Skip to main content
Log in

Hotspots of homologous recombination

  • Multi-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Homologous recombination occurs at higher than average frequency at and near hotspots. Hotspots are special nucleotide sequences recognized by proteins that promote, directly or indirectly, a rate limiting step of recombination. This review focuses on two well-studied examples, the Chi sites of the bacteriumEscherichia coli and the M26 site of the fission yeastSchizosaccharomyces pombe. Chi, 5′ G-C-T-G-G-T-G-G 3′, is recognized by the RecBCD enzyme, which nicks the DNA near Chi and produces a 3′-ended single-stranded DNA ‘tail’; this tail is a potent substrate for homologous pairing by RecA and single-stranded DNA binding proteins. M26, 5′ A-T-G-A-C-G-T 3′, is recognized by a heterodimeric protein and stimulates, by an as-yet-unknown mechanism, meiotic recombination at and near theade6 gene. Additional hotspots in bacteria, fungi, and mammals enhance recombination directly or indirectly via a variety of mechanisms. Although hotspots are widespread among organisms, the biological role of their localized enhancement of recombination remains a matter of speculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amundsen, S. K., Neiman, A. M., Thibodeaux, S. M., and Smith, G. R., Genetic dissection of the biochemical activities of RecBCD enzyme. Genetics126 (1990) 25–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Blackwood, E. M., Kretzner, L., and Eisenman, R. N., Myc and Max function as a nucleoprotein complex. Curr. Opin. Genet. Dev.2 (1992) 227–235.

    Article  CAS  PubMed  Google Scholar 

  3. Blakely, G., Colloms, S., May, G., Burke, M., and Sherratt, D.,Escherichia coli XerC recombinase is required for chromosomal segregation at cell division. New Biol.3 (1991) 789–798.

    CAS  PubMed  Google Scholar 

  4. Blaisdell, B. E., Rudd, K. E., Matin, A., and Karlin, S., Significant dispersed recurrent DNA sequences in theEscherichia coli genome. J. molec. Biol.229 (1993) 833–848.

    Article  CAS  PubMed  Google Scholar 

  5. Brovermann, S. A., and Meneely, P. M., Meiotic mutants that cause a polar decrease in recombination on the X chromosome inCaenorhabditis elegans. Genetics136 (1994) 119–127.

    Article  Google Scholar 

  6. Burland, V., Plunkett III G., Daniels, D. L., and Blattner, F. R., DNA sequence and analysis of 136 kilobases of theEscherichia coli genome: Organizational symmetry around the origin of replication. Genomics16 (1993) 551–561.

    Article  CAS  PubMed  Google Scholar 

  7. Catcheside, D. G., The Genetics of Recombination. University Park Press, Baltimore, MD 1977.

    Google Scholar 

  8. Cheng, K. C., and Smith, G. R., Recombinational hotspot activity of Chi-like sequences. J. molec. Biol.180 (1984) 371–377.

    Article  CAS  PubMed  Google Scholar 

  9. Cheng, K. C., and Smith, G. R., Cutting of Chi-like sequences by the RecBCD enzyme ofEscherichia coli. J. molec. Biol.194 (1987) 747–750.

    Article  CAS  PubMed  Google Scholar 

  10. Cheng, K. C., and Smith, G. R., Distribution of Chi-stimulated recombinational exchanges and heteroduplex endpoints in phage lambda. Genetics123 (1989) 5–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Clark, A. J., Toward a metabolic interpretation of genetic recombination ofE. coli and its phages. A. Rev. Microbiol.25 (1971) 437–464.

    Article  CAS  Google Scholar 

  12. Dabert, P., Ehrlich, S. D., and Gruss, A., χ sequence protects against RecBCD degradation of DNAin vivo. Proc. natl Acad. Sci. USA89 (1992) 12073–12077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dixon, D. A., and Kowalczykowski, S. C., Homologous pairing in vitro stimulated by the recombination hotspot, Chi. Cell66 (1991) 361–371.

