Skip to main content
Log in

The search for the right partner: Homologous pairing and DNA strand exchange proteins in eukaryotes

  • Multi-Author Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Abstract

Finding the right partner is a central problem in homologous recombination. Common to all models for general recombination is a homologous pairing and DNA strand exchange step. In prokaryotes this process has mainly been studied with the RecA protein ofEscherichia coli. Two approaches have been used to find homologous pairing and DNA strand exchange proteins in eukaryotes. A biochemical approach has resulted in numerous proteins from various organisms. Almost all of these proteins are biochemically fundamentally different from RecA. The in vivo role of these proteins is largely not understood. A molecular-genetical approach has identified structural homologs to theE. coli RecA protein in the yeastSaccharomyces cerevisiae and subsequently in other organisms including other fungi, mammals, birds, and plants. The biochemistry of the eukaryotic RecA homologs is largely unsolved. For the fungal RecA homologs (S. cerevisiae RAD51, RAD55, RAD57, DMC1; Schizosaccharomyces pombe rad51; Neurospora crassa mei3) a role in homologous recombination and recombinational repair is evident. Besides recombination, homologous pairing proteins might be involved in other cellular processes like chromosome pairing or gene inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboussekhra, A., Chanet, R., Adjiri, A., and Fabre, F., Semidominant suppressors of Srs2 helicase mutations ofSaccharomyces cerevisiae map in theRAD51 gene, whose sequence predicts a protein with similarities to procaryotic RecA proteins. Molec. cell. Biol.12 (1992) 3224–3234.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Arai, N., Kawasaki, K., and Shibata, T., A multi-component protein of a fission yeast which promotes joint molecule formation from homologous DNAs. J. biol. Chem.267 (1992) 3514–3522.

    Article  CAS  PubMed  Google Scholar 

  3. Bähler, J., Hagens, G., Holzinger, G., Scherthan, H., and Heyer, W.-D.,Saccharomyces cerevisiae cells lacking the homologous pairing protein p175SEP1 arrest at pachytene during meiotic prophase. Chromosoma. In press.

  4. Basile, G., Aker, M., and Mortimer, R. K., Nucleotide sequence and transcriptional regulation of the yeast recombinational repair geneRAD51. Molec. cell. Biol.12 (1992) 3235–3246.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bezzubova, O., Shinohara, A., Mueller, R. G., Ogawa, H., and Buerstedde, J.-M., A chickenRAD51 homologue is expressed at high levels in lymphoid and reproductive organs. Nucl. Acids Res.21 (1993) 1577–1580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bishop, D. K., Park, D., Xu, L., and Kleckner, N.,DMC1, A meiosis-specific yeast homolog ofE. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell69 (1992) 439–456.

    Article  CAS  PubMed  Google Scholar 

  7. Bollag, R. J., Elwood, D. R., Tobin, E. D., Godwin, A. R., and Liskay, R. M., Formation of heteroduplex DNA during mammalian intra-chromosomal gene conversion. Molec. cell. Biol.12 (1992) 1546–1552.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Bortner, C., Hernandez, T. R., Lehman, I. R., and Griffith, J., Herpes simplex virus 1 single-stranded DNA-binding protein (ICP8) will promote homologous pairing and strand transfer. J. molec. Biol.231 (1993) 241–250.

    Article  CAS  PubMed  Google Scholar 

  9. Cerutti, H., Osman, M., Grandoni, P., and Jagendorf, A. T., A homolog ofEscherichia coli RecA protein in plastids of higher plants. Proc. natl Acad. Sci. USA89 (1992) 8068–8072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cerutti, H., and Jagendorf, A. T., DNA strand transfer activity in Pea (Pisum sativum L.) chloroplasts. Plant Physiol.102 (1993) 145–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cerutti, H., Ibrahim, H. Z., and Jagendorf, A. T., Treatment of Pea (Pisum sativum L.) protoplasts with DNA-damaging agents induces a 39-kilodalton chloroplast protein immunologically related toEscherichia coli RecA. Plant Physiol.102 (1993) 155–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cheng, R., Baker, T. I., Cords, C. E., and Radloff, R. J.,mei-3, a recombination and repair gene ofNeurospora crassa, encodes a RecA-like protein. Mutation Res.294 (1993) 223–234.

