

Scientific Technical Report

ISSN 1610-0956

Geochemie und Geochronologie des Erongo-Komplexes, Namibia

verfasst von

Marcus Oliver Wigand
geboren am 21.06.1966 in Wetzlar

Dissertation

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

- Dr. rer. nat. -

eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam

Potsdam, November 2003

Scientific Technical Report STR 05/02 DOI: 10.2312/GFZ.b103-050283

Hiermit erkläre ich, dass die vorliegende Arbeit an keiner anderen Hochschule eingereicht und von mir selbstständig und nur mit den angegebenen Hilfsmitteln angefertigt wurde.

Potsdam, November 2003

Gutachter: Prof. Dr. h.c. Rolf Emmermann

(Universität Gießen & Universität Potsdam)

Prof. Dr. Jörg Erzinger (Universität Potsdam)

Prof. Dr. Udo Haack (Universität Gießen)

Scientific Technical Report STR 05/02 DOI: 10.2312/GFZ.b103-050283

Erweiterte Zusammenfassung

Der Erongo-Komplex ist mit ca. 40 km Durchmesser der größte unter den kretazischen Intrusivkomplexen des südwestafrikanischen passiven Kontinentalrandes. geographisches Zentrum befindet sich bei 21°40′ südlicher Breite und 15°40′ östlicher Länge in der Damaraland-Provinz, Namibia. Ebenso wie der kretazische Paraná-Etendeka-Flutbasaltvulkanismus stellt die Entstehung des Erongo-Komplexes ein bimodales Ereignis dar, in dessen Verlauf sowohl mantel- als auch krustengenerierte Magmen gefördert wurden. Die stratigraphische Abfolge im Erongo-Komplex gliedert sich in die folgenden Einheiten (subvulkanisch-plutonische Äquivalente vulkanischer Einheiten in Klammern): (1) Basisbasalt; (2) Gangdolerite; (3) Erongorus-Rhyodazit; (4) Ombu-Rhyodazit (Ombu-Granodiorit); (5) Ekuta-Rhyolith (Erongo-Granit); (6) Alkalibasaltische Stöcke und Gänge. Mantelgenerierte Magmatite stehen am Anfang und am Ende der Entwicklungsgeschichte des Erongo-Komplexes, wobei die geochemisch-geochronologischen Ergebnisse dieser Arbeit eine Neubewertung petrogenetischer Prozesse sowie der beteiligten Mantel- und Krustenreservoire erlauben.

Die Kombination von Nd-, Pb-, Sr- und Os-Isotopendaten zeigt, dass die Tholeiite an der Basis des Erongo-Komplexes Reste der Paraná-Etendeka-Flutbasalte darstellen. In ihrer geochemischen Signatur überlappen diese "Basisbasalte" mit den in der Paraná-Etendeka-Provinz vorkommenden "low Ti"-Flutbasalten, lassen sich jedoch keinem der regionalstratigraphisch vorkommenden Flutbasalttypen eindeutig zuordnen. Dabei wird die geochemische Variabilität der Basisbasalte ($\varepsilon_{\mathrm{Nd}\,(130\;\mathrm{Ma})}$ = -0,4 bis -7,3; $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}_{130\;\mathrm{Ma}}$ = 0,71477 bis 0,71648) durch Assimilation von kontinentaler Unterkruste (repräsentiert durch spätpaläozoische A Typ-Granite) bzw. Mischung mit granitischen Krustenmagmen verursacht. Die Gangdolerite sind isotopisch ähnlich zusammengesetzt ($\varepsilon_{Nd (130 \text{ Ma})}$ = -0,8 bis – 2,1; ${}^{87}Sr/{}^{86}Sr_{130 \text{ Ma}} = 0,71005$ bis 0,71085) wie die regional vorkommenden Kuidas-Basalte und haben ähnlich wie die Basisbasalte eine krustale Kontamination erfahren. Im Gegensatz zu den Basisbasalten kommen für die Gangdolerite überwiegend die regional auftretenden Kuiseb-Schiefer als möglicher Kontaminant in Frage. Vor allem die negativen y_{Os (130 Ma)}-Werte (-0,2 und -8,1) zeigen, dass die Krustenkontamination bei den Gangdoleriten deutlich geringer war und liefern eindeutige Hinweise auf einen Ursprung der Gangdolerite im subkontinentalen lithosphärischen Mantel (SCLM). Die Basisbasalte dagegen könnten aufgrund der positiven $\gamma_{Os~(130~Ma)}$ -Werte (+50,2 bis +192) sowohl dem SCLM als auch dem Tristan-Plume entstammen, wenn z.B. kontinentale Kruste assimiliert wird. Aufgrund der niedrigen Eruptionsraten von ~0,1 km³ a⁻¹ in der Paraná-Etendeka-Provinz (Stewart et al., 1996) ist jedoch ein Plume-Ursprung der "low Ti"-Basalte bzw. der Basisbasalte unwahrscheinlich (White & McKenzie, 1995). Anhand der Na_{8.0}- und Fe_{8.0}-Gehalte lassen sich für die Basisbasalte und Gangdolerite nach dem Verfahren von Kinzler & Grove (1992) durchschnittliche Bildungstemperaturen von 1475 bzw. 1490 °C sowie durchschnittliche Drücke im Bereich von 14-15 kbar berechnen, entsprechend einer Bildungstiefe zwischen ca. 40 und 45 km. Vor allem die tholeiitischen Basalte mit 6>MgO>10 Gew.-% wurden neben Assimilation von kontinentaler Kruste auch durch Prozesse wie fraktionierte Kristallisation und Kumulatbildung in ihrer primären Zusammensetzung verändert. Beteiligte Mineralphasen waren hierbei Olivin, Klinopyroxen, Plagioklas und Fe-Ti-Oxide.

Während die tholeiitischen Basalte des Erongo-Komplexes aus dem lithosphärischen Mantel stammen, bildet, wie auch bei den Magmatiten der alkalibasaltischen Stöcke (Trumbull et al., 2003), der asthenosphärische Mantel die Magmenquelle der alkalibasaltischen Gangintrusiva. Aus der Zusammensetzung der wenig differenzierten Basanite und Tephrite der alkalibasaltischen Gänge ergibt sich für die Equilibrierung der

Magmen anhand der Gleichungen von Albarède (1992), Scarrow & Cox (1995) und Haase (1996) ein Druckbereich von 13-53 kbar bzw. für die Probe mit den niedrigsten SiO₂-Gehalten (425) ein Druckbereich von 25-53 kbar, entsprechend einer ungefähren Bildungstiefe von 46-186 km bzw. 88-186 km. Die Schmelzbildung der alkalibasaltischen Magmen fand daher wahrscheinlich unterhalb ~80 km im Stabilitätsfeld von Granatperidotit statt (z.B. Wyllie, 1975). Bestätigt wird dies durch Elementmuster der Seltenen Erden, die sowohl für die alkalibasaltischen Stöcke (Trumbull et al., 2003) als auch für die alkalibasaltischen Gänge erhöhte (Sm/Yb)_{CN}-Verhältnisse im Bereich von 4-7 aufweisen. Dies entspricht dem (Sm/Yb)_{CN}-Verhältnis von Schmelzen, die im Granatstabilitätsfeld gebildet wurden (McKenzie & O'Nions, 1991; Ellam, 1992) und unterstreicht die unabhängig davon aus den Hauptelementzusammensetzungen abgeleiteten größeren Bildungstiefen der alkalibasaltischen Magmen. Weitere Hinweise auf einen asthenosphärischen Ursprung der alkalibasaltischen Schmelzen liefern die initialen $\varepsilon_{\text{Nd (130 Ma)}}$ -Werte (+1,3 bis +3,0) sowie die initialen ⁸⁷Sr/⁸⁶Sr₁₃₀ Ma-Verhältnisse (0,70434 bis 0,71424), die mit denen der alkalibasaltischen Stöcke (Trumbull et al., 2003) und der Alkalimagmatite von Tristan da Cunha (Le Roex et al., 1990) überlappen.

