Skip to main content
Log in

Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimental investigation and review

  • Reviews
  • Published:
Experientia Aims and scope Submit manuscript

Summary

Angiogenesis, the process of developing a hemovascular network, is an essential feature of the growth of solid tumors, and is induced by factors secreted by tumor cells. Assay procedures suitable for the investigation of angiogenesis, and for the screening of angiogenesis factors during purification are reviewed; and a number of reports describing the purification of angiogenesis factors, primarily from the rat Walker 256 carcinoma as starting material, are discussed. Work from the authors' laboratory is also presented. Walker 256 cells grown in large-scale culture were the source of a reproducible and homogeneous source of angiogenic material. Factors secreted by these cells were isolated by a series of chromatographic steps. Ion exchange chromatography on carboxymethyl-Sephadex produced two active fractions, one of which was fractionated into several macromolecular species by lectin affinity and hydrophobic adsorption chromatography. The other gave a high mol.wt, active fraction that was resolved into a low mol.wt, active component and a non-angiogenic but possibly carrier molecule with a mol.wt of 140,000. While none of the angiogenic factors were identified chemically, the results demonstrate the existence of both high and low mol.wt tumor-secreted angiogenic substances, confirming the hypothesis for tumor-induced angiogenesis and predicting potential means to interfere with the process of tumor growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco's modified Eagle's medium

FBS:

fetal bovine serum

PBS:

Dulbecco's calcium- and magnesium free phosphate-buffered saline

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

AF:

angiogenic factor

TAF:

tumorderived angiogenic factor

CAM:

chorioallantoic membrane

EGF:

epidermal growth factor

NGF:

nerve growth factor

LDH:

lactate dehydrogenase

Literatur

  1. Algire, G. H., An adaptation of the transparent chamber technique to the mouse. J. nant. Cancer Inst.4 (1943) 1–11.

    Google Scholar 

  2. Algire, G. H., and Chalkley, H. W., Vascular reaction of normal and malignant tissues in vivo I. Vascular reactions in mice to wounds and to normal and neoplastic transplants. J. natn. Cancer Inst.6 (1945) 73–85.

    Article  Google Scholar 

  3. Atherton, A., Growth stimulation of endothelial cells by simultaneous culture with sarcoma 180 cells in diffusion chambers. Cancer Res.37 (1977) 3619–3622.

    CAS  PubMed  Google Scholar 

  4. Auerbach, R., Angiogenesis-inducing factors, in: Lymphokines, pp. 69–88. Eds E. Pick and M. Landy. Academic Press, New York 1981.

    Google Scholar 

  5. Ausprunk, D. H., and Folkman, J., Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvasc. Res.14 (1977) 53–65.

    Article  CAS  PubMed  Google Scholar 

  6. Ausprunk, D. H., Falterman, K., and Folkman, J., The sequence of events in the regression of corneal capillaries. Lab. Invest.38 (1978) 284–294.

    CAS  PubMed  Google Scholar 

  7. Baltzer, F., Über metagame Geschlechtsbestimmung und ihre Beziehung zu einigen Problemen der Entwicklungsmechanik und Vererbung (auf Grund von Versuchen an Bonellia). Verh. dt. zool. Ges.32 (1928) 273–325.

    Google Scholar 

  8. BenEzra, D., Mediators of immunological reactions: function as inducers of neovascularisation. Metab. Opthalm.2 (1978) 2–4.

    Google Scholar 

  9. Berman, M., Winthrop, S., Ausprunk, D., Rose, J., Langer, R., and Gage, J., Plasminogen activator (urokinase) causes vascularization of the cornea. Invest. Opthalm. vis. Sci.22 (1982) 191–199.

    CAS  Google Scholar 

  10. Brown, R. A., Weiss, J. B., Tomlinson, I. E., Phillips, P., and Kumar, S., Angiogenic factor from synovial fluid resembling that from tumor. Lancet1 (1980) 682–685.

    Article  CAS  PubMed  Google Scholar 

  11. Cavallo, T., Sade, R., Folkman, J., and Cotran, R. S., Ultrastructural autoradiographic studies of the early vasoproliferative response in tumor angiogenesis. Am. J. Path.70 (1973) 345–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chalkley, W. H., Comments on a paper by Algire, G. H., and Legallais, F. Y., Growth and vascularization of transplantable mouse melanomas. Spec. Publ. N.Y. Acad. Sci.4 (1948) 164.

    Google Scholar 

  13. Clark, R. R., Kirby-Smith, H. T., Rex, R. O., and Williams, R. G., Recent modifications in the method of studying living cells and tissues in transparent chambers inserted in the rabbit's ear. Anat. Rec.47 (1930) 187–211.