    Article  CAS  PubMed  Google Scholar 

  13. Clark, A. B., Dykstra, C. C., and Sugino, A., Isolation, DNA sequence, and regulation of aSaccharomyces cerevisiae gene that encodes DNA strand transfer protein α. Molec. cell. Biol.11 (1991) 2576–2582.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dykstra, C. C., Hamatake, R. K., and Sugino, A., DNA strand transfer protein β from yeast mitotic cells differs from strand transfer protein α from meiotic cells. J. biol. Chem.265 (1990) 10968–10973.

    Article  CAS  PubMed  Google Scholar 

  15. Dykstra, C. C., Kitada, K., Clark, A. B., Hamatake, R. K., and Sugino, A., Cloning and characterization of DST2, the gene for DNA strand transfer protein β fromSaccharomyces cerevisiae. Molec. cell. Biol.11 (1991) 2583–2592.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Egelman, E. H., What do X-ray crystallographic and electron microscopic structural studies of the RecA protein tell us about recombination? Curr. Opin. in struct. Biol.3 (1993) 189–197

    Article  CAS  Google Scholar 

  17. Eggleston, A. K., and Kowalczykowski, S. C., An overview of homologous pairing and DNA strand exchange proteins. Biochimie73 (1991) 163–176.

    Article  CAS  PubMed  Google Scholar 

  18. Fields, S., and Song, O.-K., A novel genetic system to detect protein: protein interactions. Nature340 (1989) 245–246.

    Article  CAS  PubMed  Google Scholar 

  19. Fishel, R. A., Detmer, K., and Rich, A., Identification of homologous pairing and strand-exchange activity from a human tumor cell line based on Z-DNA affinity chromatography. Proc. natl Acad. Sci. USA85 (1988) 36–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fisher, C., Parks, R. J., Lanzon, M. L., and Evans, D. H., Heteroduplex DNA formation is associated with replication and recombination in poxvirus infected cells. Genetics129 (1991) 7–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fotheringham, S., and Holloman, W. K., Extrachromosomal recombination is deranged in therec2 mutant ofUstilago maydis. Genetics129 (1991) 1053–1060.

    Article  CAS  PubMed Central  Google Scholar 

  22. Friedberg, E. C., Deoxyribonucleic acid repair in the yeastSaccharomyces cerevisiae. Microbiol. Rev.52 (1988) 70–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gao, M., and Knipe, D. M., Genetic evidence for multiple nuclear functions of the herpes simplex virus ICP8 DNA binding protein. J. Virol.63 (1989) 5258–5267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goyon, C., and Lichten, M., Timing of molecular events in meiosis inSaccharomyces cerevisiae: Stable heteroduplex DNA is formed in meiotic prophase. Molec. cell. Biol.13 (1993) 373–382.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Griffith, J. D., and Harris, L. D., DNA strand exchanges. CRC crit. Rev. Biochem.23 (1988) S43-S86.

    Article  PubMed  Google Scholar 

  26. Gu, L., Huang, S.-M., and Sander, M., Drosophila Rrp1 complementsE. coli xth nfo mutants: Protection against both oxidative and alkylation-induced DNA damage. Nucl. Acids Res.21 (1993) 4788–4795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Halbrook, J., and McEntee, K., Purification and characterization of a DNA-pairing and strand transfer activity from mitoticSaacharomyces cerevisiae. J. biol. Chem.264 (1989) 21403–21412.

