Skip to main content
Log in

Calcium-induced calcium release mechanism in vascular smooth muscles — assessments based on contractions evoked in intact and saponin-treated skinned muscles

  • Published:
Experientia Aims and scope Submit manuscript

Summary

This article was concerned with the role of Ca in triggering the contraction in vascular smooth muscles. Whenever Ca influx is activated, this Ca does not directly activate the contractile proteins, but rather triggers the release of Ca from the SR to activate calmodulin. This release of Ca by Ca is dependent on the amount of Ca stored within the cells.

Voltage dependent Ca influx activated by excess concentrations of K, electrical depolarization and Ca spikes is required to produce the contraction through activation of the Ca-induced Ca release mechanism. The elucidation of the contribution of the P-I response for Ca mobilization through activation of receptors under physiological conditions hopefully will lend support to our hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adelstein, R.S., and Klee, C.B., Purification and characterization of smooth muscle myosin light chain kinase. J. biol. Chem.256 (1981) 7501–7509.

    Article  CAS  PubMed  Google Scholar 

  2. Aizu, M., and Ogawa, Y., Characteristics of guinea pig taenia coli treated by polyene antibiotics. Jap. J. Pharmac28 (1978) 131P.

    Article  Google Scholar 

  3. Aizu, M., and Ogawa, Y., Nystatin, another polyene antibiotic, a potential reagent for preparation of chemically skinned smooth muscle fibers. Jap. J. Pharmac.31 (1981) 185P.

    Article  Google Scholar 

  4. Best, P.M., Cardiac muscle function: results from skinned fiber preparations. Am. J. Physiol.244 (1983) H167-H177.

    CAS  PubMed  Google Scholar 

  5. Bolton, T.B., Mechanism of action of transmitters and other substances on smooth muscle. Physiol. Rev.59 (1979) 606–718.

    Article  CAS  PubMed  Google Scholar 

  6. Cauvin, C., Loutzenhiser, R., and van Breemen, C., Mechanisms of calcium antagonist-induced vasodilation. A. Rev. Pharmac. Toxic.23 (1983) 373–396.

    Article  CAS  Google Scholar 

  7. Conti, M.A., and Adelstein, R.S., The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3′:5′ cAMP-dependent protein kinase. J. biol. Chem.256 (1981) 3178–3181.

    Article  CAS  PubMed  Google Scholar 

  8. Dabrowska, R., Sherry, J.M.F., Aromatorio, D.K., and Hartshorne, D.J., Modulator protein as a component of the myosin light chain kinase from chicken gizzard. Biochemistry17 (1978) 253–258.

    Article  CAS  PubMed  Google Scholar 

  9. Ebashi, S., and Endo, M., Ca ion and muscle contraction. Prog. Biophys. molec. Biol.18 (1968) 123–183.

    Article  CAS  Google Scholar 

  10. Ebashi, S., Nonomura, Y., Nakamura, S., Nakasone, H., and Kohama, K., Regulatory mechanism in smooth muscle: actin-linked regulation. Fedn Proc.41 (1982) 2863–2867.

    CAS  Google Scholar 

  11. Endo, M., Calcium release from the sarcoplasmic reticulum. Physiol. Rev.57 (1977) 71–108.

    Article  CAS  PubMed  Google Scholar 

  12. Endo, M., Kitazawa, T., Yagi, S., Iino, M., and Kakuta, Y., Some properties of chemically skinned smooth muscle fibers, in: Excitation-Contraction Coupling in Smooth Muscle, pp. 199–209. Eds R. Casteels, G. Godfraind and J.C. Ruegg. Elsevier, North-Holland Biomedical Press, Amsterdam 1977.

    Google Scholar 

  13. Endo, M., Tanaka, M., and Ogawa, Y., Calcium induced release of calcium from the sarcoplasmic reticulum of skinned muscle fibers. Nature, Lond.228 (1970) 34–36.

    Article  CAS  PubMed  Google Scholar 

  14. Fabiato, A., Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am. J. Physiol.245 (1983) C1-C14.

    Article  CAS  PubMed  Google Scholar 

  15. Filo, R.S., Bohr, D.F., and Ruegg, J.C., Glycerinated skeletal and smooth muscle: calcium and magnesium dependence. Science147 (1965) 1581–1583.