    Article  Google Scholar 

  14. Cotta-Pereira, G., Sage, H., Bornstein, P., Ross, R., and Schwartz, S., Studies of morphologically atypical (‘sprouting’) cultures of bovine aortic endothelial cells. Growth characteristics and connective tissue proteins syntheses. J. Cell Physiol.102 (1980) 183–191.

    Article  CAS  PubMed  Google Scholar 

  15. Ehrmann, R. L., and Knoth, M., Choriocarcinoma: transfilter stimulation of vasoproliferation in the hamster cheek pouch-studied by light and electron microscopy. J. natn. Cancer Inst.41 (1968) 1329–1341.

    CAS  Google Scholar 

  16. Feder, J., and Tolbert, W. R., The large-scale cultivation of mammalian cells. Scient. Am.248 (1983) 24–31.

    Article  Google Scholar 

  17. Feder, J., Marasa, J. C., and Olander, J. V., The formation of capillary-like tubes by aortic endothelial cells grown in vitro. J. Cell Physiol.116 (1983) 1–6.

    Article  CAS  PubMed  Google Scholar 

  18. Fenselau, A., and Mello, R. J., Growth stimulation of cultured endothelial cells by tumor cell homogenates. Cancer Res.36 (1976) 3269–3273.

    CAS  PubMed  Google Scholar 

  19. Fenselau, A., Watt, S., and Mello, R. J., Tumor angiogenesis factor. Purificaton from Walker 256 rat tumor. J. biol. Chem.256 (1981) 9605–9611.

    Article  CAS  PubMed  Google Scholar 

  20. Folkman, J., Tumor angiogenesis factor. Cancer Res.34 (1974) 2109–2113.

    CAS  PubMed  Google Scholar 

  21. Folkman, J., Angiogenesis; initiation and control, in: Endothelium, pp. 212–227. Ed. A. P. Fishman. Ann. N.Y. Acad. Sci.401 (1982).

  22. Folkman, J., and Cotran, R. S., Relation of vascular proliferation to tumor growth. Int. Rev. exp. Path.16 (1976) 207–248.

    CAS  PubMed  Google Scholar 

  23. Folkman, J., and Haudenschild, C. C., Angiogenesis in vitro. Nature288 (1980) 551–552.

    Article  CAS  PubMed  Google Scholar 

  24. Folkman, J., Merler, E., Abernathy, C., and Williams, G., Isolation of a tumor factor responsible for angiogenesis. J. exp. Med.133 (1971) 275–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Form, D. M., and Auerbach, R., PGE2 and angiogenesis. Proc. Soc. exp. Biol. Med.172 (1983) 214–218.

    Article  CAS  PubMed  Google Scholar 

  26. Fournier, G. A., Lutty, G. A., Watt, S., Fenselau, A., and Patz, A., A corneal micropocket assay for angiogenesis in the rat eye. Invest. Ophthalm. vis. Sci.21 (1981) 351–354.

    CAS  Google Scholar 

  27. Gimbrone, M. A., Cotran, R. S., Leapman, S., and Folkman, J., Tumor growth and neovascularization: an experimental model using the rabbit cornea. J. natn. Cancer Inst.52 (1974) 413–427.

    Article  Google Scholar 

  28. Goldbaum, M. M., Cleveland, P., Wickham, M. G., and Allen, K., Neovascularization induced by growth factors and by inflammation. Invest. Opthalm. vis. Sci.19 suppl. (1980) 138 (abstr.).

    Google Scholar 

  29. Goldberg, E., Amino acid composition and properties of crystalline lactate dehydrogenase X from mouse testes. J. biol. Chem.247 (1972) 2044–2048.

    Article  CAS  PubMed  Google Scholar 

  30. Goldfarb, R. H., Proteases in tumor invasion and metastasis, in: Tumor cell invasion and metastasis, pp. 375–390. Eds L. A. Liotta and I. R. Hart. Martinus Nijhoff, The Hague 1982.

    Chapter  Google Scholar 

  31. Goldman, E., The growth of malignant disease in men and lower animals. Lancet2 (1907) 1236.

    Article  Google Scholar 

  32. Gospodarowicz, D., and Iu, C., Extracellular matrix and control of proliferation of vascular endothelial cells. J. clin. Invest.69 (1980) 1351–1364.

    Article  Google Scholar 

  33. Gospodarowicz, D., Bialecki, H., and Thakral, T. K., The angiogenic activity of the fibroblast and epidermal growth factor. Exp. Eye Res.28 (1979) 501–414.