    Article  CAS  PubMed  Google Scholar 

  28. Hall, S. D., Kane, M. F., and Kolodner, R. D., Identification and characterization of theEscherichia coli recT protein, a protein encoded by the recE region that promotes renaturation of homologous single-stranded DNA. J. Bact.175 (1993) 277–287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Heyer, W.-D., and Kolodner, R. D., Enzymology of homologous recombination inSaccharomyces cerevisiae. Prog. nucl. Acid Res. molec. Biol.46 (1993) 221–271.

    Article  CAS  Google Scholar 

  30. Hinnebusch, A. G., and Liebman, S. W., Protein synthesis and translational control inSaccharomyces cerevisiae, in: The Molecular and Cellular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis, and Energetics, pp. 627–735. Eds. J. R. Broach, J. Pringle and E. Jones, CSHL Press, Cold Spring Harbor 1992.

    Google Scholar 

  31. Holden, D. W., Spanos, A., and Banks, G. R., Nucleotide sequence of theREC1 gene ofUstilago maydis. Nucl. Acids Res.17 (1989) 10489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holliday, R., Altered recombination frequencies in radiation sensitive strains ofUstilago. Mutation Res.4 (1967) 275–288.

    Article  CAS  PubMed  Google Scholar 

  33. Howard-Flanders, P., West, S. C., and Stasiak, A., Role of RecA protein spiral filaments in genetic recombination. Nature309 (1984) 215–220.

    Article  CAS  PubMed  Google Scholar 

  34. Hsieh, P., Meyn, M. S., and Camerini-Otero, R. D., Partial purification and characterization of a recombinase from human cells. Cell44 (1986) 885–894.

    Article  CAS  PubMed  Google Scholar 

  35. Hsu, C. L., and Stevens, A., Yeast cells lacking 5′–3′ exoribonuclease I contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Molec. cell. Biol.13 (1993) 4826–4835.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Huang, K. N., and Symington, L. S., A 5′–3′ exonuclease fromSaccharomyces cerevisiae is required forin vitro recombination between linear DNA molecules with overlapping homology. Molec. cell. Biol.13 (1993) 3125–3134.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Johnson, A. W., and Kolodner, R. D., Strand exchange protein I fromSaccharomyces cerevisiae: a novel multifunctional protein that contains DNA strand exchange and exonuclease activites. J. biol. Chem.266 (1991) 14046–14054.

    Article  CAS  PubMed  Google Scholar 

  38. Johnson, A. W., and Kolodner, R. D., Characterization of the interaction ofSaccharomyces cerevisiae strand exchange protein I with DNA. J. biol. Chem. In press.

  39. Johnson, A. W., and Kolodner, R. D., The activity of theSaccharomyces cerevisiae strand exchange protein 1 intrinsic exonuclease during joint molecule formation. J. biol. Chem. In press.

  40. Kaus, J. A., and Mortimer, R. K., Nucleotide sequence of theRAD57 gene ofSaccharomyces cerevisiae. Gene105 (1991) 139–140.

    Article  Google Scholar 

  41. Kawasaki, I., Sugano, S., and Ikeda, H., Calf thymus histone H1 is a recombinase that catalyzes ATP-independent DNA strand transfer. Proc. natl Acad. Sci. USA86 (1989) 5281–5285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kawasaki, I., Sugano, S., and Ikeda, H., Calf thymus histone H1 is a recombinase that catalyzes ATP-independent DNA strand transfer. Proc. natl Acad. Sci. USA87 (1989) 6128.

    Google Scholar 

  43. Kearsey, S., and Kipling, D., Recombination and RNA processing: a common strand? T Cell Biol.1 (1991) 110–112.

    Article  CAS  Google Scholar 

  44. Kim, J., Genes controlling conjugation and mitotic cell division in yeastSaccharomyces cerevisiae. Ph. D. thesis (1988) Massachusetts Institute of Technology.

  45. Kim, J., Ljungdahl, P. O., and Fink, G. R.,kem mutations affect nuclear fusion inSaccharomyces cerevisiae. Genetics126 (1990) 799–812.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kipling, D., and Kearsey, S. E., TFIIS and strand-transfer proteins. Nature353 (1991) 509.