Lokale Assimilation von Nebengestein übt darüber hinaus einen bedeutenden Einfluss auf die Zusammensetzung der jeweiligen Alkalibasalte aus. Die in den Erongo-Granit intrudierten Alkalibasalte weisen bei vergleichbarem Differentiationsgrad höhere SiO₂-, TiO₂- und niedrigere CaO-Gehalte auf als die Proben, die in die Rhyodazite intrudierten. Die Spurenelemente verhalten sich in Bezug auf das Nebengestein, in das die Magmen intrudiert sind, ähnlich. Die Alkalibasalte, die in den Erongo-Granit intrudierten, sind mit Ausnahme der Spurenelemente Rb, K, Zr und Ti gegenüber den in die Rhyodazite intrudierten Alkalibasalten in nahezu allen Spurenelementen verarmt. Weiterhin weisen die in den Erongo-Granit intrudierten Alkalibasalte gegenüber den in die Rhyodazite intrudierten Basaniten, Tephriten und Magmatiten der alkalibasaltischen Stöcke höhere Zr/Nb-, Rb/Nb-und Ba/Nb-Verhältnisse auf.

Nd-, Sr- und Pb-Isotopenverhältnisse der SiO₂-reichen Vulkanite des Erongo-Komplexes belegen, dass Unterschiede zwischen den Erongorus- und Ombu-Rhyodaziten bzw. Ekuta-Rhyolithen bestehen. Während für die Ombu-Rhyodazite bzw. Ekuta-Rhyolithe die jeweiligen Intrusiväquivalente im Erongo-Komplex vorkommen, existiert kein Intrusiväquivalent für die Erongorus-Rhyodazite innerhalb des Erongo-Komplexes. Zudem fehlen Xenolithe aus dem Grundgebirge (Pirajno, 1990), die beispielsweise für die Ombu-Rhyodazite eine Zuordnung zum Ombu-Granodiorit erlauben. Die $\varepsilon_{\rm Nd~(130~Ma)}$ -Werte (-8,9 bis-8,5) der Ombu-Rhyodazite sind negativer als die $\varepsilon_{\rm Nd~(130~Ma)}$ -Werte (-8,3 bis -7,8) der Erongorus-Rhyodazite. Weiterhin weisen die Erongorus-Rhyodazite im Gegensatz zu den Ombu-Rhyodaziten niedrigere 87 Sr/ 86 Sr_{130 Ma}- (0,72048-0,72265), 206 Pb/ 204 Pb ${}_{130~Ma}$ - (18,59-18,61) und 207 Pb/ 204 Pb ${}_{130~Ma}$ -Verhältnisse (15,68-15,71) auf.

Die Erongorus-Rhyodazite zeigen Gemeinsamkeiten mit den "low Ti"-Rhyodaziten der Paraná-Etendeka-Provinz in ihren ¹⁴³Nd/¹⁴⁴Nd _(130 Ma)- und ⁸⁷Sr/⁸⁶Sr _(130 Ma)-Verhältnissen sowie in den Nb/U-, Th/La- und Rb/Zr-Verhältnissen und Rb-Konzentrationen. Weiterhin wurden die Erongorus-Rhyodazite (131,8±1,0 Ma) im gleichen Zeitraum wie die Paraná-Etendeka-Rhyodazite (Renne et al., 1996b) gebildet. Aufgrund dieser Gemeinsamkeiten sind die Erongorus-Rhyodazite den regional vorkommenden "low Ti"-Rhyodaziten des Paraná-Etendeka-Ereignisses zuzuordnen.

Bei den Erongo-spezifischen sauren Magmatiten handelt es sich daher um die überwiegend peralumischen Ombu-Rhyodazite, Ombu-Granodiorit, Ekuta-Rhyolithe und den Erongo-Granit. Sie zeigen viele der für anorogene Granitoide typische Eigenschaften. Beispielsweise weist der Erongo-Granit charakteristisch niedrige CaO-Gehalte, hohe FeO/(FeO+MgO)- und

Ga/Al-Verhältnisse auf. Des Weiteren zeichnet er sich gegenüber I Typ- und S Typ-Graniten durch hohe Zr-, Nb- und Y-Gehalte aus (Whalen et al., 1987). Die Entwicklung der Erongospezifischen sauren Magmatite wurde hauptsächlich durch den Prozess der fraktionierten Kristallisation geprägt. Haupt- und Spurenelementmodellierungen zeigen, dass der Erongo-Granit durch fraktionierte Kristallisation unter Beteiligung der Minerale Plagioklas, Kalifeldspat, Biotit und Quarz aus einem Magma, das die Zusammensetzung eines wenig entwickelten Ombu-Rhyodazits hatte, gebildet werden kann. Charakteristische negative Eu-, Ba- und Sr-Anomalien in den Spider- und SEE-Diagrammen sowie negative Korrelationen von TiO₂ und Fe₂O_{3tot} mit zunehmenden SiO₂-Gehalten untermauern das Ergebnis der Haupt- und Spurenelementmodellierung in Bezug auf die fraktionierten Mineralphasen. Aus der Zr-Löslichkeitsthermometrie nach Watson & Harrison (1983) ergeben sich für die sauren Magmatite Magmentemperaturen im Bereich von ~760-850 °C, wobei der Erongo-Granit mit ~760 °C die niedrigste Bildungstemperatur aufweist.

Die sauren Magmatite der Damaraland-Komplexe insgesamt stellen überwiegend keine unkontaminierten Krustenschmelzen dar, sondern Hybridmagmen aus Mantel- und Krusten-Reservoiren. Die krustengenerierten Magmatite des Erongo-Komplexes folgen dabei zusammen mit granitischen Gesteinen anderer Damaraland-Komplexe in ε_{Nd} vs. δ¹⁸O- und ⁸⁷Sr/⁸⁶Sr_{130 Ma} vs. δ¹⁸O-Diagrammen einer Mischungslinie zwischen einer alkalibasaltischen Mantelkomponente und einer überwiegend unterkrustalen Komponente (A Typ-Granite), wobei der Anteil an Mantelkomponente zwischen 15 und 23 % variiert. Bezüglich der ⁸⁷Sr/⁸⁶Sr_{130 Ma}- und δ¹⁸O-Variationen ist jedoch nicht auszuschließen, dass auch die peralumischen S Typ-Granite ein weiteres Mischungsendglied darstellen können. Dieses Modell ist allerdings mit Unsicherheiten bezüglich der initialen ⁸⁷Sr/⁸⁶Sr_{130 Ma}-Verhältnisse der jeweiligen Damaraland-Komplexe sowie der isotopischen Zusammensetzung der S Typ-Granite in der Unterkreide behaftet. Eine eindeutige Diskriminierung ist daher nur mittels der Nd-Isotopenverhältnisse möglich. Dabei besitzen der Ombu-Granodiorit und der Erongo-Granit die größte Affinität innerhalb der Damaraland-Komplexe zu einer unterkrustalen Komponente, die mit der Zusammensetzung der Damaraland A Typ-Granite zusammenfällt.

