967).

  • Sods, N., andAoki, A. (1959),On Fretting Corrosion, Trans. Japan Soc. Mech. Engrs.25, 1005–1010 [in Japanese with English abstract].

    Google Scholar 

  • Tabor, D. (1954),Mons's Hardness Scale: A Physical Interpretation, Proc. Phys. Soc. Sr.B67, 249–257.

    Google Scholar 

  • Takahashi, K. (1938),On a Property of Power Mass and Character of Cracks, and their Application to Geophysical Problems, J. Meteorol. Soc. Japan16, 451–454 [in Japanese].

    Google Scholar 

  • Teufel, L. W.,Pore volume changes during frictional sliding of simulated faults. InMechanical Behavior of Crustal Rocks, Geophys. Monogr. no. 24 (eds. Carter, N. L., Freidman, M., Logan, J. M., and Stearns, D. M.) (AGU, Washington, D.C. 1981).

    Google Scholar 

  • Yoshioka, N. (1985),Temperature Measurement during Frictional Sliding of Rocks, J. Phys. Earth33, 295–322.

    Google Scholar 

  • Yoshioka, N. (1986),Fracture Energy and the Variation of Gouge and Surface Roughness during Frictional Sliding of Rocks, J. Phys. Earth34, 335–355.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagahama, H., Nakamura, N. Application of the Pi theorem to the wear rate of gouge formation in frictional sliding of rocks. PAGEOPH 142, 795–808 (1994). https://doi.org/10.1007/BF00876065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00876065

Key words

Navigation