Skip to main content
Log in

Propagation and attenuation characteristics of the crustal phaseLg

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

TheLg wave consists of the superposition ofS waves supercritically reflected, and thus trapped, in the crust. This mode of propagation explains the strong amplitude of this phase and the large distance range in which it is observed. The numerical simulation leads to successful comparison between observed seismograms in stable continental areas and synthetics computed for simple standard crustal models. In regions with strong lateral variations, the influence of large-scale heterogeneities on theLg amplitude is not yet clearly established in terms of the geometrical characteristics of the crustal structure.

The analysis of the decay of amplitude ofLg with epicentral distance allows the evaluation of the quality factor ofS waves in the crust. The results obtained show the same trends as codaQ: a clear correlation with the tectonic activity of the region considered, both for the value ofQ at 1 Hz and for its frequency dependence, suggesting that scattering plays a prominent part among the processes that cause the attenuation.

The coda ofLg is made up of scatteredS waves. The study of the spatial attenuation of the coda indicated that a large part of the arrivals that compose the coda propagate asLg. The relative amplitude of the coda is larger at sites located on sediments because, in these conditions, a part ofLg energy can be converted locally into lower order surface modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K. (1980),Attenuation of Shear Waves in the Lithosphere for Frequencies from 0.05 to 25 Hz, Phys. Earth Planet. Interiors21, 50–60.

    Google Scholar 

  • Aki, K. (1982),Scattering and Attenuation, Bull. Seismol. Soc. Am.72, S319-S330.

    Google Scholar 

  • Baker, B. W., Der, Z. A., andMrazek, C. P. (1981),The Effect of Crustal Structure on the Regional Phases Pg and Lg at the Nevada Test Site, J. Geophys. Res.86, 1686–1700.

    Google Scholar 

  • Bard, P. Y., andBouchon, M. (1980a),The Seismic Response of Sediment Filled Valleys. Part 1: The Case of Incident SH Waves, Bull. Seismol. Soc. Am.70, 1263–1286.

    Google Scholar 

  • Bard, P. Y., andBouchon, M. (1980b),The Seismic Response of Sediment Filled Valleys. Part 2: The Case of Incident P and SV Waves, Bull. Seismol. Soc. Am.70, 1921–1941.

    Google Scholar 

  • Båth, M. (1954),The Elastic Waves Rg and Lg Along Eurasiatic Paths, Arkiv Geofysic2, 295–342.

    Google Scholar 

  • Bollinger, G. A. (1979),Attenuation of the Lg Phase and the Determination of mb in the Southeastern United States, Bull. Seismol. Soc. Am.69, 45–63.

    Google Scholar 

  • Bouchon, M. (1981),A Simple Method to Calculate Green's Functions for Elastic Layered Media, Bull. Seismol. Soc. Am.71, 959–971.

    Google Scholar 

  • Bouchon, M. (1982),The Complete Synthesis of Seismic Crustal Phases at Regional Distances, J. Geophys. Res.87, 1735–1741.

    Google Scholar 

  • Campillo, M., andBouchon, M. (1985),Synthetic SH Seismograms in a Laterally Varying Medium by the Discrete Wavenumber Method, Geophys. J. Roy. Astr. Soc.83, 307–317.

    Google Scholar 

  • Campillo, M. (1987),Lg Wave Propagation in a Laterally Varying Crust and the Spatial Distribution of the Quality Factor in Central France, J. Geophys. Res.92, 12604–12614.

    Google Scholar 

  • Campillo, M., Bouchon, M., andMassinon, B. (1984),Theoretical Study of the Excitation, Spectral Characteristics and Geometrical Attenuation of Regional Seismic Phases, Bull. Seismol. Soc. Am.74, 79–90.

    Google Scholar 

  • Campillo, M., Plantet, J. L., andBouchon, M. (1985),Frequency-dependent Attenuation in the Crust Beneath Central France from Lg Waves: Data Analysis and Numerical Modeling, Bull. Seismol. Soc. Am.75, 1395–1411.

    Google Scholar 

  • Cara, M., Minster J. B., andLeBras, R. (1981),Multimode Analysis of Rayleigh-type Lg. Part II. Application to Southern California and the Northwestern Sierra Nevada, Bull. Seismol. Soc. Am.71, 985–1002.

    Google Scholar 

  • Chavez, D. E., andPriestley, K. K. (1986),Measurement of Frequency-dependent Lg Attenuation in the Great Basin, Geophys. Res. Lett.13, 551–554.

