Skip to main content

Sedimentation of high polymers

  • Conference paper
  • First Online:
Fortschritte Der Hochpolymeren-Forschung

Part of the book series: Advances in Polymer Science ((POLYMER,volume 1/4))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alberty, R. A.: Variation of the sedimentation coefficient with time during a single velocity ultracentrifuge experiment. J. Amer. chem. Soc. 76, 3733 (1954).

    CAS  Google Scholar 

  • Albrecht, A. C.: Random flight model in the theory of the second virial coefficient of polymer solutions. J. chem. Physics 27, 1002 (1957).

    CAS  Google Scholar 

  • Archibald, W. J.: A demonstration of some new methods of determining molecular weights from the data of the ultracentrifuge. J. Phys. Colloid Chem. 51, 1204 (1947).

    CAS  Google Scholar 

  • Baldwin, R. L.: Sedimentation coefficients of small molecules: Methods of measurement based on the refractive-index gradient curve. The sedimentation coefficient of polyglucose A. Biochem. J. 55, 644 (1953).

    CAS  Google Scholar 

  • - Boundary spreading in sedimentation velocity experiments. II. The correction of sedimentation coefficient distributions for the dependence of sedimentation coefficient on concentration. J. Amer. chem. Soc. 76, 402 (1954a).

    Article  CAS  Google Scholar 

  • - Boundary spreading in sedimentation velocity experiments. III. Effects of diffusion on the measurement of heterogeneity when concentration dependence is absent. J. physic. Chem. 58, 1081 (1954b).

    CAS  Google Scholar 

  • Baldwin, R. L.: Boundary spreading in sedimentation velocity experiments. IV. Measurementof the standard deviation of a sedimentation coefficient distribution. Biochem. J. 65, 490 (1957a).

    CAS  Google Scholar 

  • - Boundary spreading in sedimentation velocity experiments. V. Measurement of the diffusion coefficient of bovine albumin by Fujita's equation. Biochem. J. 65, 503 (1957b).

    CAS  Google Scholar 

  • - Boundary spreading in sedimentation velocity experiments. VI. A better method for finding distributions of sedimentation coefficient when the effects of diffusion are large. J. physic. Chem. 63, 1570 (1959a).

    CAS  Google Scholar 

  • - Equilibrium sedimentation in a density gradient of materials having a continuous distribution of effective densities. Proc. nat. Acad. Sci. (Wash.) 45, 939 (1959b).

    CAS  Google Scholar 

  • -, and J. W. Williams: Boundary spreading in sedimentation velocity experiments. J. Amer. Soc. 72, 4325 (1950).

    CAS  Google Scholar 

  • Bisschops, J.: Viscosity, diffusion and sedimentation of polyacrylonitrile solutions. J. Polymer Sci. 17, 81 (1955).

    CAS  Google Scholar 

  • Bridgman, P. W.: The effect of pressure on the viscosity of forty three pure liquids. Proc. Amer. Acad. Sci. 61, 57 (1926).

    CAS  Google Scholar 

  • Brinkman, H. C.: A calculation of the viscous force exerted by a flowing liquid on a dense swarm of particles. Applied Sci. Res. 1, 27 (1947).

    Google Scholar 

  • Bueche, F.: Viscoelasticity of polymethacrylates. J. appl. Physics 26, 738 (1955).

    CAS  Google Scholar 

  • Burgers, J. M.: On the motion of small particles of elongated form, suspended in a viscous liquid. Second Report on Viscosity and Plasticity, Academy of Sciences at Amsterdam. New York: Nordemann Publ. Co. 1938.

    Google Scholar 

  • - On the influence of the concentration of a suspension upon the sedimentation velocity. Proc. Ned. Akad. Wet. 45, 9 (1942).

    CAS  Google Scholar 

  • Butler, J. A. V., A. B. Robins and K. V. Shooter: The viscous behavior of dilute solutions of a strong polyelectrolyte (polystyrene sulphonate). Proc. roy. Soc. A 241, 299 (1957).

    Google Scholar 

  • Casassa, E. F., and H. Markovitz: Statistical thermodynamics of polymer solutions. I. Theory of the second virial coefficient for a homogeneous solute. J. chem. Physics 29, 493 (1958).

    Article  CAS  Google Scholar 

  • Chinai, S. N.: Poly-n-hexyl methacrylate. IV. Dilute solution properties by viscosity and light scattering. J. Polymer Sci. 25, 413 (1957).

    CAS  Google Scholar 

  • -, and R. A. Guzzi: Poly-n-butyl methacrylate. III. Dilute solution properties by viscosity and light scattering. J. Polymer Sci. 21, 417 (1957).

    Google Scholar 

  • Debye, P., and A. M. Bueche: Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. J. chem. Physics 16, 573 (1948).