    Article  CAS  PubMed  Google Scholar 

  34. Gospodarowicz, D., Greenburg, G., Bialecki, H., and Zetter, B. D., Factors involved in the modulation of cell proliferation in vivo and in vitro: the role of fibroblast and epidermal growth factors in the proliferative response of mammalian cells. In Vitro14 (1978) 85–118.

    Article  CAS  PubMed  Google Scholar 

  35. Greenblatt, M., and Shubik, P., Tumor angiogenesis: transfilter diffusion studies in the hamster by the transparent chamber technique. J. natn Cancer Inst.41 (1968) 111–124.

    CAS  Google Scholar 

  36. Greene, H. S. N., Heterologous transplantation of mammalian tumors I. The transfer of rabbit tumors to alien species. J. exp. Med.73 (1941) 461–473.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Greene, H. S. N., Heterologous transplantation of mammalian tumors II. The transfer of human tumors to alien species. J. exp. Med.73 (1941) 475–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gross, J. L., Moscatelli, D., and Rifkin, D. B., Increased capillary endothelial cell protease activity in response to angiogenic stimuli in vitro. Proc. natn. Acad. Sci. USA80 (1983) 2623–2627.

    Article  CAS  Google Scholar 

  39. Gullino, P. M., in: Tissue Growth Factors. Handbook of Experimental Pharmacology, vol. 57, pp. 427–449. Ed. R. Baserga. Springer-Verlag, New York 1981.

    Chapter  Google Scholar 

  40. Harakas, N. K., Lewis, C., Bartram, R. D., Wildi, B. S., and Feder, J., Mammalian cell culture: technology and physiology, in: Eukaryotic Cell Cultures, pp. 119–138. Eds. R. T. Acton and J. D. Lynn. Plenum Publ. Corp., New York 1984.

    Chapter  Google Scholar 

  41. Hill, C. R., Kussun, R. D., Weiss, J. B., and Garner, A., Angiogenic factor in vitreous from diabetic retinopathy. Experientia39 (1983) 583–585.

    Article  CAS  PubMed  Google Scholar 

  42. Hoffman, H., McAuslan, B., Robertson, D., and Burnett, E., An endothelial growth-stimulating factor from salivary glands. Exp. Cell Res.102 (1976) 269–275.

    Article  CAS  PubMed  Google Scholar 

  43. Holloway, P. W., A simple procedure for removing Triton X-100 from protein samples. Analyt. Biochem.53 (1973) 304–308.

    Article  CAS  PubMed  Google Scholar 

  44. Jakob, W., Jentzsch, K. C., Mauersberger, B., and Heder, G., The chick embryo chorioallantoic membrane as a bioassay for angiogenesis factors: reactions induced by carrier materials. Exp. Path.15 (1978) 241–249.

    CAS  Google Scholar 

  45. Karasek, E., and Heder, G., The rabbit cornea model for detecting neovascularizaton effects. Z. VersuchstierKde23 (1981) 59–66.

    CAS  Google Scholar 

  46. Keegan, A., Hill, C., Kumar, S., Phillips, P., Schor, A., and Weiss, J., Purified tumor angiogenesis factor enhances proliferation of capillary, but not aortic, endothelial cells in vitro. J. Cell Sci.55 (1982) 261–276.

    Article  CAS  PubMed  Google Scholar 

  47. Klagsbrun, M., Knighton, D., and Folkman, J., Tumor angiogenesis activity in cells grown in tissue culture. Cancer Res.36 (1976) 110–114.

    CAS  PubMed  Google Scholar 

  48. Knighton, D., Ausprunk, D., Tapper, D., and Folkman, J., Avascular and vascular phases of tumor growth in the chick embryo. Br. J. Cancer35 (1977) 347–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar, S., Shahabuddin, S., Haboubi, N., West, D., Arnold, F., Reid, H., and Carr, T., Angiogenesis factor from human myocardial infarcts. Lancet2 (1983) 364–368.

    Article  CAS  PubMed  Google Scholar 

  50. Kumar, S., West, D., Daniel, M., Hancock, A., and Carr, J., Human lung tumour cell line adapted to grow in serum-free medium secretes angiogenesis factor. Int. J. Cancer32 (1983) 461–464.

    Article  CAS  PubMed  Google Scholar 

  51. Laemmli, U. K., Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature227 (1970) 680–685.

    Article  CAS  PubMed  Google Scholar 

  52. Langer, R., and Folkman, J., Polymers for the sustained release of proteins and other macromolecules. Nature263 (1976) 797–800.