Geochronologische Untersuchungen erlauben es, die Bildung des Erongo-Komplexes bzw. der Damaraland-Komplexe zeitlich in das Paraná-Etendeka-Ereignis einzuordnen. Im Rahmen dieser Arbeit wurden dazu ⁴⁰Ar/³⁹Ar "stepwise heating"- und U-Pb-Datierungen mittels hochauflösender Ionensonde CAMECA IMS 1270 durchgeführt. Diese belegen, dass der Erongo-Komplex zeitgleich zu dem Paraná-Etendeka-Ereignis in einem Zeitraum von ~135-130 Ma aktiv war, wobei die Bildungsalter der basaltischen Magmatite mit denen der sauren Magmatite innerhalb des 2σ -Fehlers überlappen. Der Zeitraum, in dem Krustenschmelzen gefördert wurden, betrug daher wahrscheinlich weniger als 2 Ma und endet mit der Förderung von alkalibasaltischen Schmelzen. Die Bildungsalter der Alkalibasalte des Erongo-Komplexes (132,0±1,0 Ma; 130,8±1,0 Ma) weisen auf die Aktivität eines asthenosphärisch geprägten Magmatismus schon während oder unmittelbar nach der Hauptförderphase des Paraná-Etendeka-Flutbasaltvulkanismus hin. Die Ergebnisse für den Erongo-Komplex zeigen, dass die Schmelzbildung im Mantel und in der kontinentalen Kruste parallel und keineswegs zeitversetzt ablief, wie Milner et al. (1993) aufgrund von scheinbar jüngeren Bildungsaltern zwischen ca. 130 und 123 Ma für basisch-differenzierte, alkalibasaltische und karbonatitische Damaraland-Komplexe vermuteten. Die während des Höhepunkts des Paraná-Etendeka-Flutbasaltvulkanismus stattfindende Bildung der sauren Magmatite der Damaraland-Komplexe Paresis (Milner et al., 1995b; Pirajno et al., 2000), Otjohorongo (Pirajno et al., 2000), Brandberg (Schmitt et al., 2000) und Erongo (Pirajno et al., 2000; Wigand et al., in press) weist auf eine großräumige synchrone Aufschmelzung der regionalen kontinentalen Kruste entlang eines ca. 150 km umfassenden Lineaments hin, die durch den Wärmeeintrag der basaltischen Schmelzreservoire im Grenzbereich Erdmantel-Kruste eingeleitet wurde. Aus den radiometrischen Altern der Etendeka-Flutbasalte und der diese intrudierenden Intrusivkomplexe ergibt sich eine zeitliche Obergrenze für die intrakrustale Schmelzbildung von ~133 Ma. Im Fall des Erongo-Komplexes zeigt das Vorkommen alkalibasaltischer Intrusionen das Ende der krustalen Schmelzbildung bereits zu einem Zeitpunkt von ~131 Ma an, da eine teilgeschmolzene kontinentale Kruste aufgrund ihrer geringeren Dichte eine Barriere für mantelgenerierte Schmelzen darstellt. Auch für andere überwiegend saure Damaraland-Komplexe kann aufgrund der radiometrischen Altersbestimmungen vermutet werden, dass der Magmatismus infolge partieller Aufschmelzung kontinentaler Kruste im Bereich der Etendeka-Provinz bereits um ~130 Ma endete (z.B. Schmitt et al., 2000, Pirajno et al., 2000). In der Paraná-Region (Süd-Uruguay) dagegen ist die Bildung krustengenerierter Gesteine bis ca. 127 Ma nachzuweisen (Kirstein et al., 2001). Bedingt wird diese fortgesetzte Bildung von Krustenschmelzen in Süd-Uruguay vermutlich durch die geringere Mächtigkeit der kontinentalen Lithosphäre und den zusätzlichen Wärmeeintrag durch Schmelzprozesse innerhalb des Erdmantels am Kontinentrand (Kirstein et al., 2001).

Abstract

The Erongo complex is the largest of the Cretaceous igneous complexes in the Damaraland, Southern Etendeka Province, Namibia. Erongo is made up of a series of mainly silicic volcanic and intrusive units, like many of the Damaraland complexes, but it is unique by virtue of its size and well-preserved igneous sequence silicic magmas as well as tholeiitic and alkaline basalts. The goals of this study were to determine the ages and petrogenetic relationships of the silicic and basic units in the Erongo complex, and to contribute to understanding the magmatic evolution of the Damaraland province. As part of this investigation, Os isotope compositions were determined on basic rocks from the complex, and this is the first study of Os isotopes in the Etendeka Province.

The Erongo is built up on a sequence of tholeitic basaltic lavas which are compositionally equivalent to the Southern Etendeka flood basalts (Tafelberg type) and probably represent erosional remnants of these (see below). The felsic volcanic units at Erongo include two types of rhyodacites and one rhyolite. The most voluminous of these is the Ombu rhyodacite, which has a thickness of up to 500 m and makes up most of the topographic expression of the complex. The Ombu rhyodacite rests directly on the basal tholeiites in the southern and eastern part of the complex, but to the north and west, a second rhyodacite occurs below it, the Erongorus rhyodacite. The stratigraphically youngest silicic unit in the complex is the Ekuta rhyolite, which is exposed as patchy erosional remnants in the higher reaches of the Erongo massif. Intrusive equivalents of the felsic volcanic units include the Ombu grandiorite, which is compositionally identical with the Ombu rhyodacite, and the Erongo granite, a biotite and tourmaline-bearing granite which is the intrusive equivalent of the Ekuta rhyolite. There is no known intrusive equivalent of the Erongorus rhyodacite. The silicic units were intruded by a group of basic alkaline stocks and dikes in the northern part of the complex. Late stage tholeiitic basic magmatism is documented by a ring dike and dolerite sills present at the N and NW margins of the Erongo.

The Nd, Pb, and Sr isotopic ratios of the basal tholeiite basalts confirm the geochemical evidence that they are remnants of the Etendeka flood basalts. Unlike the late stage dike dolerite sills and ring dike, these basal tholeiites display strong variations in εNd_(130 Ma) (–0.4 to –7.3) and ⁸⁷Sr/⁸⁶Sr_(130 Ma) ratios (0.71477 to 0.71648) due to crustal contamination. The initial Sr, Nd and Pb isotopic ratios from alkali-basaltic stocks and dikes are close to those of the Tristan da Cunha hotspot (Tristan mantle plume) and there is no indication for involvement of either depleted mantle or enriched continental lithosphere component in their magma sources.

Compared with the basic rocks, the felsic volcanics and intrusives overlap in isotopic composition with the Damara basement rocks and are therefore likely to represent crustal melts of the mid to lower crust. Initial Nd and Sr isotopic ratios for the Ombu rhyodacite, Ekuta rhyolite, Ombu granodiorite, and Erongo granite are similar, and trace element modelling confirms that they can be derived from a common magma source by fractional crystallisation of plagioclase, alkali feldspar, quartz and biotite. The Erongorus rhyodacites, in contrast, were probably not derived from the Erongo. This is supported by: 1) the uneven distribution of the unit, 2) the lack of an intrusive equivalent, 3) the absence of locally-derived lithic fragments and basement-inherited zircons, and 4) the overlap in ⁸⁷Sr/⁸⁶Sr_{130 Ma} (0.72048 to 0.72265), ¹⁴³Nd/¹⁴⁴Nd_{130 Ma} ratios (0.512045 to 0.512069). Based on these argument and the age equivalence of Erongorus (U-Pb zircon 131.8±1.1 Ma; 1σ error) with low-Ti Paraná Etendeka rhyodacites, it is suggested that the Erongorus rhyodacites are erosional remnants of felsic Etendeka volcanics.

