Skip to main content
Log in

Role of lysine side chains in metallothionein

  • Full Papers
  • Published:
Experientia Aims and scope Submit manuscript

Summary

pKa-Values of lysine residues of mammalian metallothionein were determined by chemical titration measurements of ɛ-CH2 lysine resonances in the1H-NMR spectra. They are about 0.5 pH-unit higher than the average pKa-value of a metal-free derivative, suggesting interaction of the positively charged residues with the two three-fold negatively charged metal-thiolate clusters of the metal-containing form. Deprotonation of the lysines leads to circular dichroism changes attributable to an electrostatically induced structural transition of the protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CD:

circular dichroism

DSS:

2,2-dimethyl-2-silapentane-5-sulphonate

TNBS:

2,4,6-trinitrobenzene sulfonic acid

Literatur

  1. Bradbury, J.H., and Brown, L.R., Determination of the dissociation constants of the lysine residues of lysozyme by proton-magnetic-resonance spectroscopy. Eur. J. Biochem.40 (1973) 565–576.

    Article  CAS  PubMed  Google Scholar 

  2. Brahms, S., and Brahms, J., Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism. J. molec. Biol.138 (1980) 149–178.

    Article  CAS  PubMed  Google Scholar 

  3. Bremner, I., and Young, B.W., Isolation of (copper, zinc)-thioneins from the livers of copper-injected rats. Biochem. J.157 (1976) 517–520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bühler, R.H.O., and Kägi, J.H.R., Human hepatic metallothioneins. FEBS Lett.39 (1974) 229–234.

    Article  PubMed  Google Scholar 

  5. Bühler, R.H.O., and Kägi, J.H.R., Spectroscopic properties of zinc-metallothionein, in: Metallothionein, pp. 211–220. Eds J.H.R. Kägi and M. Nordberg. Birkhäuser, Basel 1979.

    Chapter  Google Scholar 

  6. Bundi, A., and Wüthrich, K.,1H-NMR parameters of the common amino acid residues measured in aqueous solutions of the linear tetrapeptides H-Gly-Gly-X-L-Ala-OH. Biopolymers18 (1979) 285–297.

    Article  CAS  Google Scholar 

  7. Campbell, I.D., Dobson, C.M., Williams, R.J.P., and Xavier, A.V., Resolution enhancement of protein PMR spectra using the difference between a broadened and a normal spectrum. J. magn. Reson.11 (1973) 172–181.

    CAS  Google Scholar 

  8. Dwek, R.A., Nuclear Magnetic Resonance (N.M.R.) in Biochemistry. Clarendon Press, Oxford 1973.

    Google Scholar 

  9. Edsall, J.T., and Wyman, J., Polybasic acids, bases, and ampholytes, including proteins, in: Biophysical Chemistry, vol. 1, pp. 477–549. Academic Press Inc., New York 1958.

    Chapter  Google Scholar 

  10. Etzel, K.R., Shapiro, S.G., and Cousins, R.J., Regulation of liver metallothionein and plasma zinc by the glucocorticoid dexamethasone. Biochem. biophys. Res. Commun.89 (1979) 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  11. Gilg, D., Spectroscopic and potentiometric studies of metallothionein. Ph.D. thesis, University of Zürich, 1984.

  12. Greenfield, N., and Fasman, G.D., Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry8 (1969) 4108–4116.

    Article  CAS  PubMed  Google Scholar 

  13. Hennessey, J.P. Jr, and Johnson, W.C. Jr, Information content in the circular dichroism of proteins. Biochemistry20 (1981) 1085–1094.

    Article  CAS  PubMed  Google Scholar 

  14. Kägi, J.H.R., and Vallee, B.L., Metallothionein: a cadmium- and zinc-containing protein from equine renal cortex. II. Physicochemical properties. J. biol. Chem.236 (1961) 2435–2442.

    Article  PubMed  Google Scholar 

  15. Kägi, J.H.R., Himmelhoch, S.R., Whanger, P.D., Bethune, J.L., and Vallee, B.L., Equine hepatic and renal metallothioneins. Purification, molecular weight, amino acid composition, and metal content. J. biol. Chem.249 (1974) 3537–3542.

    Article  PubMed  Google Scholar 

  16. Kimura, M., Otaki, N., and Imano, M., Rabbit liver metallothionein. Tentative amino acid sequence of metallothionein-B, in: Metallothionein pp. 163–168. Eds. J.H.R. Kägi and M. Nordberg. Birkhäuser, Basel 1979.