    Article  CAS  PubMed  Google Scholar 

  53. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., Protein measurement with the Folin phenol reagent. J. biol. Chem.193 (1951) 265–275.

    Article  CAS  PubMed  Google Scholar 

  54. Maciag, J., Kadish, J., Wilkins, L., Stemerman, M. B., and Weinstein, R., Organizational behavior of human umbilical vein endothelial cells. J. Cell Biol.94 (1982) 511–520.

    Article  CAS  PubMed  Google Scholar 

  55. Madri, J. A., Williams, S. K., Wyatt, T., and Mezzio, C., Capillary endothelial cell cultures: phenotypic modulation by matrix components. J. Cell Biol.97 (1983) 153–165.

    Article  CAS  PubMed  Google Scholar 

  56. Makarski, J. S. Jr, Evidence for reversible morphologic phenotypes (sprouts) of cultured endothelial cells. Cell Biol. int. Rep.6 (1982) 225–233.

    Article  CAS  PubMed  Google Scholar 

  57. McAuslan, B. R., A new theory of neovascularization based on identification of an angiogenic factor and its effect on cultured endothelial cells, in: Control mechanisms in animal cells, pp. 285–292. Eds L. Jimenez de Asua, R. Shields, R. Levi-Montalcini and S. Iacobelli. Raven Press, New York 1980.

    Google Scholar 

  58. McAuslan, B. R., and Hofman, H., Endothelial stimulating factor from Walker carcinoma cells. Relation to tumor angiogenic factor. Exp. Cell Res.119 (1979) 181–190.

    Article  CAS  PubMed  Google Scholar 

  59. McKenzie, H. A., pH and buffers, in: Data for biochemical research, p. 485. Eds M. C. Dawson et al. University Press, Oxford 1969.

    Google Scholar 

  60. Muthukkaruppan, V. R., and Auerbach, R., Angiogenesis in the mouse cornea. Science205 (1979) 1416–1418.

    Article  CAS  PubMed  Google Scholar 

  61. Muthukkaruppan, V. R., Kubai, L., and Auerbach, R., Tumor-induced neovascularization in the mouse eye. J. natn. Cancer Inst.69 (1982) 699–708.

    CAS  Google Scholar 

  62. Needham, J., New advances in the chemistry and histology of organized growth. Proc. R. Soz. Med.29 (1936) 1577.

    CAS  Google Scholar 

  63. Nicosia, R. F., Tchao, R., and Leighton, J., Histiotypic angiogenesis in vitro: light microscopic, ultrastructural, and radio-autographic studies. In Vitro18 (1982) 538–549.

    Article  CAS  PubMed  Google Scholar 

  64. Phillips, P., and Kumar, S., Tumor angiogenesis factor (TAF) and its neutralisation by a xenogenic antiserum. Int. J. Cancer23 (1979) 82–88.

    Article  CAS  PubMed  Google Scholar 

  65. Phillips, P. J., Steward, J. K., and Kumar, S., Tumor angiogenesis factor (TAF) in human and animal tumours. Int. J. Cancer17 (1976) 549–558.

    Article  CAS  PubMed  Google Scholar 

  66. Polverini, P. J., Cotran, R. S., Gimbrone, M. A., and Unanue, E. R., Activated macrophages induce vascular proliferation. Nature269 (1977) 804–806.

    Article  CAS  PubMed  Google Scholar 

  67. Raju, K. S., Alessandri, G., Ziche, M., and Gullino, P., Ceruloplasmin, copper ions, and angiogenesis. J. natn. Cancer Inst.69 (1982) 1183–1188.

    CAS  Google Scholar 

  68. Rosenthal, A. R., Appleton, B., and Hopkins, J. L., Intraocular copper foreign bodies. Am. J. Opthalm.78 (1974) 671–677.

    Article  CAS  Google Scholar 

  69. Sanders, A. G., and Shubik, P., A transparent window for use in the Syrian hamster. Israel J. exp. Med.11 (1964) 118.

    Google Scholar 

  70. Sandison, J. C., A new method for microscopic study of living growing tissues by the introduction of transparent chamber in the rabbit's ear. Anat. Rec.28 (1924) 281–287.

    Article  Google Scholar 

  71. Savage, C. R. Jr., and Cohen, S., Epidermal growth factor and a new derivative: rapid isolation procedures and biological and chemical characterization. J. biol. Chem.247 (1972) 7609–7611.

    Article  CAS  PubMed  Google Scholar 

  72. Schenkein, I., Levy, M., Franklin, E. C., and Fragnione, B., Proteolytic activity of mouse submaxillary gland. Archs. Biochem. Biophys.182 (1977) 64–70.

