Skip to main content
Log in

Eine Simulierung orographischer Effekte durch Quellsingularitäten zur Fixierung stromaufwärts gelegener Randwerte

Source disturbances simulating orographical effects: The determination of upstream boundary values

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Zusammenfassung

Ein zweidimensionales, linearisiertes Strömungsmodell für orographisch induzierte Effekte wird vorgestellt: Unter Voraussetzung von ‘Pseudo-Instationärität’ lassen sich in einem schwach-geschichteten, reibungsfreien Medium mittlerer Größenordnung dynamisch-thermodynamische Störungen parameterisieren. Beim Überströmen eines Hindernisses, das durch ‘effektiven Quellfluß’Q simuliert wird, kann man für normierte Stromlinien eine inhomogene Helmholtz-Gleichung ableiten, deren vier Randbedingungen durch das Eingreifen zweier Zusatzterme, welche das instationäre Verhalten beschreiben, modifiziert werden. Man wählt im folgenden den Quellfluß derartig, sodaß vonQ ein aufz=0 aufliegender, endlich ausgedehnter Rücken (mit dem ungefähren Querschnitt eines Halbzylinders) beschrieben wird.

Näherungslösungen für den stromaufwärts liegenden Teil eines Rechteckbereiches nach Erreichen eines stationären Strömungszustandes sind mit den Methoden von Laplace-Fourier bestimmbar. Die numerische Größenabschätzung dieser kolumnaren Wellen zeigt, daß die im Windfeld orographisch induzierten Scherungszonen noch in beträchtlicher Entfernung stromaufwärts eines endlichen Hindernisses auftreten. Ihre Größenordnung gleicht jener von Scherungen, welche aus Effekten des thermischen Windes entstehen können. Die horizontale Perturbation der Geschwindigkeit ist bloß um eine Größenordnung kleiner als die Fließgeschwindigkeit des Grundstromes.

Die Vorteile des neuen Ansatzes werden diskutiert: Quellsingularitäten sind besser als die üblichen analytischen Darstellungen der Topographie geeignet, die mitunter über weite Distanzen laufenden Störwellen niedrigster Frequenzen mit kolumnarem Charakter zu erfassen.

Im Anhang findet man die Verallgemeinerung auf ein analoges dreidimensionales Modell: Ein System zweier partieller Differentialgleichungen führt zu ‘Pseudo-Stromlinien’ des dreidimensionalen Raumes.

Summary

As outlined in an Appendix a system of partial differential equations is derived for the stream surfaces of a flow of a stratified fluid over an obstacle for the so-called ‘pseudo-instationary case’ of an inviscid linearized model for mesoscale motions in three dimensions.

The solution for the two-dimensional case, which is the basic part of this paper, results in a Helmholtz Equation, the four boundary conditions of which are partially modified by two additional terms characterizing the instationarity of the problem. The orographic effects are parameterized by the ‘effective source singularity’. (The latter corresponds roughly to a mountain range with a semi-circular cross-sectional profile).

For the upstream part of a rectangular range steady-state solutions in the limit of long time are obtained by the methods of Laplace-Fourier. The numerical calculation shows, that a system of orographically caused shear-layers (‘columnar waves’) exists. The wind shears induced are of the order of shears due to thermal wind effects, though quite apart from these effects. The perturbations of horizontal velocity are only one order of magnitude smaller than the velocity of the fluid-flow itself.

The results show that source singularities are good means to represent topographical effects: Especially they may explain more precisely upstream influences due to horizontally propagating waves having near-zero frequencies than the usual analytical formulations of orography can do it.

Finally the theoretical results are compared with some data-sets taken from fluid-tank experiments and from observations from instrumented aircraft.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literature

  • Bell, T. H. (1975),Topographically generated internal waves in the open ocean, J. Geoph. Res.80 (3). 320–327.

    Google Scholar 

  • Black, J. F. andTarmy, B. L. (1963),The use of asphalt coatings to increase rainfall, J. Appl. Med.2 (5), 557–564.

    Google Scholar 

  • Browand, F. K. andWinant, C. D. (1972),Blocking ahead of a cylinder moving in a stratified fluid: An experiment, Geophys. Fluid Dyn.4, 29–53.