    Article  CAS  Google Scholar 

  • Dialer, K., and R. Kerber: Zur Kenntnis der PolyaethensulfonsÄuren. Makromol. Chem. 17, 56 (1955).

    Article  CAS  Google Scholar 

  • Dieu, H. A.: Etudes des solutions d'alcool polyvinylique. J. Polymer Sci. 12, 417 (1954).

    CAS  Google Scholar 

  • Drucker, C.: AktivitÄtsbestimmungen von Elektrolyten in der Ultrazentrifuge. Z. physik. Chem. A 180, 359 (1937).

    Google Scholar 

  • Dunlop, P. J.: A study of interacting flows in diffusion of the system raffinose — KCl-H2O at 25‡. J. physic. Chem. 61, 994 (1957).

    CAS  Google Scholar 

  • Ehrenberg, A.: Determination of molecular weights and diffusion coefficients in the ultracentrifuge. Acta chem. scand. 11, 1257 (1957).

    CAS  Google Scholar 

  • Elias, H. G., and F. Patat: Zum Verhalten von Makromolekülen in Lösung. J. Polymer Sci. 29, 141 (1958a).

    CAS  Google Scholar 

  • - Zur Verzweigung von Polyvinylacetat II. Makromol. Chem. 25, 13 (1958b).

    Article  Google Scholar 

  • Eriksson, A. F. V.: The molecular weight distribution in polymethyl methacrylate prepared by redox polymerization in water phase. II. Acta chem. scand. 7, 623 (1953).

    CAS  Google Scholar 

  • - Mass distribution of unfractionated and fractionated polymethyl methacrylates determined by ultracentrifugation and fractional precipitation. Acta chem. scand. 10, 360 (1956a).

    CAS  Google Scholar 

  • - Sedimentation, diffusion, and Viscosimetric measurements of polymethyl methacrylate fractions obtained at different degrees of conversion. Acta chem. scand. 10, 378 (1956b).

    CAS  Google Scholar 

  • Erlander, S., and J. F. Foster: Applications of the Archibald principle to paucidisperse macromolecular systems. J. Polymer Sci. 37, 103 (1959).

    CAS  Google Scholar 

  • Faxén, H.: über eine Differentialgleichung aus der physikalischen Chemie. Ark. Mat. Astron. Fysik. 21 b, No. 3 (1929).

    Google Scholar 

  • Fessler, J. H., and A. G. Ogston: Studies of the sedimentation, diffusion, and viscosity of some sarcosine polymers in aqueous solution. Trans. Faraday Soc. 47, 667 (1951).

    Article  CAS  Google Scholar 

  • Fixman, M.: Excluded volume in polymer chains. J. chem. Physics 23, 1656 (1955).

    CAS  Google Scholar 

  • - Equilibrium distribution of mass in centrifugal fields. J. physic. Chem. 62, 374 (1958).

    CAS  Google Scholar 

  • Flory, P. J.: Principles of Polymer Chemistry, Cornell University Press, Ithaca, N. Y. Chapter X (1953a), Chapter XIV (1953b), p. 615 (1953c).

    Google Scholar 

  • -, and T. G. Fox: Molecular configuration and thermodynamic parameters from intrinsic viscosities. J. Polymer Sci. 5, 745 (1950).

    CAS  Google Scholar 

  • -, and W. R. Krigbaum: Statistical mechanics of dilute polymer solutions. II. J. chem. Physics 18, 1086 (1950).

    CAS  Google Scholar 

  • -, L. Mandelkern, J. B. Kinsinger and W. B. Shultz: Molecular dimensions of polydimethylsiloxanes. J. Amer. chem. Soc. 74, 3364 (1952).

    CAS  Google Scholar 

  • Fox, T. G., and P. J. Flory: Viscosity-molecular weight and viscosity-temperature relationships for polystyrene and polyisobutylene. J. Amer. chem. Soc. 70, 2384 (1948).

    CAS  Google Scholar 

  • -- Intrinsic viscosity-molecular weight relationships for polyisobutylene. J. Phys. Colloid Chem. 53, 197 (1949).

    CAS  Google Scholar 

  • -- Second order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. appl. Physics 21, 581 (1950).

    Article  CAS  Google Scholar 

  • -- Intrinsic viscosity-temperature relationships for polyisobutylene in various solvents. J. Amer. chem. Soc. 73, 1909 (1951a).

    CAS  Google Scholar 

  • -- Intrinsic viscosity relationships for polystyrene. J. Amer. chem. Soc. 73, 1915 (1951b).

    CAS  Google Scholar 

  • Freund, L., and M. Daune: Détermination de la fonction de distribution d'un polymère en solution. Etude et comparaison de deux méthodes. J. Polymer Sci. 29, 161 (1958).

