Skip to main content
Log in

Defining the resistance to oxygen transfer in tissue hypoxia

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Studies of O2 supply in freshly isolated adult mammalian cells provide new insight into the factors that limit mitochondrial oxygenation in vivo. Of particular importance, mitochondria are present at high densities and often in apparent clusters, both of which contribute to local O2 gradients under hypoxic conditions. Current evidence indicates that the mitochondrial distribution is a component of the differentiated phenotype of adult mammalian cells and that specific motors and anchoring mechanisms are present to allow redistribution in response to developmental, physiological and pathological challenges. To compare the importance of resistance to O2 transfer under different conditions and at different sites along the supply path in vivo, a simple mathematical expression of relative resistance to O2 supply is introduced. Under various pathophysiological conditions, this resistance increases in specific regions of the pulmonary, circulatory of cellular supply path and results in O2 deficiency in the mitochondria. Regardless of cause, the relative resistance increases dramatically in the vicinity of mitochondrial clusters during hypoxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abercrombie, R. F., Hydrogen and calcium ion diffusion in axoplasm, in: Microcompartmentation, pp. 209–225. Ed. D. P. Jones, CRC Press, Boca Raton 1988.

    Google Scholar 

  2. Aw, T. Y., Wilson, E., Hagen, T. M., and Jones, D. P., Determinants of mitochondrial O2 dependence in kidney. Am. J. Physiol.253 (1987) F440–F447.

    CAS  PubMed  Google Scholar 

  3. Barcroft, J., Anoxemia. Lancet2 (1920) 485–489.

    Google Scholar 

  4. Boag, J. W., Oxygen diffusion and oxygen depletion problems in radiobiology. Curr. Top. Radiat. Res.5 (1969) 141–195.

    CAS  Google Scholar 

  5. Boag, J. W., Cellular respiration as a function of oxygen tension. Int. J. Radiat. Biol.18 (1970) 475–477.

    CAS  Google Scholar 

  6. Caille, J. P., and Hinke, J. A. M., The volume available to diffusion in the muscle fiber. Can. J. Physiol. Pharmac.52 (1974) 814–828.

    Article  CAS  Google Scholar 

  7. Chance, B., Leigh, J. S., Miyake, H., Smith, D. S., Nioka, S., Greenfield, R., Finander, M., Kaufmann, K., Levy, W., Young, M., Cohen, P., Yoshioka, H., and Boretsky, R., Comparison of time-resolved and unresolved measurements of deoxyhemoglobin in brain. Proc. natl Acad. Sci. USA85 (1988) 4971–4975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Costa, L. E., Boveris, A., Koch, O. R., and Taquini, A. C., Liver and heart mitochondria in rats submitted to chronic hypobaric hypoxia. Am. J. Physiol.255 (1988) C123–C129.

    Article  CAS  PubMed  Google Scholar 

  9. Homer, L., Shelton, J. B., Dorsey, C. H., and Williams, T. J., Anisotropic diffusion of oxygen in slices of rat muscle. Am. J. Physiol.246 (1984) R107–R113.

    CAS  PubMed  Google Scholar 

  10. Jones, D. P., Effect of mitochondrial clustering on O2 supply in hepatocytes. Am. J. Physiol.247 (1984) C83–C89.

    Article  CAS  PubMed  Google Scholar 

  11. Jones, D. P., Intracellular diffusion gradients of O2 and ATP. Am. J. Physiol.250 (1986) C663–C675.

    Article  CAS  PubMed  Google Scholar 

  12. Jones, D. P., Ed. Microcompartmentation. CRC Press, Boca Raton, 1988.

    Google Scholar 

  13. Jones, D. P., and Mason, H. S., Gradients of O2 concentration in hepatocytes. J. biol. Chem.253 (1978) 4874–4880.

    Article  CAS  PubMed  Google Scholar 

  14. Jones, D. P., and Kennedy, F. G., Intracellular O2 supply during hypoxia. Am. J. Physiol.243 (1982) C247–C253.

    Article  CAS  PubMed  Google Scholar 

  15. Jones, D. P., and Aw, T. Y., Use of enzymes and transport systems as in situ probes of metabolite and ion gradients, in: Structure and Organizational Aspects of Metabolic Regulation, pp. 345–361. Eds P. Srere, M. E. Jones and C. Mathews, Alan R. Liss., New York 1990.

    Google Scholar 

  16. Jones, D. P., Aw, T. Y., Bai, C., and Sillau, A. H., Regulation of mitochondrial distribution: An adaptive response to changes in oxygen supply, in: Response and Adaptation to Hypoxia: Organ to Organelle. Eds S. Lahiri and N. S. Cherniack. Oxford University Press, London 1990, in press.

    Google Scholar 

  17. Kacser, H., and Burns, J. A., The control of flux, in: Rate Control of Biological Processes, pp. 65–109. Ed. D. D. Davis. Cambridge University Press, New York 1973.

    Google Scholar 

  18. Kayar, S. R., Hoppeler, H., Mermod, L., and Weibel, E. R., Mitochondrial size and shape in equine skeletal muscle: a three-dimensional reconstruction study. Anat. Rec.222 (1988) 333–339.

    Article  CAS  PubMed  Google Scholar 

  19. Kennedy, F. G., and Jones, D. P., Oxygen dependence of mitochondrial function in isolated rat cardiac myocytes. Am. J. Physiol.250 (1986) C374–C383.

    Article  CAS  PubMed  Google Scholar 

  20. Krogh, A., The rate of diffusion of gases through animal tissues with some remarks on the coefficient of invasion. J. Physiol.52 (1919) 391–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lehninger, A. L., Principles of Biochemistry. Worth Publishers, New York 1982.

    Google Scholar 

  22. Mastro, A. M., Babich, M. A., Taylor, W. D., and Keith, A. D., Diffusion of a small molecule in the cytoplasm of mammalian cells. Proc. natl Acad. Sci. USA81 (1984) 3414–3418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Millikan, G. A., Experiments on muscle hemoglobin in vivo; instantaneous measurement of muscle metabolism. Proc. Roy. Soc. B123 (1937) 218–241.

    CAS  Google Scholar 

  24. Rapoport, T. A., Heinrich, R., and Rapoport, S. M., The regulatory principles of glycolysis in erythrocytes in vivo and in vitro. A minimal comprehensive model describing steady states, quasi-steady states and time-dependent processes. Biochem. J.154 (1976) 449–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sillau, A. H., Aw, T. Y., and Jones, D. P., O2 dependence of cytochromec oxidation in hepatocytes from hypoxic rats. Physiologist34 (1988) A146.

    Google Scholar 

  26. Tager, J. M., Wanders, J. A., Groen, A. K., Kunz, W., Bohnensack, R., Kuster, U., Letko, G., Bohme, G., Duszynski, J., and Wojtczak, L., Control of mitochondrial respiration. FEBS Lett.151 (1983) 1–9.

    Article  CAS  PubMed  Google Scholar 

  27. Walter, H., and Johansson, G., Partitioning in aqueous two-phase systems: an overview. Analyt. Biochem.155 (1986) 215–242.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.P., Aw, T.Y. & Sillau, A.H. Defining the resistance to oxygen transfer in tissue hypoxia. Experientia 46, 1180–1185 (1990). https://doi.org/10.1007/BF01936932

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01936932

Key words

Navigation