    Google Scholar 

  • Browning, K. A. (1973),Mesoscale structure on rain systems in middle latitudes, WMO-CAS-VI/Inf.3, Versailles, 1 Nov. 1973.

  • Davis, R. E. (1969),The two-dimensional flow of a stratified fluid over an obstacle, J. Fluid Mech.36, 127–143.

    Google Scholar 

  • Foldvik, A. andWurtele, M. (1967),The computation of the transient gravity wave, Geophys. J. Roy. Astron. Soc.13, 167–185.

    Google Scholar 

  • Freund, D. D. andMeyer, R. E. (1972),On the mechanism of blocking in a stratified fluid, J. Fluid Mech.54, 719–725.

    Google Scholar 

  • Glasstone, S. (ed.),The Effects of Nuclear Weapons, rev. edn. (USA Atomic Energy Comm., US Government Printing Office, Washington, D.C. 1962), 730 pp.

    Google Scholar 

  • Gutman, L. N. andPerov, V. L. (1970),Nonstationary problems in mesometeorology, Izv., Atm. Ocean. Physics6(1), 3–13.

    Google Scholar 

  • Halpern, D. (1971),Observations on short period internal waves in Massachusetts Bay, J. Mar. Res.29, 116–126.

    Google Scholar 

  • Havelock, T. H. (1917),Some cases of wave motion due to a submerged obstacle, Proc. Roy. Soc. London, Ser. A93, 520–532.

    Google Scholar 

  • Havelock, T. H. (1949),The wave resistance of a cylinder started from rest, Quart. J. Mech. Appl. Math.2, 325–334.

    Google Scholar 

  • Huppert, H. E. andMiles, J. W. (1969),Lee waves in a stratified flow, Part 3, Semi-elliptical obstacle, J. Fluid Mech.35, 481–486.

    Google Scholar 

  • Janowitz, G. S. (1968),On wakes in stratified fluids, J. Fluid Mech.33, 417–425.

    Google Scholar 

  • Janowitz, G. S. (1974),Blocking in slow stratified flows, J. Geophys. Res.79 (9), 1265–1268.

    Google Scholar 

  • Kao, T. W. (1965),Phenomenon of blocking in stratified flows, J. Geophys. Res.70, 815–822.

    Google Scholar 

  • Kao, S. K., Paegle, J. N. andNormington, W. E. (1974),Mountain effect on the motion in the atmosphere's boundary layer, Bound. Lay. Met.7, 501–512.

    Google Scholar 

  • Kasahara, A. andWashington, W. M. (1971),General circulation experiments with a six layer NCAR model, including orography, cloudiness and surface temperature calculations, J. Atm. Sc.28 (5), 657–701.

    Google Scholar 

  • Kasahara, A., Sasamori, T. andWashington, W. M. (1973),Simulation experiments with a 12-layer stratospheric global circulation model, I. Dynamical effect of the earth's orography and thermal influence of continentality, J. Atm. Sc.30(7), 1229–1251.

    Google Scholar 

  • Lester, P. F. andFingerhut, W. A. (1974),Lower turbulent zones associated with mountain lee waves, J. Appl. Met.13, 54–61.

    Google Scholar 

  • Lilly, D. K. (1972),Wave momentum flux — A GARP problem, Bull. Am. Met. Soc.20, 17–23.

    Google Scholar 

  • Lilly, D. K. andLester, P. F. (1974),Waves and turbulence in the stratosphere, J. Atm. Sc.31, 800–812.

    Google Scholar 

  • Long, R. R. (1954),Some aspects of the flow of stratified fluids, II. Experiments with a two-fluid system, Tellus6, 97–115.

    Google Scholar 

  • Long, R. R. (1955),Some aspects of the flow of stratified fluids, III. Continuous density gradients. Tellus7, 341–357.

    Google Scholar 

  • Long, R. R. (1959),The motion of fluids with density stratification, J. Geophys. Res.64, 2151.

    Google Scholar 

  • Long, R. R. (1970),Blocking effects in flow over obstacles, Tellus22, 471–480.

    Google Scholar 

  • Long, R. R. (1974),Some experimental observations of upstream disturbances in a two-fluid system Tellus26(3), 313–317.

    Google Scholar 

  • Malkus, J. S. (1963),Tropical rain induced by a small natural heat source, J. Appl. Met.2(5), 547–556.

    Google Scholar 

  • Martin, S. andLong, R. R. (1968),The slow motion of a flat plate through a viscous stratified fluid, J. Fluid Mech.31, 669–688.

    Google Scholar 

  • McIntyre, M. E. (1972),On Long's hypothesis of no upstream influence in uniformly stratified or rotating flow, J. Fluid Mech.52, 209–244.

    Google Scholar 

  • Miles, J. W. (1972),Comments on ‘Stratified flow over extended obstacles and its application to topographical effect on vertical wind shear’, J. Atm. Sc.29, 772–773.

    Google Scholar 

  • Nicholls, J. M. (1973).The airflow over mountains. Research 1958–72. WMO. TN No. 127, WMO-No. 355.

  • Oobayashi, T. (1970),A numerical study of two-dimensional airflow over an isolated mountain, J. Met. Soc. Jap.48(2), 118–128.

    Google Scholar 

  • Pao, Y.-H. (1968),Laminar flow of a stably stratified fluid past a plate, J. Fluid Mech.34, 795–808.

    Google Scholar 

  • Perov, V. L. andGutman, L.N. (1972),A barotropic model for the prediction of a local katabatic wind, Izv., Atm. Ocean. Physics8(11), 659–666.

    Google Scholar 

  • Reuter, H. undPichler, H. (1962),Erzeugung von Divergenz und Vorticity durch orographische Effekte im Bereich der Alpen, VI. Int. Tag. f. Alpine Met. in Bled, Jugoslawien, 1960, Bericht 19–24.

  • Rossby, T. (1974),Studies of the vertical structure of horizontal currents near Bermuda, J. Geophys. Res.79(12), 1781–1791.

    Google Scholar 

  • Sokhov, T. Z. (1970),Nonlinear orographic waves in the atmosphere, Izv., Atm. Ocean. Physics6(2), 115–126.

    Google Scholar 

  • Stewartson, K. (1968),On inviscid flow of a rotating fluid past an axially-symmetric body using Ossen's equation, Quart. J. Mech. Appl. Math.21, 353–373.

    Google Scholar 

  • Taylor, G. I. (1922),The motion of a sphere in a rotating liquid, Proc. Roy. Soc. London (A),102, 180–189.

    Google Scholar 

  • Thorpe, S. A. (1975),The excitation, dissipation and inter-action of internal waves in the deep ocean, J. Geophys. Res.80(3), 328–338.

    Google Scholar 

  • Trustrum, K. (1964),Rotating and stratified fluid flow, J. Fluid Mech.19, 415–435.

    Google Scholar 

  • Vickers, W. W. andLopez, M. E. (1975),Low-angle radar tracking errors induced by nonstratified atmospheric anomalies, Radio Science10(5), 491–505.

    Google Scholar 

  • Wong, K. K. (1968),On internal gravity waves generated by submerged disturbances, Tech. Rept.117, 13. Hydronaut. Inc., Mass.

    Google Scholar 

  • Wong, K. K. (1972),Three dimensional effects in flow over mountains, J. Atm. Sc.29(6), 1223–1229.

    Google Scholar 

  • Wong, K. K. andKao, T. W. (1970),Stratified flow over extended obstacles and its application to topographical effect on vertical wind shear, J. Atm. Sc.27, 884–889.

    Google Scholar 

  • Yamada, T. andMeroney, R. N. (1974),A wind-tunnel facility for simulating mountain and heated-island gravity waves, Bound.-Lay. Met.7, 65–80.

    Google Scholar 

  • Yih, C.-S. (1959),Effect of density variation on fluid flow, J. Geophys. Res.64, 2219–2223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skoda, G. Eine Simulierung orographischer Effekte durch Quellsingularitäten zur Fixierung stromaufwärts gelegener Randwerte. PAGEOPH 116, 66–111 (1978). https://doi.org/10.1007/BF00878986

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00878986

Key words

Navigation