Re-Os isotopic data for Cretaceous basic rocks in the Etendeka Province were determined in this study for the first time. The goals were to provide additional insights into nature of the mantle component involved in magma genesis, and to aid in identifying the influence of crustal contamination. High $^{187}\mathrm{Os}/^{188}\mathrm{Os}$ $_{130~\mathrm{Ma}}$ ratios of the basal tholeiites (0.1903 to 0.3705) are interpreted as a result from crustal contamination, in agreement with evidence from the Sr, Nd and Pb isotope systems. By contrast, ring dike dolerites and foidites-tephrites from late-stage alkali-basaltic stocks have different $^{187}\mathrm{Os}/^{188}\mathrm{Os}$ $_{130~\mathrm{Ma}}$ ratios (0.1164 to 0.1265 and 0.1319 to 0.1334, respectively). The negative values of $\gamma\mathrm{Os}$ $_{(130~\mathrm{Ma})}$ for the ringdike dolerites (-0.2 and -8.1) are similar to those observed in alkaline rocks and mantle-derived xenoliths entrained in kimberlites from the Paraná Province, Kaapvaal, Wyoming, and Siberian cratons. This suggests a derivation of the magmas from the subcontinental lithospheric mantle. On the other hand, the positive $\gamma\mathrm{Os}$ $_{(130~\mathrm{Ma})}$ values of the alkaline stockes (+4.1 and +5.3) overlap with the so called enriched plume mantle component, which further supports the conclusion of a plume origin suggested by Sr, Nd and Pb isotope data.

Results of geochronology using 40 Ar/ 39 Ar and high spatial resolution U-Pb zircon dating demonstrate that emplacement of the various igneous units at Erongo took place within a time span equivalent to or shorter than the geochronologically resolvable age differences (ca. 2 Ma). They also indicate that Erongo magmatism coincides with the peak of regional flood basalt activity in the Etendeka–Paraná province. The Ombu rhyodacite was previously dated at 135.0 ± 1.6 Ma (Pirajno et al., 2000), and for this study, the intrusive equivalent, Ombu granodiorite was chosen for dating. The granodiorite yielded concordant 40 Ar/ 39 Ar and U-Pb zircon ages of 132.6 ± 1.1 Ma and 132.3 ± 1.9 Ma (1σ), respectively. The Ekuta rhyolite and compositionally equivalent Erongo granite yielded U-Pb zircon ages of 131.9 ± 2.9 Ma and 130.3 ± 1.4 Ma (1σ), respectively. Two samples of the granite also gave overlapping 40 Ar/ 39 Ar biotite ages averaging 132.2 ± 0.8 Ma. The final stage of magmatism at Erongo involved emplacement of basic alkaline stocks and dikes. Phlogopite and kaersutite from foidite stocks of this series yielded 40 Ar/ 39 Ar ages of 130.8 ± 1.0 Ma and 132.0 ± 1.0 Ma.

Erongo is the last of the large silicic complexes in the Damaraland to be dated. In a regional context, the new age results indicate that silicic magmatism in the Damaraland complexes (Erongo, Brandberg, Paresis, Messum) was contemporary. It began simultaneously with the peak of flood basalt effusion at about 132 Ma throughout the Damaraland province and ceased within a very short time, by about 130 Ma. The silicic magmas are hybrid, with varying degrees of crustal and mantle-derived melts, and the age constraints suggest that crustal melting was caused by a short-lived thermal pulse related to the main flood basalt event. Low-volume basic magmatism in the Damaraland province continued sporadically thereafter to about 123 Ma, but mantle-derived heat input was insufficient to cause further crustal melting.

Inhaltsverzeichnis

Erweiterte Zusan	nmenfassung	I
Abstract		V
Inhaltsverzeichn	is	VII
1. Einleitung		1
	nd geochemische Beschreibung der Etendeka-Provinz unter be ung des kretazischen Paraná-Etendeka-Flutbasaltereignisses	
2.1	Die Etendeka-Provinz	3
2.2	Die Paraná-Etendeka-Vulkanite	7
2.3	Die Damaraland-Komplexe	14
3. Geologischer A	Aufbau und Entwicklungsgeschichte des Erongo-Komplexes	17
4. Geochemische	Charakterisierung	21
4.1	Gesteinsnomenklatur unter geochemischen Gesichtspunkten	21
4.2	Haupt- und Spurenelementchemismus	24
4.3	Nd-, Sr- und Pb-Isotopengeochemie	38
4.4	Re/Os-Isotopengeochemie der basaltischen Gesteine des Komplexes	_
4.5	Regionale Vergleiche	44
5. Geochronologi	e des Erongo-Komplexes	47
5.1	⁴⁰ Ar/ ³⁹ Ar-Datierung.	47
5.2		
6. Diskussion der	geochemischen Ergebnisse	57
6.1	Genese der basaltischen Magmatite	57
6.2	Genese der sauren Magmatite des Erongo-Komplexes	70
	Entstehungsgeschichte des Erongo-Komplexes im Rahmen des Etendeka-Ereignisses	Paraná-
Literaturverzeicl	ınis	82
Abbildungsverze	ichnis	97
Tabellenverzeich	nis	99

Inhaltsverzeichnis

Anhang

Methodik	i
Tabellen	xvii
Danksagung	lxxiii
Wissenschaftliche Publikationen	lyyiy

1 Einleitung

Die Paraná-Etendeka-Provinz, beiderseits des Süd-Atlantiks zwischen etwa 58°W und 19°E bzw. 16°S und 33°S gelegen, gehört zu den großen Flutbasaltvorkommen der Erde (Cordani & Vandoros, 1967). Ihre Entstehung hängt mit dem Auseinanderbrechen von Westgondwana zusammen, das mit der Bildung ozeanischer Kruste im Südatlantik seit M4 (127 Ma) (Renne et al., 1992) einsetzte. In der Paraná-Etendeka-Provinz wurden basaltische und rhyodazitische bis rhyolithische Schmelzen in großvolumigem Maßstab gefördert (1x10⁶ km³, Cordani & Vandoros, 1967), deren flächige Ausbreitung auf einst mehr als 2x10⁶ km² geschätzt wird (Gallagher et al., 1994). Während oder im Anschluss an dieses bimodale magmatische Ereignis kam es zur Bildung von Intrusivkomplexen, die eine weitaus größere lithologische Vielfalt aufweisen und stofflich in drei Kategorien unterteilt werden: (1) überwiegend granitische Komplexe, (2) differenzierte basische Komplexe und (3) Karbonatitund Alkali-Komplexe (Martin et al., 1960). Dabei nimmt der Erongo-Komplex in Namibia insofern eine Schlüsselstellung unter den mehr als 20 kretazischen Damaralandkomplexen ein, als er mit ca. 40 km Durchmesser der größte unter diesen ist und im Erongo mantelgenerierte Magmatite stratigraphisch sowohl im Liegenden als auch im Hangenden krustengenerierte saure Gesteine eingrenzen (Emmermann, 1979).

Während eine einhellige Meinung darüber herrscht, dass die Paraná-Etendeka-(Hawkesworth et al, 2000) und andere mesozoisch-känozoische Flutbasalteruptionen (z.B. Karoo (Hawkesworth et al, 1984), Deccan (Mahoney, 1988), Ferrar (Elliot., 1992)) mit dem großtektonischen Ereignis des Auseinanderbrechens von Gondwana verknüpft sind, besteht hinsichtlich der Dynamik und Dauer dieses Magmatismus noch Unklarheit. Dabei wird insbesondere der thermische und stoffliche Beitrag von Manteldiapiren (Plumes) kontrovers diskutiert (White & McKenzie, 1995; Hawkesworth et al., 1992; Peate & Hawkesworth, 1996; Turner et al., 1996), der im Fall des Paranà-Etendeka Vorkommens über die submarinen Rücken, den Walvis Ridge und den Rio Grande Rise, beide Halbprovinzen miteinander verbindet.

