Skip to main content
Log in

Multiple scattering of seismic waves in fractured media: Crosscorrelation as a probe of fracture intensity

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Abstract

This paper presents the theory which describes how the lateral correlation of vertical displacement is influenced by multiple scattering of seismic waves caused by the presence of fluid-filled fractures, along with an observational methodology to show how to extract fracture-related quantities (e.g. fracture porosity, degree of anisotropy of the fractures, change in orientation of the fractures, density of fluid filling the fractures) from seismic data using the theoretical development as an underpinning framework. A simple physical picture is given of the basic process, as well as some rough order of magnitude estimates to show that the parameters quantifying the size of the multiple scattering fall squarely in the seismic regime.

These calculations serve to create a basis to determine, by seismic means ahead of the drill, (1) the degree of fracturing of reservoir rocks (such as the Monterey shale), and (2) the type of fluid filling the fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aki, K. (1973),Scattering of P-waves under Montana LASA. J. Geophys. Res.78, 1334–1346.

    Google Scholar 

  • Aki, K., Christofferson, A. andHysebye, E.S. (1976),Three-dimensional Seismic Structure of the Lithosphere Under Montana LASA. Bull. Seis. Soc. Am.66:2, 501–524.

    Google Scholar 

  • Aki, K. (1981),Scattering and Attenuation of High-Frequency Body Waves (1–25 Hz) in the Lithosphere, Phys. Earth and Planet. Int.26, 241–243.

    Google Scholar 

  • Aki, K. (1982),Scattering and Attenuation. Bull. Seism. Soc. Am.78, B6, S319–330.

    Google Scholar 

  • Banik, N. C., Lerche, I. andShuey, R. T. (1985),Stratigraphic Filtering, Part I: Derivation of the O'Doherty-Anstey Formula. Geophysics50, 2764–2774.

    Google Scholar 

  • Banik, N. C., Lerche, I., Resnick, J. andShuey, R. T. (1985),Stratigraphic Filtering, Part II: Model Spectra. Geophysics50, 2775–2783.

    Google Scholar 

  • Berteussen, K. A., Christofferson, A., Husebye, E. S. andDahle, A. (1975),Wave scattering theory in analysis of P-wave anomalies at NORSAR and LASA. Geophys. J. Roy. astr. Soc.42, 403–417.

    Google Scholar 

  • Berteussen, K. A. (1975a),Crustal Structure and P-wave Travel Time Anomalies at NORSAR. J. Geophys.41, 71–84.

    Google Scholar 

  • Berteussen, K. A. (1975b),P-wave amplitude variability at NORSAR. J. Geophys.41, 595–613.

    Google Scholar 

  • Born, M. andWolf, E. (1964),Principles of Optics (The MacMillan Co., New York).

    Google Scholar 

  • Capon, J. (1974),Characterization of crust and upper mantle structure under LASA as a random medium. Bull. Seis. Soc. Am.64, 235–266.

    Google Scholar 

  • Chang, A. andvon Seggern, D. H. (1980),A study of amplitude anomaly and m bias at LASA subarrays. J. Geophys. Res.85, 4811–4828.

    Google Scholar 

  • Chernov, L. A. (1960),Wave propagation in a Random Medium. McGraw-Hill.

  • Clayton, R. andEngquist B. (1977),Absorbing boundary conditions for acoustic and elastic waves equations, Bull. Soc. Seis. A.67, 1529–1540.

    Google Scholar 

  • Dainty, A. M. (1981),A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophys. Res. Lett.8, 1126–1128.

    Google Scholar 

  • Dainty, A. M. (1984),High Frequency Acoustic Backscattering and Seismic attenuation. J. Geophys. Res.89, 3172–3176.

    Google Scholar 

  • Dashen, R. (1979),Path integrals for waves in random media. J. Math. Phys.20, 894–920.

    Google Scholar 

  • Der, Z. A., McElfresh, T. W. andO'Donnell, A. (1982),An investigation of the regional variations and frequency dependence of anelastic attenuation in the mantle under the United States in the 0.54 Hz band. Geophys. J.R.A.S.69, 67–100.

    Google Scholar 

  • Frankel, A. andClayton R. W. (1984),A finite difference Simulation of Wave Propagation Two-Dimensional Random Media. Submitted to Bull. Seism. Soc. Am.