    CAS  Google Scholar 

  • Fujita, H.: Effects of a concentration dependence of the sedimentation coefficient in velocity ultracentrifugation. J. chem. Physics 24, 1084 (1956a).

    Article  CAS  Google Scholar 

  • - Effects of hydrostatic pressure upon sedimentation in the ultracentrifuge. J. Amer. chem. Soc. 78, 3598 (1956b).

    CAS  Google Scholar 

  • - On the determination of the sedimentation equilibrium second virial coefficient in polymeric solutions. J. physic. Chem. 63, 1326 (1959).

    CAS  Google Scholar 

  • -, and V. J. MacCosham: Extension of sedimentation velocity theory to molecules of intermediate sizes. J. chem. Physics 30, 291 (1959).

    Article  CAS  Google Scholar 

  • -, A. M. Linklater and J. W. Williams: A study of sedimentation equilibrium and viscosity of the system polystyrene and cyclohexane near the Flory temperature. J. Amer. chem. Soc. 82, 379 (1960).

    Article  CAS  Google Scholar 

  • Gehm, R.: Physikalische-chemische Messungen an Poly-Methylphenylenen. Acta chem. scand. 5, 270 (1951).

    CAS  Google Scholar 

  • Gibbs, J. W.: On the equilibrium of heterogeneous substances. Trans. Conn. Acad. Arts Sci. 3, 108 (1876). (See The collected works of J. Willard Gibbs, Vol. I, p. 144, Yale University Press 1948.)

    Google Scholar 

  • Ginsburg, A., P. Appel and H. K. Schachman: Molecular weight determinations during the approach to sedimentation equilibrium. Arch. Biochem. Biophys. 65, 545 (1956).

    Article  CAS  Google Scholar 

  • Goldberg, R. J.: Sedimentation in the ultracentrifuge. J. physic. Chem. 57, 194 (1953).

    CAS  Google Scholar 

  • Goring, D. A. I., and C. Chepeswick: Sedimentation of naturally occurring polyelectrolytes. J. Colloid Sci. 10, 440 (1955).

    Article  CAS  Google Scholar 

  • Gosting, L. J.: Solution of boundary spreading equations for electrophoresis and the velocity ultracentrifuge. J. Amer. chem. Soc. 74, 1548 (1952).

    CAS  Google Scholar 

  • Gralén, N.: Sedimentation and diffusion measurements on cellulose derivatives. Diss. Upsala 1944.

    Google Scholar 

  • -, and G. Lagermalm: A contribution to the knowledge of some physico-chemical properties of polystyrene. J. physic. Chem. 56, 514 (1952).

    Google Scholar 

  • Gutfreund, H., and A. G. Ogston: A method for determining the sedimentation constant of material of low molecular weight. Studies on oxidation products of insulin. Biochem. J. 44, 163 (1949).

    CAS  Google Scholar 

  • Haase, R.: über den Zusammenhang zwischen den Diffusionskoeffizienten und dem Sedimentationskoeffizienten einer binÄren Lösung. Kolloid Z. 138, 105 (1954).

    Article  CAS  Google Scholar 

  • - Zur Theorie der Sedimentation und Diffusion in binÄren Nichtelektrolytlösungen. Kolloid Z. 147, 141 (1956).

    Article  CAS  Google Scholar 

  • Herdan, G.: Inequalities between average molecular weights of polymers, and their relations to the distribution function. Nature (Lond.) 164, 502 (1949).

    CAS  Google Scholar 

  • Holde, K. E. van, and J. W. Williams: Study of the viscoelastic behavior and molecular weight distribution of polyisobutylene. J. Polymer Sci. 11, 243 (1953).

    Google Scholar 

  • -, and R. L. Baldwin: Rapid attainment of sedimentation equilibrium. J. physic. Chem. 62, 734 (1958).

    Google Scholar 

  • Hooyman, G. J.: Thermodynamics of diffusion in multicomponent systems. Physica 22, 751 (1956a).

    Google Scholar 

  • - Thermodynamics of sedimentation in paucidisperse systems. Physica 22, 761 (1956b).

    CAS  Google Scholar 

  • -, H. Holtan jr., P. Mazur and S. R. de Groot: Thermodynamics of irreversible processes in rotating systems. Physica 19, 1095 (1953).

    Article  CAS  Google Scholar 

  • Howard, G. J., and D. O. Jordan: The sedimentation and diffusion of sodium polymethacrylate and polymethacrylic acid. J. Polymer Sci. 12, 209 (1954).

    CAS  Google Scholar 

  • Hunt, M. L., S. Newman, H. A. Scheraga and P. J. Flory: Dimensions and hydrodynamic properties of cellulose trinitrate molecules in dilute solutions. J. physic. Chem. 60, 1278 (1956).