    Article  CAS  Google Scholar 

  73. Schor, A. M., Schor, S. L., and Kumar, S., Importance of a collagen substratum for stimulation of capillary endothelial cell proliferation by tumour angiogenesis factor. Int. J. Cancer24 (1979) 225–234.

    Article  CAS  PubMed  Google Scholar 

  74. Selye, H., On the mechanism through which hydrocortisone affects the resistance of tissues to injury. J. Am. med. Ass.152 (1953) 1207–1215.

    Article  CAS  Google Scholar 

  75. Shubik, P., Vascularization of tumors: a review. J. Cancer Res. clin. Oncol.103 (1982) 211–226.

    Article  CAS  PubMed  Google Scholar 

  76. Spemann, H., Neue Arbeiten über Organisatoren in der tierischen Entwicklung. Naturwissenschaften15 (1927) 947.

    Article  Google Scholar 

  77. Stockley, A. T., The chorioallantoic membrane of the embryonic chick as an assay for angiogenic factors. Br. J. Dermat.102 (1980) 738.

    Google Scholar 

  78. Suddith, R. L., Kelley, P. J., Hutchison, H. T., Murray, E. A., and Haber, B., In vitro demonstration of an endothelial proliferative factor produced by neural cell lines. Science190 (1975) 682–684.

    Article  CAS  PubMed  Google Scholar 

  79. Tolbert, W. R., and Feder, J., Large-scale cell culture technology, in: Annual Reports on Fermentation Processes, vol. 6. Eds G. T. Tsao and M. C. Flickinger. Academic Press, New York (in press).

  80. Tolbert, W. R., Schoenfeld, R. A., Lewis, C., and Feder, J., Largescale mammalian cell culture: design and use of an economical batch suspension system. Biotech. Bioengng24 (1982) 1671–1679.

    Article  CAS  Google Scholar 

  81. Tsukamoto, K., and Sugino, Y., Tumor angiogenesis activity in clonal cells transformed by bovine adenovirus type 3. Cancer Res.39 (1979) 1305–1309.

    CAS  PubMed  Google Scholar 

  82. Tuan, D., Smitz, S., Folkman, J., and Merler, E., Isolation of the nonhistone proteins of rat Walker carcinoma 256. Their association with tumor angiogenesis. Biochemistry12 (1973) 3159–3165.

    Article  CAS  PubMed  Google Scholar 

  83. Varon, S., Nomura, J., and Shooter, E. M., Reversible dissociation of mouse nerve growth factor protein into different subunits. Biochemistry7 (1968) 1296–1303.

    Article  CAS  PubMed  Google Scholar 

  84. Virchow, R., Die krankhaften Geschwulste. Hirschwald, Berlin 1863.

    Google Scholar 

  85. Weiss, J. B., Brown, R. A., Kumar, S., and Phillips, P., An angiogenic factor isolated from tumours: A potent low-molecular-weight compound. Br. J. Cancer40 (1979) 493–496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Willis, R. A., The Borderland of Embryology and Pathology. Butterworth and Co., London 1958.

    Google Scholar 

  87. Zetter, B. R., Migration of capillary endothelial cells is stimulated by tumor-derived factors. Nature285 (1980) 41–43.

    Article  CAS  PubMed  Google Scholar 

  88. Zetter, B. R., The endothelial cells of large and small blood vessels. Diabetes30, suppl.2 (1981) 24–28.

    Article  CAS  PubMed  Google Scholar 

  89. Ziche, M., Jones, J., and Gullino, P. M., Role of prostaglandin E1 and copper in angiogenesis. J. natn. Cancer Inst.69 (1982) 475–482.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by funds from the Monsanto Company under Agreements with Harward University and from the U.S. Public Health Service, Contract No. N01-CB-43942. We are particularly indebted to Bernard S. Wildi and Monte C. Throdahl for their advice, cooperation, and encouragement. We also thank Dr Judah Folkman for the initial supply of male mouse submaxillary glands and rat Walker carcinoma conditioned medium, for help with the CAM assays, assays in the rabbit cornea, and many helpful discussions; and R. Bretton, A. Ehrlich, B. Evans, F. Fu, N. Hay and B. Tsokanis for excellent technical assistance.

Author to whom correspondence should be addressed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallee, B.L., Riordan, J.F., Lobb, R.R. et al. Tumor-derived angiogenesis factors from rat Walker 256 carcinoma: an experimental investigation and review. Experientia 41, 1–15 (1985). https://doi.org/10.1007/BF02005853

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02005853

Key words

Navigation