    Article  CAS  PubMed  Google Scholar 

  47. Kleckner, N., Padmore, R., and Bishop, D. K., Meiotic chromosome metabolism: one view. Cold Spring Harb. Symp. quant. Biol.56 (1991) 729–743.

    Article  CAS  PubMed  Google Scholar 

  48. Kmiec, E., and Holloman, W. K., Homologous pairing of DNA molecules promoted by a protein fromUstilago. Cell29 (1982) 367–374.

    Article  CAS  PubMed  Google Scholar 

  49. Kobayashi, T., Hotta, Y., and Tabata, S., Isolation and characterization of a yeast gene that is homologous with a meiosisspecific cDNA from a plant. Molec. gen. Genet.237 (1993) 225–232.

    Article  CAS  PubMed  Google Scholar 

  50. Kolodner, R., Evans, D. H., and Morrison, P. T., Purification and characterization of an activity fromSaccharomyces cerevisiae that catalyzes homologous pairing and strand exchange. Proc. natl Acad. Sci. USA84 (1987) 5560–5564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kowalczykowski, S. C., Biochemistry of genetic recombination: Energetics and mechanism of DNA strand exchange. A. Rev. Biophys. biophys. Chem.20 (1991) 539–575.

    Article  CAS  Google Scholar 

  52. Lovett, S., and Mortimer, R. K., Characterization of null mutants of therad55 gene ofSaccharomyces cerevisiae: effects of temperature, osmotic strength, and mating type. Genetics116 (1987) 547–533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lovett, S. T., Sequence of the RAD55 gene ofSaccharomyces cerevisiae: similarity of RAD55 to prokaryotic RecA and other RecA-like proteins. Gene. In press.

  54. Lowenhaupt, K., Sander, M., Hauser, C., and Rich, A., Drosophila melanogaster strand transferase. J. biol. Chem.264 (1989) 20568–20575.

    Article  CAS  PubMed  Google Scholar 

  55. McCarthy, J. G., Sander, M., Lowenhaupt, K., and Rich, A., Sensitive homologous recombination strand transfer assay: Partial purification of aDrosophila melanogaster enzyme and detection of sequence effects on the strand transfer activity of RecA protein. Proc. natl Acad. Sci. USA85 (1988) 5854–5858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Meselson, M. S., and Radding, C. R., A general model for genetic recombination. Proc. natl Acad. Sci. USA72 (1975) 358–361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Milne, G. T., and Weaver, D. T., Dominant negative alleles ofRAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev.7 (1993) 1755–1765.

    Article  CAS  PubMed  Google Scholar 

  58. Moore, S. P., and Fishel, R., Purification and characterization of a protein from human cells which promotes homologous pairing of DNA. J. biol. Chem.265 (1990) 11108–11117.

    Article  CAS  PubMed  Google Scholar 

  59. Moore, S. P., Erdile, L., Kelly, T., and Fishel, R., The human homologous pairing protein HPP-1 is specifically stimulated by the cognate single-stranded binding protein hRP-A. Proc. natl Acad. Sci. USA88 (1991) 9067–9071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Morita, T., Yoshimura, Y., Yamamoto, A., Murata, K., Mori, M., Yamamoto, H., and Matsuhiro, A., A mouse homolog of theEscherichia coli recA andSaccharomyces cerevisiae Rad51 genes. Proc. natl Acad. Sci. USA90 (1993) 6577–6580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morrison, D. P., and Hastings, P. J., Characterization of the mutator mutationmut 5-1. Molec. gen. Genet.175 (1979) 57–65.