    CAS  Google Scholar 

  • Ingelman, B., and M. S. Halling: Some physico-chemical experiments on fractions of dextran. Ark. Kemi 1, 61 (1949).

    CAS  Google Scholar 

  • International Union of Pure and Applied Chemistry (Reported by Frank, H. P., and H. Mark). Report on molecular weight measurements of standard polystyrene samples. J. Polymer. Sci. 10, 129 (1953).

    Google Scholar 

  • Johnson, J. S., K. A. Kraus and T. F. Young: Determination of activity coefficients by ultracentrifugation. J. Amer. chem. Soc. 76, 1436 (1954).

    CAS  Google Scholar 

  • Johnston, J. P., and A. G. Ogston: A boundary anomaly found in the ultracentrifugal sedimentation of mixtures. Trans. Faraday Soc. 42, 789 (1946).

    Article  CAS  Google Scholar 

  • Jordan, D. O., A. R. Mathieson and M. R. Porter: Hydrodynamic properties of polyelectrolytes. Part I. Poly-4-vinyl-N-n-butyl pyridinium bromide. J. Polymer Sci. 21, 463 (1956a).

    CAS  Google Scholar 

  • -, A. R. Mathieson and M. R. Porter: Hydrodynamic properties of polyelectrolytes. Part II. Poly-4-vinyl pyridine. J. Polymer Sci. 21, 473 (1956b).

    CAS  Google Scholar 

  • Jullander, I.: Studies on nitrocellulose. Ark. Kemi, Mineral., Geol. 21 A, No. 8 (1945).

    Google Scholar 

  • Kegeles, G.: A boundary forming technique for the ultracentrifuge. J. Amer. chem. Soc. 74, 5532 (1952).

    Article  CAS  Google Scholar 

  • -, S. M. Klainer and W. J. Salem: Direct ultracentrifuge molecular weights of synthetic high polymers. J. physic. Chem. 61, 1286 (1957).

    CAS  Google Scholar 

  • Kinell, K. O.: Quelques remarques sur l'effet de la concentration et de la polydispersion sur la sédimentation par ultracentrifugation. J. Chim. physique 44, 53 (1947).

    CAS  Google Scholar 

  • Kirkwood, J. G.: The general theory of irreversible processes in solutions of macromolecules. J. Polymer Sci. 12, 1 (1954).

    CAS  Google Scholar 

  • -, and J. Riseman: The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. J. chem. Physics 16, 565 (1948).

    Article  CAS  Google Scholar 

  • -, and R. J. Goldberg: Light scattering arising from composition fluctuations in multi-component systems. J. chem. Physics 18, 54 (1950).

    CAS  Google Scholar 

  • Klainer, S. M., and G. Kegeles: Simultaneous determination of molecular weights and sedimentation constants. J. physic. Chem. 59, 952 (1955).

    CAS  Google Scholar 

  • Krigbaum, W. R.: Statistical mechanics of dilute polymer solutions. VI. Thermodynamic parameters for the systems polystyrene cyclohexane. J. Amer. chem. Soc. 76, 3758 (1954).

    CAS  Google Scholar 

  • -, and P. J. Flory: Statistical mechanics of dilute polymer solutions. V. Evaluation of thermodynamic interaction parameters from dilute solution measurements. J. Amer. chem. Soc. 75, 5254 (1953).

    CAS  Google Scholar 

  • -, and A. M. Kotliar: The molecular weight of polyacrylonitrile. J. Polymer Sci. 32, 323 (1958).

    CAS  Google Scholar 

  • Kuhn, H., W. Kuhn and A. Silberberg: Improved relationships for diffusion and sedimentation constants and for viscosity and streaming birefringence of solutions of polymers. J. Polymer Sci. 14, 193 (1954).

    CAS  Google Scholar 

  • Kurata, M., and H. Yamakawa: Theory of dilute polymer solution. II. Osmotic pressure and frictional properties. J. chem. Physics 29, 311 (1958).

    Article  CAS  Google Scholar 

  • -,-, and E. Teramoto: Theory of dilute polymer solution. I. Excluded volume effect. J. chem. Physics 28, 785 (1958).

    Article  CAS  Google Scholar 

  • Lalla, O. F. de, and J. W. Gofman: Ultracentrifugal analysis of serum lipoproteins. In Methods of biochemical analysis edited by D. Glick, Vol. 1, Interscience Press, New York 1954.

    Google Scholar 

  • Lamm, O.: Zur Theorie und Methodik der Ultrazentrifugierung. Z. physik. Chem. A 143, 177 (1929). See also in The Ultracentrifuge, p. 22, T. Svedberg and K. O. Pedersen, editors, Oxford University Press 1940.