    Google Scholar 

  • Chinn, D., Isacks, B., andBarazangi, M. (1980),High-frequency Seismic Wave Propagation in Western South America Along the Continental Margin, in the Nazca Plate and Across the Altiplano, Geophys. J. Roy. Astr. Soc.60, 209–244.

    Google Scholar 

  • Der, Z. A., Marshall, M. E., O'Donnell, A., andMcElfresh, T. W. (1984),Spatial Coherence and Attenuation of the Lg Phase and the Interpretation of Lg Coda, Bull. Seismol. Soc. Am.74, 1125–1147.

    Google Scholar 

  • Dwyer, J. J., Herrmann, R. B., andNuttli, O. W. (1983),Spatial Attenuation of the Lg Wave in the Central United States, Bull. Seismol. Soc. Am.73, 781–796.

    Google Scholar 

  • Espinosa, A. F. (1984),Lg-wave Attenuation in Contiguous United States (abs), EOS Transactions AGU65, 233.

    Google Scholar 

  • Gregersen, S. (1984),Lg-wave Propagation and Crustal Structure Differences in Denmark and the North Sea, Geophys. J. Roy. Astr. Soc.79, 217–234.

    Google Scholar 

  • Gutenberg, B. (1951),Revised Travel Times in Southern California, Bull. Seismol. Soc. Am.41, 143–164.

    Google Scholar 

  • Gutenberg, B. (1955),Channel Waves in the Earth's Crust, Geophysics20, 283–294.

    Google Scholar 

  • Hasegawa, H. S. (1985),Attenuation of Lg Waves in the Canadian Shield, Bull. Seismol. Soc. Am.75, 1569–1582.

    Google Scholar 

  • Herraiz, M., andEspinosa, A. F. (1986),Scattering and Attenuation of High Frequency Seismic Waves: Development of the Theory of Coda Waves, U.S.G.S. Open File Report 86-455.

  • Herrmann, R. B. (1980),Q Estimates Using the Coda of Local Earthquakes, Bull. Seismol. Soc. Am.70, 447–468.

    Google Scholar 

  • Herrmann, R. B., andKijko A. (1983),Modelling Some Empirical Vertical Component Lg Relations, Bull. Seismol. Soc. Am.73, 157–171.

    Google Scholar 

  • Jones, F. B., Long, L. T., andMcKee, J. H. (1977),Study of the Attenuation and Azimuthal Dependence of Seismic Wave Propagation in the Southeastern United States, Bull. Seismol. Soc. Am67, 1503–1513.

    Google Scholar 

  • Kadinsky-Cade, K., Barazangi, M., Oliver, J., andIsacks, B. (1981),Lateral Variations of High-frequency Seismic Wave Propagation at Regional Distances Across the Turkish and Iranian Plateaus, J. Geophys. Res.86, 9377–9396.

    Google Scholar 

  • Kennett, B. L. N. (1984),Guided Wave Propagation in Laterally Varying Media I: Theoretical Developments, Geophys. J. Astr. Soc.79, 235–255.

    Google Scholar 

  • Kennett, B. L. N., andMykkeltveit, S. (1984),Guided Wave Propagation in Laterally Varying Media II. Lg Waves in Northwestern Europe, Geophys. J. Roy. Astr. Soc.79, 257–267.

    Google Scholar 

  • Kennett, B. L. N., Gregersen, S., Mykkeltveit, S., andNewmark, R. (1985),Mapping of Crustal Heterogeneity in the North Sea Basin via the Propagation of Lg Waves, Geophys. J. Roy. Astr. Soc.83, 299–306.

    Google Scholar 

  • Kim, W. Y. (1987),Modeling Short-period Crustal Phases at Regional Distances for the Seismic Source Parameter Inversion, Phys. Earth Planet. Interiors47, 159–178.

    Google Scholar 

  • Kind, R. (1978),The Reflectivity Method for a Buried Source, J. Geophysics44, 603–612.

    Google Scholar 

  • Knopoff, L., Schwab, F., andKausel, E. (1973),Interpretation of Lg, Geophys. J.33, 398–404.

    Google Scholar 

  • Kovach, R. L., andAnderson, D. L. (1964),Higher Mode Surface Waves and their Bearing on the Structure of the Earth's Mantle, Bull. Seismol. Soc. Am.54, 162–182.

    Google Scholar 

  • Lehmann, I. (1953),On the Short-period Surface Wave “Lg” and Crustal Structure, Bull. d'Information de l'UGGI2, 248–251.