    Article  CAS  PubMed  Google Scholar 

  14. Dixon, D. A., and Kowalczykowski, S. C., The recombination hotspot χ is a regulatory sequence that acts by attenuating the nuclease activity of theE. coli RecBCD enzyme. Cell73 (1993) 87–96.

    Article  CAS  PubMed  Google Scholar 

  15. Dower, N. A., and Stahl, F. W., Chi activity during transduction-associated recombination. Proc. natl Acad. Sci. USA78 (1981) 7033–7037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Dunderdale, H. J., Benson, F. E., Parsons, C. A., Sharples, G. J., Lloyd, R. G., and West, S. C., Formation and resolution of recombination intermediates byE. coli RecA and RuvC proteins. Nature354 (1991) 506–510.

    Article  CAS  PubMed  Google Scholar 

  17. Ennis, D. G., Amundsen, S. K., and Smith, G. R., Genetic functions promoting homologous recombination inEscherichia coli: A study of inversions in phage lambda. Genetics115 (1987) 11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faulds, D., Dower, N., Stahl, M. M., and Stahl, F. W., Orientation-dependent recombination hotspot activity in bacteriophage lambda. J. molec. Biol.131 (1979) 681–695.

    Article  CAS  PubMed  Google Scholar 

  19. Grimm, C., Bähler, J., and Kohli, J.,M26 recombinational hotspot and physical conversion tract analysis in theade6 gene ofSchizosaccharomyces pombe. Genetics136 (1994) 41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gutz, H., Site specific induction of gene conversion inSchizosaccharomyces pombe. Genetics69 (1971) 317–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hawley, R. S., Chromosomal sites necessary for normal levels of meiotic recombination inDrosophila melanogaster. I. Evidence for and mapping of the sites. Genetics94 (1980) 625–646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Henderson, D., and Weil, J., Recombination-deficient deletions in bacteriophage lambda and their interaction with Chi mutations. Genetics79 (1975) 143–174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Herman, R. K., Reciprocal recombination of chromosome and F-merogenote inEscherichia coli. J. Bact.90 (1965) 1644–1668.

    Google Scholar 

  24. Holbeck, S. L., and Smith, G. R., Chi enhances heteroduplex DNA levels during recombination. Genetics132 (1992) 879–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Iwasaki, H., Takahagi, M., Shiba, T., Nakata, A., and Shinagawa, H.,E. coli RuvC protein is an endonuclease that resolves the Holliday structure, an intermediate of homologous recombination. EMBO J.10 (1991) 4381–4389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Klar, A. J. S., and Bonaduce, M. J.,swi6, a gene required for mating-type switching, prohibits meiotic recombination in themat2-mat3 “cold spot” of fission yeast. Genetics129 (1991) 1033–1042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kobayashi, I., Murialdo, H., Crasemann, J. M., Stahl, M. M., and Stahl, F. W., Orientation of cohesive end sitecos determines the active orientation of χ sequence in stimulating recA-recBC-mediated recombination in phage λ lytic infections. Proc. natl Acad. Sci. USA79 (1982) 5981–5985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kobayashi, I., Stahl, M. M., Fairfield, F. R., and Stahl, F. W., Coupling with packaging explains apparent nonreciprocality of Chi-stimulated recombination of bacteriophage lambda by RecA and RecBC functions. Genetics108 (1984) 773–794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Konforti, B. B., and Davis, R. W., 3′ homologous free ends are required for stable joint molecule formation by the RecA and single-stranded binding proteins ofEscherichia coli. Proc. natl Acad. Sci. USA84 (1987) 690–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Konforti, B. B., and Davis, R. W., ATP hydrolysis and the displaced strand are two factors that determine the polarity of RecA-promoted DNA strand exchange. J. molec. Biol.227 (1992) 38–53.