    Article  CAS  PubMed  Google Scholar 

  62. Muris, D. F. R., Vreken, K., Carr, A. M., Broughton, B. C., Lehmann, A. R., Lohman, P. H. M., and Pastink, A., Cloning ofRAD51 homolog ofSchizosaccharomyces pombe. Nucl. Acids Res.21 (1993) 4586–4591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nag, D. K., and Petes, T. D., Physical detection of heteroduplexes during meiotic recombination in the yeastSaccharomyces cerevisiae. Molec. cell. Biol.13 (1993) 2324–2331.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Nugent, M., Huang, S.-M., and Sander, M., Characterization of the apurinic endonuclease activity of Drosophila Rrpl. Biochemistry32 (1993) 11445–11452.

    Article  CAS  PubMed  Google Scholar 

  65. Ogawa, T., Shinohara, A., Ogawa, H., and Tomizawa, J., Functional structure of the RecA protein found by chimera analysis. J. molec. Biol.226 (1992) 651–660.

    Article  CAS  PubMed  Google Scholar 

  66. Ogawa, T., Yu, X., Shinohara, A., and Egelman, E. H., Similarity of the yeast Rad51 filament to the bacterial RecA filament. Science259 (1993) 1896–1899.

    Article  CAS  PubMed  Google Scholar 

  67. Ogawa, T., Shinohara, A., Nabetani, A., Ikeya, T., Yu, X., Egelman, E. H., and Ogawa, H., RecA-like recombination proteins in Eukaryotes: functions ofRad51 andRad52 genes ofSaccharomyces cerevisiae. Cold Spring Harb. Symp. quant. Biol. In press.

  68. Pang, Q., Hays, J. B., and Rajagopal, I., A plant cDNA that partially complementsEscherichia coli recA mutations predicts a polypeptide not strongly homologous to RecA proteins. Proc. natl Acad. Sci. USA89 (1992) 8073–8077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Panyutin, I. G., and Hsieh, P., Formation of a single base mismatch impedes spontaneous DNA branch migration. J. molec. Biol.230 (1993) 413–424.

    Article  CAS  PubMed  Google Scholar 

  70. Petes, T. D., Malone, R. E., and Symington, L. S., Recombination in Yeast. In: The Molecular and Cellular Biology of the Yeast Saccharomyces. Genome Dynamics, Protein Synthesis, and Energetics. pp. 407–521. Eds J. R. Broach, J. Pringle, E. Jones. CSHL Press, Cold Spring Harbor 1992.

    Google Scholar 

  71. Radding, C. M., Helical interactions in homologous pairing and strand exchange driven by RecA protein. J. biol. Chem.266 (1991) 5355–5358.

    Article  CAS  PubMed  Google Scholar 

  72. Roca, A. I., and Cox, M. M., The RecA protein: Structure and function. CRC crit. Rev.25 (1990) 415–456.

    Article  CAS  Google Scholar 

  73. Saeki, T., Machida, I., and Nakai, S., Genetic control of diploid recovery after γ-irradiation in the yeastSaccharomyces cerevisiae. Mutation Res.73 (1980) 251–265.

    Article  CAS  PubMed  Google Scholar 

  74. Sander, M., Lowenhaupt, K., Lane, W. S., and Rich, A., Cloning and characterization of Rrpl, the gene encoding Drosophila strand transferase: carboxy-terminal homology to DNA repair endo/exonucleases. Nucl. Acids Res.19 (1991) 4523–4529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sander, M., Lowenhaupt, K., and Rich, A., Drosophila Rrpl protein: An apurinic endonuclease with homologous recombination activities. Proc. natl Acad. Sci. USA88 (1991) 6780–6784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shinohara, A., Ogawa, H., and Ogawa, T., Rad51 protein involved in repair and recombination inS. cerevisiae is a RecA-like protein. Cell69 (1992) 457–470.

    Article  CAS  PubMed  Google Scholar 

  77. Shinohara, A., Ogawa, H., Hatsuda, Y., Ushio, N., Ikeo, K., and Ogawa, T., Cloning of human, mouse and fission yeast recombination genes homologous to Rad51 and recA. Nature Genet.4 (1993) 239–243.