    Google Scholar 

  • -Dynamical principles applied to the sedimentation-diffusion processes at finite concentrations. Trans. roy. Inst. Tech. Stockholm, Number 134 (1959).

    Google Scholar 

  • Lansing, W. D., and E. O. Kraemer: Molecular weight analysis of mixtures by sedimentation equilibrium in the Svedberg ultracentrifuge. J. Amer. chem. Soc. 57, 1369 (1935).

    Article  CAS  Google Scholar 

  • -- Solvation and the determination of molecular weights by means of the Svedberg ultracentrifuge. J. Amer. chem. Soc. 58, 1471 (1936).

    Article  CAS  Google Scholar 

  • Larner, J., B. R. Ray and H. F. Crandall: Pattern of action of crystalline muscle phosphorylase on glycogen as determined from molecular size distribution studies. J. Amer. chem. Soc. 78, 5890 (1956).

    CAS  Google Scholar 

  • Malmgren, H.: A contribution to the physical chemistry of colloidal metaphosphates. II. Acta chem. scand. 6, 1 (1952).

    CAS  Google Scholar 

  • Mandelkern, L., and P. J. Flory: The frictional coefficient for flexible chain molecules in dilute solution. J. chem. Physics 20, 212 (1952a).

    CAS  Google Scholar 

  • -- Molecular dimensions of cellulose triesters. J. Amer. chem. Soc. 74, 2517 (1952b).

    CAS  Google Scholar 

  • -, W. R. Krigbaum, H. A. Scheraga and P. J. Flory: Sedimentation behavior of flexible chain molecules: polyisobutylene. J. chem. Physics 20, 1392 (1952).

    CAS  Google Scholar 

  • -, L. C. Williams and S. G. Weissberg: Sedimentation equilibrium of flexible chain molecules. J. physic. Chem. 61, 271 (1957).

    CAS  Google Scholar 

  • Manley, R. St. J.: Properties of ethyl hydroxy-ethyl cellulose molecules in solution. Ark. Kemi 9, 519 (1956).

    CAS  Google Scholar 

  • Mason, M., and W. Weaver: The settling of small particles in a fluid. Physic. Rev. 23, 412 (1924).

    Article  CAS  Google Scholar 

  • Meselson, M., F. W. Stahl and J. Vinograd: Equilibrium sedimentation of macromolecules in density gradients. Proc. nat. Acad. Sci. (Wash.) 43, 581 (1957).

    CAS  Google Scholar 

  • -- The replication of DNA in escherichia coli. Proc. nat. Acad. Sci. (Wash.) 44, 671 (1958).

    CAS  Google Scholar 

  • Meyerhoff, G.: Molekulargewichtsbestimmungen an verschieden scharf fraktionierten PolymethacrylsÄuremethylestern. Makromol. Chem. 12, 45 (1954a).

    CAS  Google Scholar 

  • - Molekulargewichtsbestimmungen an Cellulosenitraten in der Ultrazentrifuge. Naturwissenschaften 41, 13 (1954b).

    Article  CAS  Google Scholar 

  • - über den experimentellen Zusammenhang zwischen Molekulargewicht und ViskositÄtszahl von Polystyrolen im Bereich von M = 1000 bis 500,000 aufgrund von Sedimentations-und Diffusionsmessungen. Z. physik. Chem. N F 4, 355 (1955).

    Google Scholar 

  • - Zur Bestimmung von Molekulargewichten und ihrer Verteilung bei unfraktionierten Polymeren. Z. Elektrochem. 61, 1249 (1957).

    CAS  Google Scholar 

  • - Neuere Bestimmungen des Molekulargewichtes und der molekularen Konstanten von Cellulosenitraten in Lösung. J. Polymer. Sci. 29, 399 (1958).

    CAS  Google Scholar 

  • -, and G. V. Schulz: Molekulargewichtsbestimmungen an PolymethacrylsÄureestern mittels Sedimentation in der Ultrazentrifuge und Diffusion. Makromol. Chem. 7, 294 (1952).

    Article  CAS  Google Scholar 

  • Miller, L. E., and F. A. Hamm: Macromolecular properties of polyvinyl-pyrrolidone: Molecular weight distribution. J. physic. Chem. 57, 110 (1953).

    CAS  Google Scholar 

  • Nazarian, G. M.: Theory of the transient state in the ultracentrifuge. J. physic. Chem. 62, 1607 (1958).

    CAS  Google Scholar 

  • Newman, S., and F. Eirich: Particle shape and concentration dependence of sedimentation and diffusion. J. Colloid Sci. 5, 541 (1950).