Aus geophysikalischen Modellen (z.B. White & McKenzie, 1989) geht hervor, dass hohe Schmelzbildungsraten nur über Dekompressionsschmelzen im Plume-Mantel erreicht werden können. So zeigt sich z.B. bei den Deccan-Flutbasalten, dass hohe Eruptionsraten (~1 km³ a⁻¹) und geochemische Signaturen des Réunion-Plumes (Peng & Mahoney, 1995; Turner et al., 1996) die Postulate dieser geophysikalischen Modelle (White & McKenzie, 1989) erfüllen. Im Gegensatz dazu lässt sich das Modell des Plume-Dekompressionsschmelzens auf die Paraná-Etendeka-Flutbasalte nicht ohne weiteres anwenden, da die meisten Flutbasalte keine geochemische Plume-Signatur zeigen, sondern nach Turner & Hawkesworth (1995) und Turner et al. (1996) dem lithosphärischen Mantel entstammen.

Die Dauer des Magmatismus ist ein ebenso wichtiger Parameter zur Klärung der Manteldynamik und Schmelzbildung während der Riftphase. Insbesondere die Bildung saurer Magmatite durch partielle Aufschmelzung kontinentaler Kruste infolge von "underplating" basaltischer Schmelzen steht hierbei in einem direkten Zusammenhang mit der thermischen Anomalie eines mantelgenerierten Flutbasaltmagmatismus (Erlank et al., 1984; Hawkesworth et al., 1988; Harris et al., 1990). Marsh et al. (2001) kommen aufgrund chronostratigraphischer Untersuchungen zum Schluss, dass der Höhepunkt des sauren Magmatismus in der Etendeka-Provinz in dem Zeitraum von 132±1 Ma lag. Neuere Datierungen von Kirstein et al. (2001) zeigen, dass in der Paraná-Provinz rhyolithische Magmen bis etwa 127 Ma gefördert wurden. Bedingt werden diese Unterschiede zwischen Etendeka- und Paraná-Provinz eventuell durch eine geringere Lithosphärenmächtigkeit und größere Nähe zum Tristan-Plume am südamerikanischen Kontinentalrand (Kirstein et al.,

1

2001). Datierungsstudien an den Intrusivkomplexen zeigen, dass ihre Entstehung mit dem Zeitraum des Paraná-Etendeka-Vulkanismus überlappt (z.B. Milner et al., 1995b; Renne et al. 1996b; Pirajno et al., 2000; Schmitt et al., 2000). Während z.B. die Intrusivkomplexe Messum und Okenyenya scheinbar über einen die Dauer des Flutbasaltvulkanismus um 5-10 Ma überschreitenden Zeitraum aktiv waren (Milner et al., 1993; Milner et al., 1995b; Renne et al., 1996b), zeigten Schmitt et al. (2000) am Beispiel des Brandberg-Komplexes, dass die Intrusion metalumischer und peralkalischer Granite unmittelbar an die Hauptförderphase des regionalen Flutbasaltvulkanismus anschloss. Die wenigen vorliegenden Alter von Gesteinen des Erongo-Komplexes streuen über einen großen Bereich. Zum einen existiert ein Rb/Sr-Gesamtgesteinsalter des Erongo-Granits von 144 ± 2 Ma (McNeill, 1989) und zum anderen ein SHRIMP U/Pb-Zirkon-Alter von 135 ± 1.6 Ma (1σ) (Pirajno et al., 2000).

Der Untersuchung der Intrusivkomplexe im Damaraland Namibias (Korn & Martin, 1954; Martin et al., 1960; Pirajno & Schlögl, 1987; Diehl, 1990; Harris, 1995; Martinez et al., 1996; Milner & Le Roex, 1996; Ewart et al., 1998b; Harris et al., 1999; Mingram et al., 2000; Schmitt et al., 2000; Trumbull et al., 2000; Trumbull et al., in press) kommt in der Beantwortung dieser Fragen eine besondere Rolle zu, da sie aufgrund ihrer stofflichen Vielfalt und räumlichen Begrenzung Einblicke in die sequenzielle Magmengenese innerhalb eines gut definierten Lithosphärensegments erlauben. Entsprechend dieser Problemstellung erfolgt die Darstellung der Ergebnisse in drei Teilen. Nach der Beschreibung des geologischen Rahmens und des bisherigen Kenntnisstandes werden die einzelnen Gesteinseinheiten des Erongo-Komplexes geochemisch charakterisiert, untereinander verglichen und hinsichtlich ihrer Beziehung zum regionalen Flutbasaltmagmatismus untersucht. Bei den sauren Magmatiten geschieht dies neben der Verwendung eigener Daten auch unter Zuhilfenahme der Literaturdaten von Emmermann (1979), Pirajno (1990), Trumbull et al. (2000) und Trumbull et al. (2003). Anschließend werden mit Hilfe geochemischer Modellierungen (Isotopen- und Spurenelementverhältnisse) potentielle Magmenquellen identifiziert und magmenverändernde Prozesse (fraktionierte Kristallisation, Assimilation) quantifiziert. Zu diesem Zweck dienen Nd-, Sr- und Pb-Isotopenmessungen an Magmatiten des Erongo-Komplexes, die erstmals eine Identifizierung krustaler und mantelgenerierter Komponenten erlauben. Neue Re/Os-Isotopenanalysen liefern Erkenntnisse über die Zusammensetzung der Mantelquellen. Der dritte Schwerpunkt ist die detaillierte Geochronologie des Erongo-Komplexes, die Rückschlüsse auf die Dauer der Schmelzbildung in der kontinentalen Kruste erlaubt. Das Auftreten einer späten alkalischen Phase (Emmermann, 1979; Pirajno, 1990) ist dabei ein Indikator für das Ende der intrakrustalen Schmelzbildung, weil eine teilgeschmolzene kontinentale Kruste aufgrund ihrer geringeren Dichte eine Barriere für mantelgenerierte Schmelzen darstellt (z.B. Trumbull et al., 2003). Schlüsseleinheiten des Erongo-Komplexes wurden mit der ⁴⁰Ar/³⁹Ar- und der U/Pb-Methode datiert und die neu gewonnenen Alter in den Kontext der regionalen Stratigraphie und bereits publizierter Alter eingeordnet. Abschließend werden diese Ergebnisse synthetisiert. Dabei ergibt sich folgendes petrogenetisches Szenario für das Erongo-Event: ein magmatisches Ereignis, das mit der Förderung lithosphärisch generierter Mantelschmelzen einsetzt, kurzzeitig (< 2 Ma) großvolumig krustale Schmelzen produziert und in einer finalen Phase geringe Volumina plumegenerierter Magmen fördert.

2 Geologische und geochemische Beschreibung der Etendeka-Provinz unter besonderer Berücksichtigung des kretazischen Paraná-Etendeka-Flutbasaltereignisses

2.1 Die Etendeka-Provinz

Geographische Lage. Die Etendeka-Provinz ist Teil der Paraná-Etendeka-Flutbasalt-Provinz und bezeichnet ein Gebiet in NW-Namibia, das zwischen 17° und 22° südlicher Breite sowie 12° und 17° östlicher Länge liegt. Strukturgeologisch gliedert sich die Etendeka-Provinz in einen 15-20 km breiten Küstenbereich und einen Inlandbereich (Erlank et al., 1984) (Abbildung 2.1.1). Während der Küstenbereich durch das Auftreten von listrischen Abschiebungen auf eng begrenztem Raum gekennzeichnet ist, treten im Inlandbereich NS-streichende Störungen auf. Zur Provinz gehören heute Reste einer ehemals weiter verbreiteten Flutbasalt-Decke und mehr als 20 Intrusivkomplexe, die unter dem Oberbegriff "Damaraland-Komplexe" zusammengefasst werden (Martin et al., 1960). Weiterhin ist die Etendeka-Provinz durch das Auftreten einer Vielzahl von Gängen gekennzeichnet, die zum größten Teil zum Hentiesbaai-Outjo-Gangschwarm gezählt werden. Infolge Erosion sind große Teile der Vulkanite und Plutonite abgetragen.

