Skip to main content
Log in

The mechanism of the lead tetraacetate oxidation of a B-norsteroid

  • Specialia
  • Disputandum
  • Published:
Experientia Aims and scope Submit manuscript

Zusammenfassung

Für die Bildung neuartiger Oxydationsprodukte, die bei der Reaktion eines B-Norsteroidalkohols mit Blei-tetraacetat entstehen, werden zwei Mechanismen vorgeschlagen: Die bekannte Spaltungs-Additions-Reaktion eines Alkoxy Radikals und die bisher unbekannte Umlagerung eines Alkyl-tertiäralkoxy Radikals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  1. D. Rosenthal, C. F. Lefler andM. E. Wall, Tetrahedron Lett. 3203 (1965); Tetrahedron23, in press (1967).

  2. R. Criegee, inNewer Methods of Preparative Organic Chemistry (Academic Press, New York 1963), vol. II, p. 36.

    Google Scholar 

  3. The isolation of lead hydroxy methoxy diacetate from methanol and lead tetraacetate has been reported byR. Criegee, L. Kraft andB. Rank, Justus Liebigs Annln Chem.507, 199 (1933).

    Article  Google Scholar 

  4. M. Lj. Mihailović, Z. Maksimović, D. Jeremić, Ž. Čeković, A. Milovanović andLj. Lorenc, Tetrahedron21, 1395 (1965).

    Article  Google Scholar 

  5. K. Heusler andJ. Kalvoda, Angew. Chem., Int. Edn3, 525 (1964);G. Cainelli, B. Kamber, J. Keller, M. Lj. Mihailović, D. Arigoni andO. Jeger, Helv. chim. Acta44, 518 (1961).

    Article  Google Scholar 

  6. This assumption is supported by the fact that when the alcohol I was irradiated at room temperature in benzene solution in the presence of lead tetraacetate, the enol ether II was formed. The reason that very little III was isolated can be explained by the fact that in the photolysis reaction the concentration of both reactants was very low. Since the reaction proceeds both thermally and photolytically, it is implied that alkoxy radicals rather than alkoxy cations are intermediates (J. Kalvoda andK. Heusler, Chemy Ind. 1431, 1963).

  7. G. Cainelli, B. Kamber, J. Keller, M. Lj. Mihailović, D. Arigoni andO. Jeger, Helv. chim. Acta44, 518 (1961);F. D. Greene, M. L. Savitz, F. D. Osterholtz, H. H. Lau, W. N. Smith andP. M. Zanet, J. org. Chem.28, 55 (1963).

    Article  CAS  Google Scholar 

  8. K. Heusler, J. Kalvoda, G. Anner andA. Wettstein, Helv. chim. Acta46, 352 (1963).

    Article  CAS  Google Scholar 

  9. H. Wieland, Ber. dt. chem. Ges.44, 2550 (1911);M. S. Kharasch, A. C. Poshkus, A. Fono andW. Nudenberg, J. org. Chem.16, 1458 (1951).

    Article  CAS  Google Scholar 

  10. B. M. Lynch andK. H. Pausacker, Aust. J. Chem.10, 40 (1957);D. R. Augood andG. H. Williams, Chem. Rev.57, 123 (1957)

    Article  CAS  Google Scholar 

  11. J. D. Bacha andJ. K. Kochi, J. org. Chem.30, 3272 (1965);C. Walling andA. Padwa, J. Am. chem. Soc.85, 1593 (1963).

    Article  CAS  Google Scholar 

  12. Electronic factors are not the sole determinants of the mode of cleavage. In certain strained cyclobutanol systems, the normal direction of cleavage is reversed and primary groups are extruded in preference to secondary groups.M. Amorosa, L. Caglioti, G. Cainelli, H. Immer, J. Keller, H. Wehrli, M. Lj. Mihailović, K. Schaffner, D. Arigoni andO. Jerger, Helv. chim. Acta.45, 2674 (1962);J. Fried andJ. W. Brown, Tetrahedron Lett. 1677 (1966).

    Article  CAS  Google Scholar 

  13. F. F. Rust, F. H. Seubold andW. E. Vaughan, J. Am. chem. Soc.70, 3258 (1948).

    Article  CAS  Google Scholar 

  14. C. D. Cook, R. C. Woodworth andP. Fianu, J. Am. chem. Soc.78, 4159 (1956).

    Article  CAS  Google Scholar 

  15. W. H. Starnes, Jr. andN. P. Neureiter, J. org. Chem.32, 333 (1967).

    Article  CAS  Google Scholar 

  16. E. W. R. Steacie,Atomic and Free Radical Reactions (Reinhold Publishing Corp., New York 1954), Chaps. IV and V.

    Google Scholar 

  17. F. D. Greene, C.-C. Chu, andJ. Walia, J. org. Chem.29, 1285 (1964);P. S. Skell andP. D. Readio, J. Am. chem. Soc.86, 3334 (1964).

    Article  CAS  Google Scholar 

  18. Compound II was shown independently to be involved in an alternate ionization to form an allylic carbonium ion with very different solvolysis products. The distinction between the cations derived fromβ alkoxy allylic alcohols by the protonation of theα carbon atom and the ion obtained by protonation of the hydroxyl group has been made previously.E. Wenkert andD. P. Strike, J. Am. chem. Soc.86, 2044 (1964).

    Article  CAS  Google Scholar 

  19. C. Walling, inMolecular Rearrangements (Ed.P. de Mayo; Interscience, New York 1963), p. 418.

    Google Scholar 

  20. M. Lj. Mihailović, Lj. Lorenc, M. Gašić, M. Rogić, A. Melera andM. Stefanović, Tetrahedron22, 2345 (1966).

    Article  Google Scholar 

  21. M. Akhtar andS. March, J. chem. Soc. c, 937 (1966).

  22. R. Criegee andH. Zogel, Ber. dt. chem. Ges.84, 215 (1951).

    Article  CAS  Google Scholar 

  23. R. Criegee andW. Schnorrenberg, Justus Liebigs Annln Chem.560, 141 (1948).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenthal, D. The mechanism of the lead tetraacetate oxidation of a B-norsteroid. Experientia 23, 686–690 (1967). https://doi.org/10.1007/BF02144204

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02144204

Keywords

Navigation