  • Hudson, J. A. andHeritage, J. R. (1981),The use of the Born approximation in seismic scattering problems. Geophys. J. Roy. astr. Soc.66, 221–240.

    Google Scholar 

  • Hudson, J. A. (1982),Use of stochastic models in seismology. Geophys. J. Roy. astr. Soc.69, 649–657.

    Google Scholar 

  • Ishimaru, A. (1976)Wave Propagation and Scattering in Random Media, VI and II. Academic Press.

  • Kelly, K. R., Ward, R. W., Treitel, S. andAlford, R. M. (1976),Synthetic seismograms, a finite difference approach. Geophysics41, 2–27.

    Google Scholar 

  • Kikuchi, M. (1981a),Dispersion and attenuation of elastic waves due to multiple scattering from inclusions. PEPI25, 159–162.

    Google Scholar 

  • Kikuchi, M. (1981b),Dispersion and attenuation of elastic waves due to multiple scattering from cracks. PEPI27, 100–105.

    Google Scholar 

  • Lee, L. C. (1974),J. Math. Phys. 15, 1431.

    Google Scholar 

  • Lerche, I. andPetroy, D. E. (1985),‘Multiple scattering of Seismic Waves in Fractured Media: Velocity and Effective Attenuation of the Coherent Components of P-waves and S-waves.’ (In preparation.)

  • Lerche, I. (1979),Scintillations in Astrophysics I. An Analytic Solution of the Second Order Moment Equation. Astrophys. J.234, 262–272.

    Google Scholar 

  • McCoy, J. J. (1980),Parabolic wave theories and some recent applications. Phys. Earth and Planet. Inter.21, 126–133.

    Google Scholar 

  • McLaughlin, K. L. (1983),Coherency of Seismic Waveforms. Ph.d. Thesis, Univ. Calif., Berkeley.

    Google Scholar 

  • Menke, W. (1983a),On the effect of P-S coupling on the apparent attenuation of elastic waves in randomly layered media. Geophys. Res. Lett.10, 1145–1147.

    Google Scholar 

  • Menke, W. (1983b),A formula for the apparent attenuation of acoustic waves in randomly layered media. Geophys. J. Roy. astr. Soc.75, 541–544.

    Google Scholar 

  • Powell, C. A. andMeltzer, A. S. (1984)Scattering of P-waves Beneath SCARLET in Southern California. Geophys. Res. Lett.11, 481–484.

    Google Scholar 

  • Richards, P. G. andMenke, W. (1983)The apparent attenuation of a scattering medium. Bull. Seis. Soc. Am.73, 1005–1021.

    Google Scholar 

  • Sato, H. (1982a)Attenuation of S-waves in the lithosphere due to scattering by its random velocity structure. J. Geophys. Res.87, 7779–7786.

    Google Scholar 

  • Sato, H. (1982b),Amplitude attenuation of impulsive waves in random media on the travel time corrected wave formalism. J. Acoust. Soc. Am.71, 559–564.

    Google Scholar 

  • Tatarskii, V. I. (1961),Wave Propagation in a Turbulent Medium. Dover, 285pages.

  • Tatarskii, V. I. (1971),The Effects of the Turbulent Atmosphere on Wave Propagation. (Israel Program for Scientific Translation.)

  • Thompson, C. (1983),Ray-theoretical amplitude inversion for laterally varying velocity structure below NORSAR. Geophys. J. Roy. astr. Soc.74, 525–558.

    Google Scholar 

  • Uscinski, B. J. (1977),The Elements of Wave Propagation in a Random Medium. McGraw-Hill.

  • Wu, Ru-Shan, (1982a),Attenuation of Short Period Seismic Waves due to Scattering. Geophys. Res. Lett.9, 9–12.

    Google Scholar 

  • Wu, Ru-Shan (1982b),Mean Field Attenuation and Amplitude Attenuation Due to Wave Scattering. Wave Motion4, 305–316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lerche, I. Multiple scattering of seismic waves in fractured media: Crosscorrelation as a probe of fracture intensity. PAGEOPH 123, 503–542 (1985). https://doi.org/10.1007/BF00877451

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00877451

Keywords

Navigation