    Article  CAS  PubMed  Google Scholar 

  31. Lam, S. T., Stahl, M. M., McMilin, K. D., and Stahl, F. W., Rec-mediated recombinational hotspot activity in bacteriophage lambda. II. A mutation which causes hotspot activity. Genetics77 (1974) 425–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lloyd, R. G., Conjugational recombination in resolvase-deficientruvC mutants ofEscherichia coli K-12 depends onrecG. J. Bact.173 (1991) 5414–5418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lloyd, R. G., and Sharples, G. J., Dissociation of synthetic Holliday junctions byE. coli RecG protein. EMBO J.12 (1993) 17–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Malone, R. E., Chattoraj, D. K., Faulds, D. H., Stahl, M. M., and Stahl, F. W., Hotspots for generalized recombination in theEscherichia coli chromosome. J. molec. Biol.121 (1978) 473–491.

    Article  CAS  PubMed  Google Scholar 

  35. McKittrick, N. H., and Smith, G. R., Activation of Chi recombinational hotspots by RecBCD-like enzymes from enteric bacteria. J. molec. Biol.210 (1989) 485–495.

    Article  CAS  PubMed  Google Scholar 

  36. Ponticelli, A. S., Schultz, D. W., Taylor A. F., and Smith, G. R., Chi-dependent DNA strand cleavage by RecBC enzyme. Cell41 (1985) 145–151.

    Article  CAS  PubMed  Google Scholar 

  37. Ponticelli, A. S., Sena, E. P., and Smith, G. R., Genetic and physical analysis of theM26 recombination hotspot ofSchizosaccharomyces pombe. Genetics119 (1988) 491–497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ponticelli, A. S., and Smith, G. R., Context dependence of a eukaryotic recombination hotspot. Proc. natl Acad. Sci. USA89 (1992) 227–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarthy, P. V., and Meselson, M., Single burst study ofrec- andred-mediated recombination in bacteriophage lambda. Proc. natl Acad. Sci. USA73 (1976) 4613–4617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schär, P., and Kohli, J., Marker effects of G to C transversions on intragenic recombination and mismatch repair inSchizosaccharomyces pombe. Genetics133 (1993) 825–835.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schuchert, P., and Kohli, J., Theade6-M26 mutation ofSchizosaccharomyces pombe increases the frequency of crossing over. Genetics119 (1988) 507–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schuchert, P., Langsford, M., Käslin, E., and Kohli, J., A specific DNA sequence is required for high frequency of recombination in theade6 gene of fission yeast. EMBO J.10 (1991) 2157–2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schultz, D. W., Taylor, A. F., and Smith, G. R.,Escherichia coli RecBC pseudorevertants lacking Chi recombinational hotspot activity. J. Bact.155 (1983) 664–680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Smith, G. R., Homologous recombination sites and their recognition, in: The Recombination of Genetic Material, pp. 115–154. Ed. B. Low Academic Press, New York 1988.

    Chapter  Google Scholar 

  45. Smith, G. R., Homologous recombination inE. coli: Multiple pathways for multiple reasons. Cell58 (1989) 807–809.

    Article  CAS  PubMed  Google Scholar 

  46. Smith, G. R., Conjugational recombination inE. coli; Myths and mechanisms. Cell64 (1991) 19–27.

    Article  CAS  PubMed  Google Scholar 

  47. Smith, G. R., Amundsen, S. K., Chaudhury, A. M., Cheng, K. C., Ponticelli, A. S., Roberts, C. M., Schultz, D. W., and Taylor, A. F., Roles of RecBC enzyme and Chi sites in homologous recombination. Cold Spring Harb. Symp. quant. Biol.49 (1984) 485–495.

    Article  CAS  PubMed  Google Scholar 

  48. Smith, G. R., Kunes, S. M., Schultz, D. W., Taylor, A., and Triman, K. L., Structure of Chi hotspots of generalized recombination. Cell24 (1981) 429–436.

    Article  CAS  PubMed  Google Scholar 

  49. Smith, G. R., Schultz, D. W., Taylor, A. F., and Triman, K., Chi Sites, RecBC enzyme, and generalized recombination. Stadler Genet. Symp.13 (1981) 25–37.