    Article  CAS  Google Scholar 

  • -, L. Loeb and C. M. Conrad: Viscosity, sedimentation, diffusion, and osmotic behavior of long-chain nitrocellulose molecules. J. Polymer Sci. 10, 463 (1953).

    CAS  Google Scholar 

  • -, W. R. Krigbaum and D. K. Carpenter: Reversible association of cellulose nitrate in ethanol. J. physic. Chem. 60, 648 (1956).

    CAS  Google Scholar 

  • -, C. Laugier and P. J. Flory: Molecular dimensions in relation to intrinsic viscosities. J. Polymer Sci. 14, 451 (1954).

    CAS  Google Scholar 

  • O'Donnell, I. J., and L. J. Gosting: The concentration dependence of the four diffusion coefficients for the system NaCl-KCl-H2O at 25‡ C. In The Structure of Electrolytic Solutions; p. 160, edited by W. Hamer. New York: Wiley 1959.

    Google Scholar 

  • Ogston, A. G., and E. F. Woods: The sedimentation of some fractions of degraded dextrans. Trans. Faraday Soc. 50, 635 (1954).

    CAS  Google Scholar 

  • Onsager, L.: Reciprocal relations in irreversible processes. I, II. Physic. Rev. 37, 405; 38, 2265 (1931a, b).

    Google Scholar 

  • - Theories and problems of liquid diffusion. Ann. N. Y. Acad. Sci. 46, 241 (1945).

    CAS  Google Scholar 

  • Ortega, M.: Polieelectrolitos. I. Algunos aspectos fisicoquimicos de soluciones de los compuestos de adición del butilbromuro normal con copolimeros de la 4 vinyl-piridina y el estieno. Anal. real. soc. españ. fis. 49 b, 205 (1953).

    Google Scholar 

  • Oth, A.: Caracteristiques moleculaires des solution diluées du chlorure de polyvinyle. Industrie chim. belge. 20, Spéc. No. 3, 423 (1955).

    CAS  Google Scholar 

  • Oth, J., and V. Desreux: Correction des constantes de sédimentation pour la pression hydrostatique. Bull. Soc. chim. Belges 63, 133 (1954a).

    CAS  Google Scholar 

  • --Renseignements donnés par les diagrammes de sédimentation sur la polydispersité des polymères. Abstracts Int. Cong. pure appl. Chem., Milan 1954 b.

    Google Scholar 

  • -- Sur les propriétés hydrodynamiques des solutions de grandes molécules en chaÎne. II. Sédimentation du polystyrène dans différents solvants. Bull. Soc. chim. Belges 66, 303 (1957).

    CAS  Google Scholar 

  • Pasternak, R. A., G. M. Nazarian and J. R. Vinograd: A fast method for reaching equilibrium in the ultracentrifuge. Nature (Lond.) 179, 92 (1957).

    CAS  Google Scholar 

  • Pedersen, K. O.: über das Sedimentationsgleichgewicht von anorganischen Salzen in der Ultrazentrifuge. Z. physik. Chem. A 170, 41 (1934). (See also “The Ultracentrifuge”, T. Svedberg and K. O. Pedersen, editors, Oxford Univ. Press 1940.)

    Google Scholar 

  • Peterlin, A.: Determination of the diameter of the coiled macromolecule from viscosity, sedimentation, and diffusion. J. colloid Sci. 10, 587 (1955).

    Article  CAS  Google Scholar 

  • - Bestimmung von Molekülabmessungen aus ViskositÄt, Sedimentation und Diffusion. Makromol. Chem. 18/19, 254 (1956).

    CAS  Google Scholar 

  • Pickels, E. G., W. F. Harrington and H. K. Schachman: An ultracentrifuge cell for producing boundaries synthetically by a layering technique. Proc. nat. Acad. Sci. (Wash.) 38, 943 (1952).

    CAS  Google Scholar 

  • Pollock, D. J., L. J. Elyash and T. W. Dewitt: A molecular weight-intrinsic viscosity study of several diene polymers. J. Polymer Sci. 15, 87 (1955).

    Google Scholar 

  • Rinde, H.: The distribution of the sizes of particles in gold sols. Diss. Upsala 1928.

    Google Scholar 

  • Rosen, B., P. Kamath and F. Eirich: Flow birefringence, viscosity, and sedimentation of polyvinyl pyridinium bromide. Discuss. Faraday Soc. 11, 135 (1951).

    Article  Google Scholar 

  • Schachman, H. K.: Techniques for characterization of proteins (Procedures and interpretations). [2] Ultracentrifugation, diffusion, and viscometry. Methods in Enzymology, Vol. IV. New York: Academic Press 1957.

    Google Scholar 

  • Scheraga, H. A., and L. Mandelkern: Consideration of the hydrodynamic properties of proteins. J. Amer. chem. Soc. 75, 179 (1953).