    Article  CAS  PubMed  Google Scholar 

  78. Shuster, E. O., and Byers, B., Pachytene arrest and other meiotic effects of the Start mutations inSaccharomyces cerevisiae. Genetics123 (1989) 29–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sikorav, J.-L., and Church, G. M., Complementary recognition in condensed DNA: accelerated DNA renaturation. J. molec. Biol.222 (1991) 1085–1108.

    Article  CAS  PubMed  Google Scholar 

  80. Silberstein, Z., Shalit, M., and Cohen, A., Heteroduplex strand-specificity in restriction-stimulated recombination by the RecE pathway ofEscherichia coli. Genetics133 (1993) 439–448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Smith, G. R., Homologous recombination in procaryotes. Microbiol. Rev.52 (1988) 1–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Stasiak, A., Three-stranded DNA structure: is this thesecret of DNA homologous recognition? Molec. Microbiol.6 (1992) 3267–3276.

    Article  CAS  Google Scholar 

  83. Stevens, A., and Maupin, M. K., A 5′−3′ exoribonuclease ofSaccharomyces cerevisiae: size and novel substrate specificity. Archs Biochem. Biophys.252 (1987) 339–347.

    Article  CAS  Google Scholar 

  84. Story, R. M., Weber, I. T., and Steitz, T. A., The structure of theE. coli recA protein monomer and polymer. Nature355 (1992) 318–325.

    Article  CAS  PubMed  Google Scholar 

  85. Story, R. M., and Steitz, T. A., Structure of the recA protein-ADP complex. Nature355 (1992) 374–376.

    Article  CAS  PubMed  Google Scholar 

  86. Story, R. M., Bishop, D. K., Kleckner, N., and Steitz T. A., Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast. Science259 (1993) 1892–1896.

    Article  CAS  PubMed  Google Scholar 

  87. Sugino, A., Nitiss, J., and Resnick, M. A., ATP-independent DNA strand transfer catalyzed by protein(s) from meiotic cells of the yeastSaccharomyces cerevisiae. Proc. natl Acad. Sci. USA85 (1988) 3683–3687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Svaren, J., Inagami, K., Lovegren, E., and Chalkley, R., DNA denatures upon drying after ethanol precipitation. Nucl. Acids Res.15 (1987) 8739–8754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Szankasi, P., and Smith, G. R., A single-stranded DNA exonuclease fromSchizosaccharomyces pombe. Biochemistry31 (1992) 6769–6773.

    Article  CAS  PubMed  Google Scholar 

  90. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W., The double-strand-break repair model for recombination. Cell33 (1983) 25–35.

    Article  CAS  PubMed  Google Scholar 

  91. Tartof, K. D., and Henikoff, S., Trans-sensing effects from Drosophila to humans. Cell65 (1991) 201–203.

    Article  CAS  PubMed  Google Scholar 

  92. Tishkoff, D., Johnson, A. W., and Kolodner, R. D., Molecular and genetic analysis of the gene encoding theSaccharomyces cerevisiae strand exchange protein SEP1. Molec. cell. Biol.11 (1991) 2593–2608.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Walker, J. E., Saraste, M., Runswick, M. J., and Gay, N. J., Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and the other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J.1 (1982) 945–951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. West, S. C., Enzymes and molecular mechanisms of genetic recombination. A. Rev. Biochem.61 (1992) 603–640.

    Article  CAS  Google Scholar 

  95. Zhang, W., and Evans, D. H., DNA strand exchange catalyzed by proteins from vaccinia virus-infected cells. J. Virol.67 (1993) 204–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yoshimura, Y., Morita, T., Yamamoto, A., and Matsuhiro, A., Cloning sequence of the human RecA-like gene cDNA. Nucl. Acids Res.21 (1993) 1665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heyer, W.D. The search for the right partner: Homologous pairing and DNA strand exchange proteins in eukaryotes. Experientia 50, 223–233 (1994). https://doi.org/10.1007/BF01924005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01924005

Key words

Navigation