    CAS  Google Scholar 

  50. Stahl, F. W., Special sites in generalized recombination. A. Rev. Genet.13 (1979) 7–24.

    Article  CAS  Google Scholar 

  51. Stahl, F. W., Crasemann, J. M., and Stahl, M. M., Rec-mediated recombinational hot spot activity in bacteriophage lambda. III. Chi mutations are site-mutations stimulating Rec-mediated recombination. J. molec. Biol.94 (1975) 203–212.

    Article  CAS  PubMed  Google Scholar 

  52. Stahl, F. W., Lieb, M., and Stahl, M. M., Does Chi give or take? Genetics108 (1984) 795–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Stahl, F. W., and Stahl, M. M., Rec-mediated recombinational hot spot activity in bacteriophage lambda. IV. Effect of heterology on Chi-stimulated crossing over. Molec. gen. Genet.140 (1975) 29–37.

    Article  CAS  PubMed  Google Scholar 

  54. Stahl, F. W., and Stahl, M. M., Recombination pathway specificity of Chi. Genetics86 (1977) 715–725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stahl, F. W., Stahl, M. M., Malone, R. E., and Crasemann, J. M., Directionality and nonreciprocality of Chi-stimulated recombination in phage lambda. Genetics94 (1980) 235–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Stahl, F. W., Thomason, L. C., Siddiqi, I., and Stahl, M. M., Further tests of a recombination model in which Chi removes the RecD subunit from the RecBCD enzyme ofEscherichia coli. Genetics126 (1990) 519–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stahl, M. M., Kobayashi, I., Stahl, F. W., and Huntington, S. K., Activation of Chi, a recombinator, by the action of an endonuclease at a distant site. Proc. natl Acad. Sci. USA80 (1983) 2310–2313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Stewart, S. E., and Roeder, G. S., Transcription by RNA polymerase I stimulates mitotic recombination inSaccharomyces cerevisiae. Molec. cell. Biol.9 (1989) 2464–3472.

    Google Scholar 

  59. Szankasi, P., Heyer, W. D., Schuchert, P., and Kohli, J., DNA sequence analysis of theade6 gene ofSchizosaccharomyces pombe: Wild-type and mutant alleles including the recombination hotspot alleleade6-M26. J. molec. Biol.204 (1988) 917–925.

    Article  CAS  PubMed  Google Scholar 

  60. Taylor, A., and Smith, G. R., Unwinding and rewinding of DNA by the RecBC enzyme. Cell22 (1980) 447–457.

    Article  CAS  PubMed  Google Scholar 

  61. Taylor, A. F., Schultz, D. W., Ponticelli, A. S., and Smith, G. R., RecBC enzyme nicking at Chi sites during DNA unwinding: Location and orientation dependence of the cutting. Cell41 (1985) 153–163.

    Article  CAS  PubMed  Google Scholar 

  62. Taylor, A. F., and Smith, G. R., RecBCD enzyme is altered upon cutting DNA at a Chi recombination hotspot. Proc. natl Acad. Sci. USA89 (1992) 5226–5230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thaler, D. S., Sampson, E., Siddiqi, I., Rosenberg, S. M., Thomason, L. C., Stahl, F. W. and Stahl, M. M., Recombination of bacteriophage lambda inrecD mutants ofEscherichia coli. Genome31 (1989) 53–67.

    Article  CAS  PubMed  Google Scholar 

  64. Tsaneva, I. R., Muller, B., and West, S. C., ATP-dependent branch migration of Holliday junctions promoted by the RuvA and RuvB proteins ofE. coli. Cell69 (1992) 1171–1180.

    Article  CAS  PubMed  Google Scholar 

  65. Yagil, E., and Shtromas, I., Rec-mediated recombinational activity of two adjacent Chi elements in bacteriophage lambda. Genet. Res. Camb.45 (1985) 1–8.

    Article  CAS  Google Scholar 

  66. Yap, W. Y., and Kreuzer, K. N., Recombination hotspots in bacteriophage T4 are dependent on replication origins. Proc. natl Acad. Sci. USA88 (1991) 6043–6047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, G.R. Hotspots of homologous recombination. Experientia 50, 234–241 (1994). https://doi.org/10.1007/BF01924006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01924006

key words

Navigation