    Chapter  Google Scholar 

  17. Kojima, Y., and Kägi, J.H.R., Metallothionein. Trends biochem. Sci.3 (1978) 90–93.

    Article  CAS  Google Scholar 

  18. Kojima, Y., Berger, C., Vallee, B.L., and Kägi, J.H.R., Amino-acid sequence of equine renal metallothionein-1B. Proc. natl Acad. Sci. USA73 (1976) 3413–3417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Margoshes, M., and Vallee, B.L., A cadmium protein from equine kidney cortex. J. Am. chem. Soc.79 (1957) 4813–4814.

    Article  CAS  Google Scholar 

  20. Neuhaus, D., Wagner, G., Vašák, M., Kägi, J., and Wüthrich, K., Two-dimensional NMR studies of the conformation of metallothionein. Royal Society of Chemistry, VIth International Meeting on NMR Spectroscopy, Edinburgh 1983, abstract.

  21. Nordberg, M., and Kojima, Y., Metallothionein and other low molecular weight metal-binding proteins, in: Metallothionein, pp. 41–124. Eds J.H.R. Kägi and M. Nordberg. Birkhäuser, Basel 1979.

    Chapter  Google Scholar 

  22. Otvos, J.D., and Armitage, I.M., Structure of the metal clusters in rabbit liver metallothionein. Proc. natl Acad. Sci. USA77 (1980) 7094–7098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pande, J., Vašák, M., and Kägi, J.H.R., Chemical reactivity of lysine residues in metallothionein. In preparation.

  24. Rauser, W.E., and Curvetto, N.R., Metallothionein occurs in roots of Agrostis tolerant to excess copper. Nature287 (1980) 563–564.

    Article  CAS  Google Scholar 

  25. Richards, M.P., and Cousins, R.J., Influence of parenteral zinc and actinomycin D on tissue zinc uptake and the synthesis of a zinc-binding protein. Bioinorg. Chem.4 (1975) 215–254.

    Article  CAS  PubMed  Google Scholar 

  26. Squibb, K.S., and Cousins, R.J., Control of cadmium binding protein synthesis in rat liver. Envir. Physiol. Biochem.4 (1974) 24–30.

    CAS  Google Scholar 

  27. Vašák, M., Spectroscopic studies on cobalt(II) metallothionein: evidence for pseudotetrahedral metal coordination. J. Am. chem. Soc.102 (1980) 3953–3955.

    Article  Google Scholar 

  28. Vašák, M., and Kägi, J.H.R., Metal thiolate clusters in cobalt(II)-metallothionein. Proc. natl Acad. Sci. USA78 (1981) 6709–6713.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Vašák, M., and Kägi, J.H.R., Spectroscopic properties of metallothionein, in: Metal Ions in Biological Systems, vol. 15, pp. 213–273. Ed. H. Sigel. Marcel Dekker, Inc., New York 1983.

    Google Scholar 

  30. Vašák, M., Kägi, J.H.R., and Hill, H.A.O., Zinc(II), cadmium(II), and mercury(II) thiolate transitions in metallothionein. Biochemistry20 (1981) 2852–2856.

    Article  PubMed  Google Scholar 

  31. Vašák, M., Kägi, J.H.R., Holmquist, B., and Vallee, B.L., metallothionein. FEBS Lett. (1984) accepted for publication.

  32. Vašák, M., Kägi, J.H.R., Holmquist, B., and Vallee, B.L., Spectral studies of cobalt(II)- and nickel(II)-metallothionein. Biochemistry20 (1981) 6659–6664.

    Article  PubMed  Google Scholar 

  33. Vašák, M., Galdes, A., Hill, H.A.O., Kägi, J.H.R., Bremner, I., and Young B.W., Investigation of the stucture of metallothioneins by proton nuclear magnetic resonance spectroscopy. Biochemistry19 (1980) 416–425.

    Article  PubMed  Google Scholar 

  34. Webb, M., and Magos, L., Cadmium-thionein and the protection by cadmium against the nephrotoxicity of mercury. Chem. biol. Interactions14 (1976) 357–369.

    Article  CAS  Google Scholar 

  35. Weser, U., Rupp, H., Donay, F., Linnemann, F., Voelter, W., Voetsch, W., and Jung, G., Characterization of Cd, Zn-thionein (metallothionein) isolated from rat and chicken liver. Eur. J. Biochem.39 (1973) 127–140.

    Article  CAS  PubMed  Google Scholar 

  36. Wüthrich, K., NMR in Biological Research: Peptides and Proteins. North-Holland, Amsterdam 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

To whom correspondence concerning this paper should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vašák, M., McClelland, C.E., Hill, H.A.O. et al. Role of lysine side chains in metallothionein. Experientia 41, 30–34 (1985). https://doi.org/10.1007/BF02005857

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02005857

Key words

Navigation