    Article  CAS  Google Scholar 

  • Schick, A. F., and S. J. Singer: On the concentration dependence of the rates of diffusion of macromolecules in solution — An investigation of fractions of polystyrene. J. Phys. Colloid Chem. 54, 1028 (1950).

    CAS  Google Scholar 

  • Scholtan, W.: Molekulargewichtsbestimmung von Polyvinyl pyrrolidon mittels der Ultrazentrifuge. Makromol. Chem. 7, 209 (1952).

    Article  CAS  Google Scholar 

  • Schulz, G. V.: über Beziehungen zwischen osmotischem Druck, Diffusionskonstante und den mit der Ultrazentrifuge ermittelten Grö\en bei Nichtzutreffen der Grenzgesetze für verdünnte Lösungen. Z. physik. Chem. A 193, 168 (1944).

    Google Scholar 

  • -, and H. Doll: Thermodynamische Analyse der Lösungen von PolymethacrylsÄureester in verschiedenen Lösungsmitteln. Z. Elektrochem. 56, 248 (1952).

    CAS  Google Scholar 

  • -, and M. Marx: über Molekulargewichte und Molekulargewichtsverteilungen nativer Cellulosen. Makromol. Chem. 14, 52 (1954).

    CAS  Google Scholar 

  • -, and G. Meyerhoff: über den zweiten Virialkoeffizienten des osmotischen Druckes und seine Ermittlung durch Messung der Diffusionskonstante und der Sedimentationskonstante in der Ultrazentrifuge. Z. Elektrochemie 56, 545 (1952).

    CAS  Google Scholar 

  • Schumaker, V. N., and H. K. Schachman: Ultracentrifugal analysis of dilute solutions. Biochem. biophys. Acta 23, 628 (1957).

    Article  CAS  Google Scholar 

  • Senti, F. R., N. N. Hellman, N. H. Ludwig, G. E. Babcock, R. Tobin, C. A. Glass and B. L. Lamberts: Viscosity, sedimentation, and light scattering properties of fractions of an acid-hydrolysed dextran. J. Polymer Sci. 17, 527 (1955).

    CAS  Google Scholar 

  • Shooter, K. V., and J. A. V. Butler: Sedimentation of deoxyribonucleic acid at low concentrations. Trans. Faraday Soc. 52, 734 (1956).

    Article  CAS  Google Scholar 

  • Shultz, A. R., and P. J. Flory: Phase equilibria in polymer-solvent systems. J. Amer. chem. Soc. 74, 4760 (1952).

    CAS  Google Scholar 

  • Signer, R., and H. Gross: Ultrazentrifugale PolydispersitÄtsbestimmungen an hochpolymeren Stoffen. Helv. chim. Acta 17, 726 (1934).

    CAS  Google Scholar 

  • Singer, S. J.: Molecular weight averages obtained from sedimentation velocity and diffusion measurements. J. Polymer Soi. 1, 445 (1946).

    CAS  Google Scholar 

  • Smith, D. B., G. C. Wood and P. A. Charlwood: Application of the Archibald ultracentrifugal procedure to lysozyme and apurinic acid: Evaluation using a mechanical integrator. Canad. J. Chem. 34, 364 (1956).

    CAS  Google Scholar 

  • Stockmayer, W. H.: Light scattering in multicomponent systems. J. chem. Physics 18, 58 (1950).

    CAS  Google Scholar 

  • - Chain dimensions near the Flory temperature. J. Polymer Sci. 15, 595 (1955).

    CAS  Google Scholar 

  • -, and M. Fixman: Dilute solutions of branched polymers. Ann. N. Y. Acad. Sci. 57, 334 (1953).

    CAS  Google Scholar 

  • Svedberg, T.: Zentrifugierung, Diffusion und Sedimentationsgleichgewicht von Kolloiden und hochmolekularen Stoffen. Kolloid-Z. 36 (Zsigmondy-Festschrift) 53 (1925).

    Google Scholar 

  • -, and K. O. Pedersen: The Ultracentrifuge. Oxford Univ. Press 1940.

    Google Scholar 

  • -, and H. Rinde: The ultracentrifuge, a new instrument for the determination of size and distribution of size of particle in amicroscopic colloids. J. Amer. chem. Soc. 46, 2677 (1924).

    Google Scholar 

  • Taylor, G. B.: The distribution of the molecular weight of nylon as determined by fractionation in a phenol-water system. J. Amer. chem. Soc. 69, 638 (1947).

    CAS  Google Scholar 

  • Trautman, R.: Operating and comparating procedures facilitating schlieren pattern analysis in analytical ultracentrifugation. J. physic. Chem. 60, 1211 (1956).