Die heutige Ausdehnung der erhaltenen Flutbasaltdecke beträgt ca. 1,2 x 10⁶ km² in der Paraná-Provinz und ca. 0,8 x 10⁵ km² in der Etendeka-Provinz (Erlank et al., 1984). Die Verteilung der verschiedenen Gangschwärme (z.B. der Hentiesbaai-Outjo-Gangschwarm) gibt jedoch Grund zur Annahme, dass die ursprünglich vorhandenen Flutbasalte eine Fläche von ca. 2,0 x 10⁶ km² bedeckten. Die durchschnittliche Mächtigkeit wird auf 0,7 km geschätzt (z.B. Peate., 1997). Es werden jedoch im nördlichen Teil des Paraná-Beckens maximale Mächtigkeiten von bis zu 1,7 km erreicht (Peate et al., 1992).

Milner & le Roex (1996) und Marsh et al. (2001) unterteilen die Etendeka-Provinz in eine nördliche und südliche Subprovinz. Die Einteilung orientiert sich wie bei den Magmatiten der Paraná-Flutbasaltprovinz an den TiO₂-Gehalten und gilt sowohl für basaltisch-andesitisch als auch für dazitisch-rhyolithische Zusammensetzungen. Die Grenze verläuft bei 19°21,6′S (auf der Höhe von Möwe Bay) (Marsh et al., 2001). Südlich dieser Grenze treten "low Ti"-Magmatite auf und nördlich dominieren "high Ti"-Magmatite. Bezogen auf das Gesamtvolumen an basaltischen Schmelzen machen die "low Ti"-Basalte den Hauptanteil der Flutbasalte aus (Erlank et al., 1984).

Prä-Kretazische Geologie der Etendeka-Provinz und kretazische Öffnung des Südatlantiks. Das Grundgebirge der Etendeka-Provinz besteht aus proterozoischen Metamorphiten mit Metamorphose-Altern von 2,1-1,7 Ga und bildet den südlichsten Ausläufer des Kongo-Kratons (Miller, 1983). Westlich und südöstlich davon wird es begrenzt und teilweise überlagert von Gesteinen des orogenen Damara-Gürtels. Das Damara-Orogen wird aufgrund von Stratigraphie, Struktur, Metamorphosegrad und Geochronologie in eine nördliche, zentrale und südliche Zone eingeteilt (Miller, 1983). Es besteht aus einem ca. 150 km breiten NS-streichenden Küstenast (Kaoko-Gürtel) und einem ca. 400 km breiten NEintrakontinentalen Gürtel (Damara-Gürtel). streichenden Die Entwicklung küstenparallelen und intrakontinentalen Gürtel des Damara-Orogens erfolgte Riftsystemen, die vor ca. 1 Ga in einem von Extension bestimmten Regime angelegt worden sind (Porada et al., 1983).

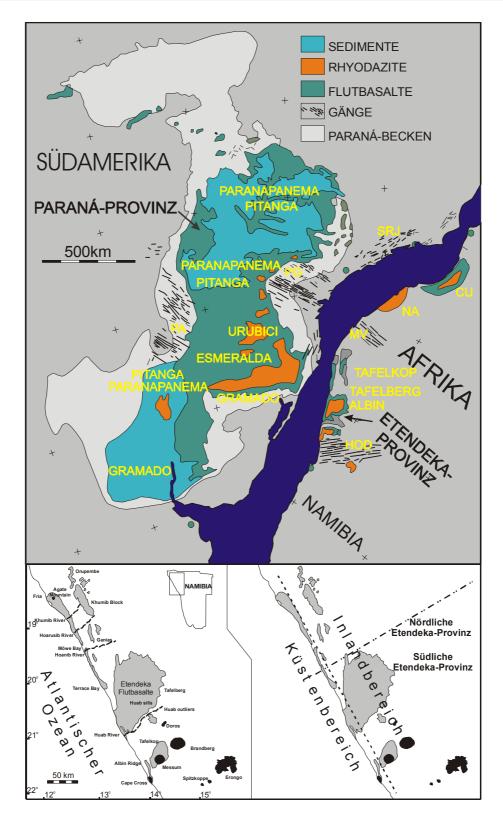


Abbildung 2.1.1: Modifizierte schematische Darstellung (nach Peate, 1997) der Paraná-Etendeka-Flutbasalt-Provinz in Verbindung mit dem Paraná-Sedimentbecken. Weiterhin sind die verschiedenen Lokalitäten der einzelnen regional auftretenden Flutbasalte dargestellt. Magmatische Gänge treten in den folgenden Regionen auf: HOD = Hentiesbaai Outjo Gangschwarm, PG = Ponta Grossa, SRJ = São Paulo-Rio de Janeiro, PA = Ost-Paraguay. Als weitere Abkürzungen wurden gewählt: SA = Santos-Becken, NA = Namibe-Becken, CU = Cuanza-Becken und MV = Morro Vermelho. Die + zeigen die gegenwärtige geografische Breite und geografische Länge in 5° Intervallen. Die unteren beiden Teile der Abbildung 2.1.1 zeigen eine schematische Darstellung der Etendeka-Provinz (nach Milner & le Roex, 1996 & Marsh, 2001), wobei die grauen Schattierungen die Reste der ehemaligen Flutbasalte und die schwarzen Schattierungen Damaraland-Komplexe darstellen.

Die Magmatite und Metamorphite der nördlichen und zentralen Zone bilden das Grundgebirge der Etendeka-Provinz. Bei den Metamorphiten handelt es sich überwiegend um Abfolgen von metamorph überprägten Sandsteinen, Arkosen, Quarziten, Glimmerschiefern, Marmore, Kalksilikate und Quarz-Feldspat-Amphibol-Gneisen (Hoffmann, 1983; Miller, 1983). In der zentralen Zone kam es im Zeitraum von ca. 540 bis 480 Ma zu einer Hochtemperatur-Metamorphose (Jung et al., 2000). Die Metamorphosebedingungen werden von Puhan (1983) mit 560-650°C und 3±1 kbar und von Hoffbauer et al. (1990) mit 600-700°C angegeben. Der Metamorphosegrad nimmt von E nach W zu, wobei es im Küstenbereich zu lokalbegrenzter Anatexis kommt (Hartmann et al., 1983). Den Höhepunkt stellt eine Niedrigdruck-Hochtemperatur-Metamorphose mit einer Temperatur von 700°C und einem Druck von 5-6 kbar dar (Masberg et al., 1992; Bühn et al., 1995; Jung et al., 1998a). Im Süden trennt das Okahandja-Lineament die zentrale Zone von der südlichen Zone.

Im Zeitraum von 860-480 Ma kam es zu verschiedenen Intrusionen der sogenannten Damara-Granitoide (Miller, 1983). Insgesamt umfasst ihre Ausdehnung ca. 74000 km², wobei der größte Teil in der zentralen Zone des NW-streichenden intrakontinentalen Gürtels intrudierte. Bei den Damara-Granitoiden handelt es vorwiegend (ca. 96 %) um S- und A-Typ Granite (Haack et al., 1982; McDermott et al., 1996, Jung et al., 1998b). Die restlichen 4 % bestehen aus Syeniten, Dioriten und Granodioriten (Miller, 1983). Die Damara-Orogenese war im Zeitraum um 480 Ma abgeschlossen.

Nach dem Ende der Damara-Orogenese war die geologische Entwicklung in diesem Gebiet durch Erosion und kontinentale Sedimentation geprägt. Ein wichtiges Ereignis im Zeitraum vom Permo-Karbon bis ins obere Mesozoikum stellt die kontinentale Ablagerung der Karoo-Folge dar. Eine direkte Korrelation zwischen den Karoo-Sedimenten im südlichen Afrika und analogen Abfolgen in Südamerika lässt sich bei einem Faziesvergleich feststellen (Horsthemke et al., 1990). Im Zeitraum von 186-183 Ma kam es zur Förderung der tholeiitischen Basalte der Drakensberg-Gruppe (Duncan et al., 1997).

Vor etwa 150 Ma setzte der Prozess des kontinentalen Riftings und damit die Bildung eines passiven Kontinentalrandes entlang der zuvor angelegten, küstenparallel verlaufenden Strukturen des Damara-Ribeira-Orogens ein, der in einem Aufbrechen von West-Gondwana mündete (Gladczenko et al., 1997). Bedingt durch die thermische Anomalie des Tristan-Plume kam es zu einer Extension und Ausdünnung der Lithosphäre, sowie zu partiellen Aufschmelzprozessen innerhalb des oberen Erdmantels (Morgan, 1981). Magmen mit basaltischer Zusammensetzung wurden während der Riftingphase in großvolumigem Maßstab gefördert. Zusätzlich kam es aufgrund des Wärmeeintrags der basaltischen Schmelzen in der Kruste zu partiellen Aufschmelzprozessen (White & McKenzie, 1989; Richards et al., 1989). Dies hatte Förderung von rhyodazitisch bis rhyolithisch zusammengesetzten Magmen zur Folge (Piccirillo et al., 1988). Dieses bimodale magmatische Ereignis wird heute unter dem 40 Ar/ 39 Ar-"Paraná-Etendeka-Flutbasaltvulkanismus" zusammengefasst. Oberbegriff Datierungen zeigen, dass die Hauptförderphase in den Zeitraum von 134 bis 129 Ma fällt (Peate, 1997). In diesen Zeitraum wird ebenfalls die erste Ozeanbodenbildung im Südatlantik durch die magnetischen Anomalien M13 (137 Ma) und M9 (130 Ma) bezeugt (Austin & Uchupi, 1982). Die erste Ozeanbodenbildung auf der Höhe der Paraná-Etendeka-Provinz stellt die magnetische Anomalie M4 (127 Ma) dar (Renne et al., 1992). Im Zeitraum von 137 bis 122 Ma (Milner et al., 1995b) kommt es zur Bildung der sogenannten Damaraland-Intrusivkomplexe.

Ein abschließendes magmatisches Ereignis in der Etendeka-Region stellt die Bildung der Horingbaai-Dolerite im Zeitraum zwischen 125 und 120 Ma (Renné et al 1996a) dar. Die Aktivität des Tristan-Plumes lässt sich auch nach dem Paraná-Etendeka-Flutbasalt-Ereignis in der Südatlantik-Region in einem Zeitraum von ~119 Ma mit dem Beginn der Bildung des "Walvis Ridge" bis zur rezenten vulkanischen Aktivität auf der ozeanischen Insel Gough

dokumentieren (O'Connor & Le Roex, 1992). Hinweise auf die relative Plattenbewegung oberhalb des stationären Tristan-Plumes liefern die vulkanischen Gesteine der submarinen Rücken "Walvis-Ridge" und "Rio Grande Rise" sowie der ozeanischen Inseln der Tristan da Cunha- und Inaccessible-Gruppe, die als Aufschmelzprodukte des über dem Tristan-Plume liegenden oberen Erdmantels interpretiert werden (z.B. Le Roex et al., 1990).

2.2 Die Paraná-Etendeka-Vulkanite

Die Paraná-Etendeka-Flutbasalte. Die Stratigraphie der Etendeka-Flutbasalte weist die in Tabelle 2.2.1 genannten Einheiten auf, die häufig nur eine regionale Verbreitung haben und daher eine laterale Korrelation erschweren. Benannt werden diese nach den jeweiligen Typlokalitäten (Khumib, Tafelkop, Tafelberg, Albin, Horingbaai, Huab und Khuidas) (Erlank et al., 1984; Duncan et al., 1989). Eine stoffliche Klassifizierung erfolgt neben der von Ewart et al. (1998a) eingeführten Einteilung in HTZ ("high Ti-Zr")- und LTZ ("low Ti-Zr")-Basalte weiterhin über die TiO₂-Gehalte (Bellieni et al., 1984; Mantovani et al., 1985 & Marsh et al., 2001), wobei ein Grenzwert für die TiO₂-Gehalte bei 2,2 Gew.-% als sinnvoll erachtet wurde (Marsh et al., 2001).

Für die Flutbasalte der Paraná-Provinz wird eine abweichende Regiostratigraphie verwendet. Bellieni et al. (1986) gliedern die Paraná-Flutbasalte ebenfalls nach den jeweiligen Typlokalitäten in Gramado-, Esmeralda-, Urubici-, Pitanga-, Paranapanema- und Ribeira-Basalte. Peate et al. (1992) verwenden für die Diskriminierung sowohl die Ti-Gehalte als auch die Ti/Y-Verhältnisse in "low Ti/Y & low Ti"-, "high Ti/Y & "low Ti"- und "high Ti/Y & high Ti"- Basalte. Peate et al. (1992) schlagen für die Diskriminierung in "low Ti"- und "high Ti"-Basalte anhand der Ti/Y-Verhältnisse einen Grenzwert von 310 (Tabelle 2.2.1) vor. Somit werden die Gramado- und Esmeralda-Basalte zu den "low Ti"- und die Urubici-, Pitanga- und Ribeira-Basalte zu den "high Ti"-Basalten zugeordnet, obwohl die Ribeira-Basalte TiO₂-Gehalte zwischen 1,5 und 2,3 Gew.-% aufweisen (Tabelle 2.2.1). Die Paranapanema-Basalte mit TiO₂-Gehalten von 1,7 und 3.2 Gewichts-% werden von Garland et al. (1996) als "intermediate Ti"-Basalte klassifiziert. Ein Äquivalent zu den "intermediate Ti"-Basalten der Paraná-Provinz existiert in der Etendeka-Provinz nicht (Marsh et al., 2001).

Tabelle 2.2.1: Geochemische Merkmale der Paraná-Etendeka-Flutbasalte nach Peate et al. (1992), Erlank et al. (1984) & Marsh et al. (2001).