    Article  CAS  PubMed  Google Scholar 

  16. Ford, L.E., and Podolsky, R.J., Regenerative calcium release within muscle cells. Science167 (1970) 58–59.

    Article  CAS  PubMed  Google Scholar 

  17. Fujiwara, S., and Kuriyama, H., Nicardipine actions on smooth muscle cells and neuromuscular transmission in the guinea-pig basilar artery. J. Pharmac. exp. Therap.225 (1983) 447–455.

    CAS  Google Scholar 

  18. Gordon, A.R., Contraction of detergent-treated smooth muscle. Proc. natn. Acad. Sci. USA75 (1978) 3527–3530.

    Article  CAS  Google Scholar 

  19. Haeusler, G., Richards, J.G., and Thorens, S., Noradrenalin contractions in rabbit mesenteric arteries skinned with saponin. J. Physiol.321 (1981) 537–556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hara, Y., Kitamura, K., and Kuriyama, H., Actions of 4-aminopyridine on vascular smooth muscle tissues of the guinea-pig. Br. J. Pharmac.68 (1980) 99–106.

    Article  CAS  Google Scholar 

  21. Hirata, M., Mikawa, T., Nonomura, Y., and Ebashi, S., Ca2+ regulation in vascular smooth muscle. II Ca2+ binding of aorta leiotonin. J. Biochem.87 (1980) 369–378.

    Article  CAS  PubMed  Google Scholar 

  22. Hirst, G.D.S., and Neild, T.O., Localization of specialized noradrenaline receptors at neuromuscular junctions on arterioles of the guinea-pig. J. Physiol.313 (1981) 343–350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hokin-Neaverson, M., Metabolism and role of phosphatidylinositol in acetylcholine-stimulated membrane function. Adv. exp. Med. Biol.83 (1977) 429–445.

    Article  CAS  PubMed  Google Scholar 

  24. Hokin, M.R., and Hokin, L.E., Effects of acetylcholine on phospholipids in the pancreas. J. biol. Chem.209 (1954) 549–558.

    Article  CAS  PubMed  Google Scholar 

  25. Holman, M.E., and Hirst, G.D.S., Junctional transmission in smooth muscle and the autonomic nervous system, in: Handbook of Physiol.: The Nervous system, sec. 1, vol. 1, chapt. 12, pp. 417–461. Am. Physiol. Soc., Bethesda, Maryland, 1977.

    Google Scholar 

  26. Iino, M., Tension responses of chemically skinned fibre bundles of the guinea-pig taenia caeci under varied ionic environments. J. Physiol.320 (1981) 449–467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Itoh, Y., Kitamura, K., and Kuriyama, H., Effects of acetylcholine and catecholamines on the smooth muscle cells of the porcine coronary artery. J. Physiol.294 (1979) 595–611.

    Article  Google Scholar 

  28. Itoh, T., Izumi, H., and Kuriyama, H., Mechanisms of relaxation induced by activation of βadrenoceptors in smooth muscle cells of the guinea-pig mesenteric artery. J. Physiol.326 (1982a) 475–493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Itoh, T., Kajiwara, M., Kitamura, K., and Kuriyama, H., Roles of stored calcium on the mechanical response evoked in smooth muscle cells of the porcine coronary artery. J. Physiol.322 (1982b) 107–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Itoh, T., Kanmura, Y., Kuriyama, H., and Suzuki, H., Nisoldipine induced relaxation in intact and skinned smooth muscles of rabbit coronary arteries. Br. J. Pharmac. (1985) in press.

  31. Itoh, T., Kuriyama, H., and Suzuki, H., Excitation-contraction coupling in smooth muscle cells of the guinea-pig mesenteric artery. J. Physiol.321 (1981) 513–535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Itoh, T., Kuriyama, H., and Suzuki, H., Effects of chlorpromazine on the electrical and mechanical properties in intact and skinned muscle cells of the guinea-pig mesenteric artery. Br. J. Pharmac.75 (1982c) 513–523.