    CAS  Google Scholar 

  • - Optical fine-structure of a meniscus in analytical ultracentrifugation in relation to molecular-weight determinations using the Archibald principle. Biochim. biophys. Acta 28, 417 (1958).

    Article  CAS  Google Scholar 

  • -, and V. Schumaker: Generalization of the radial dilution square law in ultracentrifugation. J. chem. Physics 22, 551 (1954).

    CAS  Google Scholar 

  • -, V. N. Schumaker, W. F. Harrington and H. K. Schachman: The determination of concentrations in the ultracentrifugation of two-component systems. J. chem. Physics 22, 555 (1954).

    CAS  Google Scholar 

  • -, and S. S. Breese jr.: Moving boundary theory applied to preparative ultracentrifugation. J. physic. Chem. 63, 1592 (1959).

    CAS  Google Scholar 

  • Wagner, H. L., and P. J. Flory: Molecular dimensions of natural rubber and gutta percha. J. Amer. chem. Soc. 74, 195 (1952).

    CAS  Google Scholar 

  • Wales, M.: Sedimentation equilibria of polydisperse non-ideal solutes. I. Theory. J. Phys. Colloid Chem. 52, 235 (1948).

    CAS  Google Scholar 

  • - Sedimentation equilibria of polydisperse non-ideal solutes. V. Uses and limitations of the equilibrium ultracentrifuge. J. Phys. Colloid Chem. 55, 282 (1951).

    CAS  Google Scholar 

  • - Sedimentation equilibrium in concentrated polymer solutions. J. appl. Physics 22, 735 (1951).

    Article  CAS  Google Scholar 

  • Wales, M., F. T. Adler and K. E. van Holde: Sedimentation equilibria of polydisperse non-ideal solutes. VI. Number-average molecular weight and molecular weight distribution functions. J. Phys. Colloid Chem. 55, 145 (1951).

    CAS  Google Scholar 

  • -, M. Bender, J. W. Williams and R. H. Ewart: Sedimentation equilibria of polydisperse non-ideal solutes. J. chem. Physics 14, 353 (1946).

    Article  CAS  Google Scholar 

  • -, and K. E. van Holde: The concentration dependence of the sedimentation constants of flexible macromolecules. J. Polymer Sci. 14, 81 (1954).

    CAS  Google Scholar 

  • -, and D. L. Swanson: Sedimentation equilibria of polydisperse non-ideal solutes. IV. Association in dilute cellulose acetate solutions. J. Phys. Colloid Chem. 55, 203 (1951).

    CAS  Google Scholar 

  • -, and J. W. Williams: Effect of solvation on sedimentation experiments. J. Polymer Sci. 8, 449 (1952).

    CAS  Google Scholar 

  • Walsh, E. K., and H. S. Kaufman: Intrinsic viscosity — molecular weight relationship for polychlorotrifluoroethylene. J. Polymer Sci. 26, 1 (1957).

    CAS  Google Scholar 

  • Weaver, W.: The duration of the transient state in the settling of small particles. Physic. Rev. 27, 499 (1926).

    Article  CAS  Google Scholar 

  • Williams, J. W.: Sedimentation analysis and some related problems. J. Polymer Sci. 12, 351 (1954).

    CAS  Google Scholar 

  • -, K. E. van Holde, R. L. Baldwin and H. Fujita: The theory of sedimentation analysis. Chem. Rev. 58, 715 (1958).

    CAS  Google Scholar 

  • -, and W. M. Saunders: Size distribution analysis in plasma extender systems. II. Dextran. J. physic. Chem. 58, 854 (1954).

    CAS  Google Scholar 

  • -, and J. S. Cicirelli: Size distribution analysis in plasma extender systems. I. Gelatin. J. physic. Chem. 58, 774 (1954).

    CAS  Google Scholar 

  • Witnauer, L. P., F. R. Senti and M. D. Stern: Light scattering investigation of potato amylopectin. J. Polymer Sci. 16, 1 (1955).

    CAS  Google Scholar 

  • Yphantis, D. A., and D. F. Waugh: Ultracentrifugal characterization by direct measurement of activity. I. Theoretical. J. physic. Chem. 60, 623 (1956).

    CAS  Google Scholar 

  • Zimm, B. H., and W. H. Stockmayer: The dimensions of chain molecules containing branches and rings. J. chem. Physics 17, 1301 (1949).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1960 Springer-Verlag

About this paper

Cite this paper

Baldwin, R.L., van Holde, K.E. (1960). Sedimentation of high polymers. In: Fortschritte Der Hochpolymeren-Forschung. Advances in Polymer Science, vol 1/4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0050424

Download citation

  • DOI: https://doi.org/10.1007/BFb0050424

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-02493-4

  • Online ISBN: 978-3-540-37016-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics