Skip to main content
Log in

A theoretical model of the dilatant behavior of a brittle rock

  • Published:
pure and applied geophysics Aims and scope Submit manuscript

Summary

A dilatancy model is presented which seems capable of simulating the results of laboratory tests on rock samples. The fundamental assumption incorporated in the model is that dilatancy is caused by the opening of cracks, where the cracks open in the least compressive stress direction (Brace et al., 1966). Its simplicity and compatibility with numerical techniques, involving the simulation of both static and dynamic stress fields, permits prediction of dilatancy induced effects for stress states and loading conditions which are not experimentally attainable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Y. P. Aggarwal, L. R. Sykes, J. Armbruster andM. L. Sbar,Premonitory changes in seismic velocities and prediction of earthquakes, Nature241 (1973), 101–104.

    Google Scholar 

  • B. P. Bonner,Shear wave birefringence in dilating granite, Geophys. Res. Ltrs.1 (1974), 217–220.

    Google Scholar 

  • W. F. Brace, B. W. Paulding, Jr. andC. Scholz,Dilatancy in the fracture of crystalline rocks J. Geophys. Res.71 (1966), 3939–3953.

    Google Scholar 

  • W. F. Brace andD. K. Riley,Static uniaxial deformation of 15 rocks to 30 kbar, Int. J. Rock Mech. Min. Sci.9 (1972), 271–288.

    Google Scholar 

  • C. G. Bufe, J. H. Pfluke andR. L. Wesson,Premonitory vertical migration of microearthquakes in central California—Evidence of dilatancy biasing?, Geophys. Res. Ltrs.1 (1974), 221–224.

    Google Scholar 

  • I. G. Cameron,Theoretical model of the early phases of an underground explosion, Proceedings on Engineering with Nuclear Explosives1 (1970), 221–229.

    Google Scholar 

  • I. G. Cameron andG. C. Scorgie,Dynamics of intense underground explosions, J. Inst. Maths. Applics.4 (1968), 194–222.

    Google Scholar 

  • J. T. Cherry andF. L. Petersen,Numerical simulation of stress wave propagation from underground nuclear explosions, Proceedings on Engineering with Nuclear Explosions1 (1970), 142–220.

    Google Scholar 

  • J. T. Cherry andT. C. Savage,Rock dilatancy and strain accumulation near Parkfield, California, Bull. Seism. Soc. Am.62 (1972), 1343–1347.

    Google Scholar 

  • J. T. Cherry andR. N. Schock,A dilatancy model for Granodiorite, Lawrence Livermore Laboratory Report UCRL-72953 (1971).

  • J. T. Cherry, J. Sweet andE. J. Halda,Prediction of surface vertical and horizontal displacements in non-homogeneous media resulting from subsurface nuclear explosions, Systems, Science and Software Report, SSS-R-73-1517 (1973).

  • F. A. Dahlen,Elastic velocity anisotropy in the presence of an anisotropic initial stress, Bull. Seism. Soc. Am.62 (1972), 1183–1193.

    Google Scholar 

  • I. N. Gupta,Dilatancy and premonitory variations of P, S travel times, Bull. Seism. Soc. Am.63 (1973), 1157–1161.

    Google Scholar 

  • I. N. Gupta,Premonitory variations in S-Wave velocity anisotropy before earthquakes in Nevada, Science182 (1973), 1129–1132.

    Google Scholar 

  • J. Handin, H. C. Heard andJ. N. Magouirk,Effects of the intermediate principal stress on the failure of limestone, dolomite and glass at different temperatures and strain rates, J. Geophys. Res.72 (1967), 611–640.

    Google Scholar 

  • C. R. Hastings,Underground Test No. 4-Experiments to characterize 2-D damage for validation of Minuteman components, Project Officers Report, Systems, Science and Software Report SSS-CR-74-2318 (Draft). (S/RD) (1974).

  • H. C. Heard,The influence of environment on the inelastic behavior of rocks, Proceedings on Engineering With Nuclear Explosives1 (1970), 127–141.

    Google Scholar 

  • R. Hill,The Mathematical Theory of Plasticity (Oxford 1950).

  • G. Maenchen andS. Sack,The TENSOR code, Methods in Computational Physics 3 (Academic Press, New York 1964).

    Google Scholar 

  • K. Mogi,Effects of the intermediate principal stress on rock failure, J. Geophys. Res.72 (1967), 5117.

    Google Scholar 

  • I. Nelson, M. L. Baron andI. Sandler,Mathematical models for geological materials for wavepropagation studies, inShock Waves and the Mechanical Properties of Solids, edited byJ. J. Burke andVolker Weiss (Syracuse University Press, Syracuse, New York 1971).

    Google Scholar 

  • A. Nur,Dilatancy, pore fluids and premonitory variations of t s /t p travel times, Bull. Seism. Soc. Am.62 (1972), 1217–1222.

    Google Scholar 

  • R. Robinson, R. L. Wesson andW. L. Ellsworth,Variation of P-wave velocity before the Bear Valley, California earthquake of 24 February 1972, Science184 (1974), 1281–1283.

    Google Scholar 

  • R. N. Schock,Dynamic elastic moduli of rocks under pressure, Proceedings on Engineering with Nuclear Explosions1 (1970), 110–126.

    Google Scholar 

  • R. N. Schock, H. C. Heard andD. R. Stephens,Stress-strain behavior of a granodiorite and two graywackes on compression to 20 kilobars, J. Geophys. Res.78 (1973), 5922–5941.

    Google Scholar 

  • A. N. Semenov,Variations in the travel time of transverse and longitudinal waves before violent earthquakes, Izv., Earth Phys. No. 4 (1969), 72–77.

    Google Scholar 

  • R. E. Thill,Acoustical methods of monitoring failure in rock, Proceedings of Fourteenth Symposium on Rock Mechanics, (1973), 649–688.

  • J. H. Whitcomb, J. D. Garmany andD. L. Anderson,Earthquake prediction: Variation of seismic velocities before the San Fernando earthquake, Science180 (1973), 632–635.

    Google Scholar 

  • M. Wyss andD. J. Holcomb,Earthquake prediction based on station residuals, Nature249 (1973) 139–140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherry, J.T., Schock, R.N. & Sweet, J. A theoretical model of the dilatant behavior of a brittle rock. PAGEOPH 113, 183–196 (1975). https://doi.org/10.1007/BF01592909

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01592909

Keywords

Navigation