    Article  CAS  Google Scholar 

  33. Itoh, T., Kuriyama, H., and Suzuki, H., Differences and similarities in the noradrenaline- and caffeine-induced mechanical responses in the rabbit mesenteric artery. J. Physiol.337 (1983) 609–629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Itoh, T., Kuriyama, H., and Ueno, H., Mechanisms of the nitroglycerine-induced vasodilation in vascular smooth muscles of the rabbit and pig. J. Physiol.343 (1983) 233–252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Johansson, B., and Somlyo, A.P., Electrophysiology and excitationcontraction coupling, in: Handbook of Physiol.: The Cardio Vascular System, sec. 2, vol. II. chapt. 12, pp. 301–323. Am. Physiol. Soc., Bethesda, Maryland, 1980.

    Google Scholar 

  36. Kanmura, Y., Itoh, T., Suzuki, H., Ito, Y., and Kuriyama H., Effects of nifedipine on smooth muscle cells of the rabbit mesenteric artery. J. Pharmac. exp. Therap.226 (1983) 238–248.

    CAS  Google Scholar 

  37. Keatinge, W.R., Blood Vessels. Br. med. Bull.35 (1979) 249–254.

    Article  CAS  PubMed  Google Scholar 

  38. Kerrick, W.G.L., and Hoar, P.E., Inhibition of smooth muscle tension by cyclic AMP-dependent protein kinase. Nature, Lond.292 (1981) 253–255.

    Article  CAS  PubMed  Google Scholar 

  39. Kerrick, W.G.L., Hoar, P.E., Cassidy, P.S., Bolles, L., and Mallencik, D.A., Calcium-regulatory mechanisms: Functional classification using skinned fibers. J. gen. Physiol.77 (1981) 77–190.

    Article  Google Scholar 

  40. Kitamura, K., and Kuriyama, H., Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guineapig. J. Physiol.293 (1977) 119–133.

    Article  Google Scholar 

  41. Kuriyama, H., Itoh, Y., Suzuki, H., Kitamura, K., and Itoh, T., Factors modifying contraction-relaxation cycle in vascular smooth muscles. Am. J. Physiol.243 (1982) H641-H662.

    CAS  PubMed  Google Scholar 

  42. Makita, Y., Kanmura, Y., Itoh, T., Suzuki H., and Kuriyama, H., Effects of nifedipine derivatives on smooth muscle cells and neuromuscular transmission in the rabbit mesenteric artery. Naunyn-Schmiedeberg's Arch. Pharmac. (1985) in press.

  43. Meech, R.W., Calcium-dependent potassium activation in nervous tissues. A. Rev. Biophys. Bioeng.7 (1978) 1–18.

    Article  CAS  Google Scholar 

  44. Michell, R.H., Inositol phospholipids and cell surface receptor function. Biochim. biophys. Acta415 (1975) 81–147.

    Article  CAS  PubMed  Google Scholar 

  45. Michell, R.H., Inositol phospholipids in membrane function. Trends biochem. Sci.4 (1979) 128–131.

    Article  CAS  Google Scholar 

  46. Mikawa, T., Nonomura, Y., Hirata, M., Ebashi, S., and Kakiuchi, S., Involvement of an acidic protein in regulation of smooth muscle contraction by the tropomyosin-leiotonin system. J. Biochem.84 (1978) 1633–1636.

    Article  CAS  PubMed  Google Scholar 

  47. Nishizuka, Y., Calcium, phospholipid turnover and transmembrane signalling. Phil. Trans. R. Soc. Lond. B302 (1983) 101–112.

    Article  CAS  Google Scholar 

  48. Ohtsuki, I., Mauzi, R.M., Palade, G.E., and Jamieson, J.D., Entry of macromolecular tracers into cells fixed with low concentration of aldehydes. Biol. cell.31 (1978) 119–126.

    Google Scholar 

  49. Pato, M.D., and Adelstein, R.S., Dephosphorylation of the 20,000-dalton light chain of myosin by two different phosphatases from smooth muscle. J. biol. Chem.255 (1980) 6535–6538.

    Article  CAS  PubMed  Google Scholar 

  50. Pink, T.J., Sanchez, A., and Hallam, T. J., Diacylglycerol and phorbol ester stimulate secretion without raising cytoplasmic free calcium in human platelets. Nature, Lond.305 (1983) 317–319.

    Article  Google Scholar 

  51. Ruegg, J.C., Sparrow, M.P., and Mrwa, U., Cyclic-AMP mediated relaxation of chemically skinned fibers of smooth muscle. Pflügers Arch.390 (1981) 198–201.