    Google Scholar 

  • Mitchell, B. J. (1980),Frequency Dependence of Shear Wave Internal Friction in the Continental Crust of Eastern North America, J. Geophys. Res.85, 5212–5218.

    Google Scholar 

  • Ni, J., andBarazangi, M. (1983),High-frequency Seismic Wave Propagation Beneath the Indian Shield, Himalayan Arc, Tibetan Plateau and Surrounding Regions: High Uppermost Mantle Velocities and Efficient Sn Propagation Beneath Tibet, Geophys. J. Roy. Astr. Soc.72, 665–689.

    Google Scholar 

  • Nicolas, M., Massinon, B., Mechler, P., andBouchon, M. (1982),Attenuation of Regional Phases in Western Europe, Bull. Seismol. Soc. Am.72, 2089–2106.

    Google Scholar 

  • Nuttli, O. W. (1973),Seismic Wave Attenuation and Magnitude Relations for Eastern North America, J. Geophys. Res.78, 876–885.

    Google Scholar 

  • Nuttli, O. W. (1980),The Excitation and Attenuation of Seismic Crustal Phases in Iran, Bull. Seismol. Soc. Am.70, 469–485.

    Google Scholar 

  • Nuttli, O. W. (1981),On the Attenuation of Lg Waves in Western and Central Asia and their Use as a Discriminant between Earthquakes and Explosions, Bull. Seismol. Soc. Am.71, 249–261.

    Google Scholar 

  • Nuttli, O. W. (1982),The Earthquake Problem in the Eastern United States, ASCE J. Struct. Div.108, 1302–1312.

    Google Scholar 

  • Nuttli, O. W. (1986),Yield Estimates of Nevada Test Site Explosions Obtained from Seismic Lg Waves, J. Geophys. Res.91, 2137–2151.

    Google Scholar 

  • Oliver, J., andEwing, M. (1957),Higher Modes of Continental Rayleigh Waves, Bull. Seismol. Soc. Am.47, 187–204.

    Google Scholar 

  • Oliver, J., andEwing, M. (1958),Normal Modes of Continental Surface Waves, Bull. Seismol. Soc. Am.48, 33–49.

    Google Scholar 

  • Olsen, K. H., Braile, L. W., andStewart, J. N. (1983),Modeling Short-Period Crustal Phases (Pg-Lg) for Long-range Refraction Profiles, Phys. Earth Planet. Interiors31, 334–347.

    Google Scholar 

  • Panza, G. F., andCalcagnile, G. (1975),Lg, Li and Rg from Rayleigh Modes, Geophys. J.40, 475–487.

    Google Scholar 

  • Peseckis, L. L., andPomeroy, P. W. (1984),Estimation of Q Using Lg Waves and its Implications for Nuclear Estimations (abs.), EOS Transactions AGU65, 995.

    Google Scholar 

  • Press, F., andEwing, M. (1952),Two Slow Surface Waves Across North America, Bull. Seismol. Soc. Am.42, 219–228.

    Google Scholar 

  • Ruzaikin, A. I., Nersesov, I. L., Khalturin, V. I., andMolnar, P. (1977),Propagation of Lg and Lateral Variations of Crustal Structure in Asia, J. Geophys. Res.82, 307–316.

    Google Scholar 

  • Singh, S. K., andHerrmann, R. B. (1983),Regionalization of Crustal Coda Q in the Continental United States, J. Geophys. Res.88, 527–538.

    Google Scholar 

  • Street, R. L. (1976),Scaling Northeastern United States/Southeastern Canadian Earthquakes by their Lg Waves, Bull. Seismol. Soc. Am.66, 1525–1537.

    Google Scholar 

  • Wang, C. Y., andHerrmann, R. B. (1984),Modeling Lg Codes by P-SV and SH by Vertical Boundaries (abs.), EOS Transactions AGU65, 233.

    Google Scholar 

  • Wang, C. Y. (1981),Wave Theory for Seismograms Synthesis, Ph.D. Dissertation, Saint Louis University, Saint Louis, Missouri, USA.

    Google Scholar 

  • Wu, R.-S., andAki, K. (1985),Scattering of Elastic Waves by a Random Medium and the Small-scale Heterogeneities in the Lithosphere, J. Geophys. Res.90, 10261–10276.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campillo, M. Propagation and attenuation characteristics of the crustal phaseLg . PAGEOPH 132, 1–19 (1990). https://doi.org/10.1007/BF00874355

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00874355

Key words

Navigation