    Article  CAS  PubMed  Google Scholar 

  52. Saida, K., Intracellular Ca release in skinned smooth muscle. J. gen. Physiol.80 (1982) 191–202.

    Article  CAS  PubMed  Google Scholar 

  53. Saida, K., and Nonomura, Y., Charateristics of Ca2+- and Mg2+-induced tension development in chemically skinned smooth muscle fibers. J. gen. Physiol.72 (1978) 1–14.

    Article  CAS  PubMed  Google Scholar 

  54. Saida, K., and van Breemen, C., A possible Ca2+-induced Ca2+-release mechanism mediated by norepinephrine in vascular smooth muscle. Pflügers Arch.397 (1983) 166–167.

    Article  CAS  PubMed  Google Scholar 

  55. Sparrow, M.P., Mrwa, U., Hofmann, F., and Ruegg, J.C., Calmodulin is essential for smooth muscle contraction. FEBS Lett.125 (1981) 141–145.

    Article  CAS  PubMed  Google Scholar 

  56. Stout, M.A., and Diecke, E.P.J.,45Ca distribution and transport in saponin skinned vascular smooth muscle. J. Pharmac. exp. Therap.225 (1983) 102–111.

    CAS  Google Scholar 

  57. Streb, H., Irvine, R.F., Berridge, M.J., and Schulz, I., Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-triphosphate. Nature, Lond.306 (1983) 67–69.

    Article  CAS  PubMed  Google Scholar 

  58. Somlyo, A.P., Somlyo, A.V., Gonzalez-Serratos, H., Shuman, H., and McClellan, G., The sarcoplasmic reticulum and its composition in resting and in contracting muscle, in: Muscle Contraction: Its regulatory Mechanisms, pp. 421–433. Eds S. Ebashi, K. Maruyama and M. Endo. Japan Scientific Societies Press, Tokyo; Springer-Verlag, Berlin, Heidelberg, New York 1980.

    Google Scholar 

  59. Suematsu, E., Hirata, M., Hashimoto, T., and Kuriyama, H., Inositol 1,4,5-triphosphate releases Ca2+ from intracellular store sites in skinned single cells of porcine coronary artery. Biochem. biophys. Res. Commun.120 (1984) 481–485.

    Article  CAS  PubMed  Google Scholar 

  60. Suzuki, H., Effects of endogenous and exogenous noradrenaline on the smooth muscle of guinea-pig mesenteric vein. J. Physiol.321 (1981) 495–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Suzuki, H., Itoh, T., and Kuriyama, H., Diltiazem actions on smooth muscles and neuromuscular junction in the mesenteric artery. Am. J. Physiol.242 (1982) H325-H336.

    CAS  PubMed  Google Scholar 

  62. Suzuki, H., and Kuriyama, H., Observation of the quantal release of noradrenaline from vascular smooth muscle in potassium-free solution. Jap. J. Physiol.30 (1980) 667–670.

    Article  Google Scholar 

  63. Suzuki, H., Onishi, H., Takahashi, K., and Watanabe, S., Structure and function of chicken gizzard myosin. J. Biochem.84 (1978) 1529–1542.

    Article  CAS  PubMed  Google Scholar 

  64. Walsh, M.P., Dabrowska, R., Hinkins, S., and Hartshorne, D.J., Calcium independent myosin light chain kinase of smooth muscle. Preparation by limited chymotryptic digestion of the calcium ion dependent enzyme, purification and characterization. Biochemistry21 (1982) 1919–1925.

    Article  CAS  PubMed  Google Scholar 

  65. Weber, A., The mechanism of the action of caffeine on sarcoplasmic reticulum. J. gen. Physiol.52 (1968) 760–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yagi, K., Yazawa, M., Kakiuchi, S., Ohshima, M., and Uenishi, K., Identification of an activator protein from myosin light chain kinase as the Ca2+-dependent modulator protein. J. biol. Chem.253 (1978) 1338–1340.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itoh, T., Ueno, H. & Kuriyama, H. Calcium-induced calcium release mechanism in vascular smooth muscles — assessments based on contractions evoked in intact and saponin-treated skinned muscles. Experientia 41, 989–996 (1985). https://doi.org/10.1007/BF01952119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01952119

Key Words

Navigation