Nomenklatur	Provinz	Merkmale	TiO ₂ [Gew%]	Ti/Y
Gramado	Paraná	"low Ti"	0,7-1,9	< 310
Esmeralda	Paraná	"low Ti"	1,1-2,3	< 310
Tafelberg	Etendeka	"low Ti"	0,9-1,8	175-360
Albin	Etendeka	"low Ti"	1,0-1,3	235-430
Tafelkop	Etendeka	"low Ti"	1,7-2,3	451-653
Paranapanema	Paraná	"intermediate Ti"	1,7-3,2	> 330
Ribeira	Paraná	"high Ti"	1,5-2,3	> 310
Pitanga	Paraná	"high Ti"	> 2,9	> 350
Urubici	Paraná	"high Ti"	> 3,3	> 500
Khumib	Etendeka	"high Ti"	>2,9	390-720

Die Anwendung der Ti/Y- und Ti/Zr-Klassifizierung für Etendeka-Basalte führt zu Problemen, da viele "low Ti"-Basalte der Etendeka-Provinz auch Ti/Y-Verhältnisse > 310 und Ti/Zr-Verhältnisse > 70 aufweisen und somit zu den "high Ti"-Basalten zu zählen sind (Tabelle 2.2.1). Somit erscheint eine Klassifizierung der Paraná-Etendeka-Flutbasalte nach Ti/Y- und Ti/Zr-Verhältnissen unzweckmäßig und daher werden in dieser Arbeit andere

Parameter verwendet. In diesem Zusammenhang ist es erwähnenswert, dass die Einteilung in "low Ti"- und "high Ti"-Flutbasalte nicht nur auf diese Provinz beschränkt ist, sondern alle mesozoischen Flutbasalte Gondwanas (z.B. auch für die Karoo- und Ferrar-Provinz) ein ähnliches Verhalten in Bezug auf die TiO₂-Gehalte zeigen (Duncan et al., 1990; Cox, 1988; Sweeney & Watkeys, 1990; Hergt et al., 1991). Aus diesem Grund wird im Rahmen dieser Arbeit ebenfalls eine Klassifikation von "low Ti"- und "high Ti"-Basalten anhand der TiO₂-Gehalte vorgenommen, wobei aus Tabelle 2.2.1 hervorgeht, dass ein Grenzwert von 2,3 Gew.-% TiO₂ verwendet wird.

Genesemodelle der Paraná-Etendeka-Flutbasalte. Die kurzfristige Bildung von basaltischen Schmelzvolumen >10⁶ km³, wie sie in kontinentalen Flutbasaltprovinzen auftreten, setzt eine ausgedehnte thermische Anomalie des Erdmantels voraus. Diese thermischen Anomalien stellen sogenannte Mantel-Plumes dar (z.B. Morgan, 1981), deren Aufstieg an die Grenze Asthenosphäre-Lithosphäre in allen Flutbasaltprovinzen eine Extension der Lithosphäre (White & McKenzie, 1989; Yuen & Fleitout, 1985) zur Folge hat. Die heute akzeptierten Modelle gehen davon aus, dass die Schmelzbildung innerhalb des vom aufsteigenden Mantel-Plume veränderten Erdmantels durch Dekompression verursacht wird. Geochemische Untersuchungen der weltweit auftretenden Flutbasaltprovinzen zeigen, dass der Einfluss des Mantel-Plumes variiert. Während z.B. die unkontaminierten Flutbasalte der Deccan-Provinz in ihren Spurenelement- und Isotopenzusammensetzungen Ähnlichkeiten mit den Gesteinen des Réunion-Plumes zeigen (Peng & Mahoney, 1995; Turner et al., 1996), gehen Hawkesworth et al. (1983) und Turner & Hawkesworth (1995) aufgrund der geochemischen Daten davon aus, dass der Tristan-Plume lediglich die Wärmeenergie, die die Schmelzbildung im lithosphärischen Erdmantel begünstigte, lieferte (z.B. Peate, 1997).

Insbesondere für die Paraná-Etendeka-Flutbasalte wird der stoffliche Beitrag des Tristan-Plumes kontrovers diskutiert. Ein direkter Einfluss des Tristan-Plumes besteht auf die Genese der Etendeka-Ferropikrite (Gibson et al., 2000) und Tafelkop-Basalte (Ewart et al., 1998a), die zeitgleich mit den Paraná-Etendeka-Flutbasalten gefördert wurden. Die Ferropikrite werden von Gibson et al. (2000) als Aufschmelzprodukte Fe-reicher Bereiche innerhalb des Tristan-Plumekopfes gedeutet.

Für die Petrogenese der volumenmäßig dominierenden "low Ti"-Basalte argumentieren Turner & Hawkesworth (1995) für eine Quelle innerhalb des verarmten und an Volatilen angereicherten subkontinentalen lithosphärischen Mantels (SCLM: ..subcontinental lithospheric mantle"). Die Zufuhr der Volatilen erfolgte nach Meinung von Turner & Hawkesworth (1995) nach der Verarmung der ursprünglichen Mantelquelle und trug zu den charakteristischen Spurenelement- und Isotopensignaturen (Abbildung 2.2.1 & 2.2.2) der Paraná-Etendeka-Flutbasalte bei. Anhand von Nd-Modell-Altern von Spinelperidotiten, die proterozoische Alter aufweisen, wird angenommen, dass die Volatilzufuhr parallel zur Bildung der präkambrischen Kruste ablief (Turner et al., 1996). Neben den oben genannten Modifikationen des SCLM ist weiterhin eine Mindestmächtigkeit von 100 km für die Lithosphäre für dieses Modell erforderlich (Turner et al., 1996). Ähnlich argumentieren Erlank et al. (1984) und sehen als Quelle für die Tafelberg-Basalte ebenfalls einen an Volatilen angereicherten lithosphärischen Mantel. Das Auftreten von metasomatisierten Kimberlit-Einschlüssen liefert den Beweis für Anreicherungsprozesse im subkontinentalen lithosphärischen Mantel (SCLM). Diese Anreicherungsprozesse im SCLM sehen Erlank et al. (1984) als Grund für die entwickelten ⁸⁷Sr/⁸⁶Sr-Verhältnisse der Tafelbergbasalte (Abbildung 2.2.2).

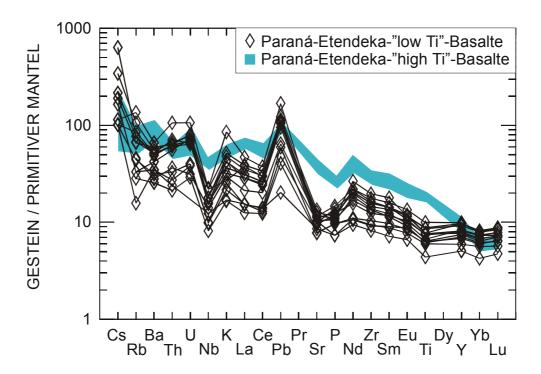


Abbildung 2.2.1: Spiderdiagramm der Paraná-Etendeka-Flutbasalte (MgO > 4,5 Gew.-%) normiert auf die Werte des primitiven Mantels (Sun & Mc Donough, 1989). Die "high Ti"-Flutbasalte wurden aus Gründen der Übersichtlichkeit farbig unterlegt dargestellt. Die Daten der Flutbasalte stammen von Petrini et al. (1987), Cordani et al. (1988), Peate (1990) und Peate & Hawkesworth (1996).

Problematisch in der Interpretation von Isotopenverhältnissen Spurenelementkonzentrationen ist allerdings die Assimilation kontinentaler Kruste im Laufe von AFC-Prozessen (Assimilation and Fractional Crystallization). Dadurch werden Spurenelemente wie Cs, Rb, K und Pb in der Schmelze angereichert, während die Schmelze an mantelspezifischen Spurenelementen wie Ni und Cr zunehmend verarmt. Ein Hinweis auf das Vorhandensein dieser Prozesse in der Genese der Etendeka-Flutbasalte ergeben Spiderdiagramm-Muster mit ausgeprägten positiven Pb- und negativen Nb-Anomalien, die besonders stark bei den "low Ti"-Basalten ausgeprägt sind (Abbildung 2.2.1). Somit scheint die Assimilation von kontinentaler Kruste bei den "low Ti"-Basalten eine größere Rolle gespielt zu haben als bei den "high Ti"-Basalten. Für eine Assimilation von kontinentaler Kruste würden auch die erhöhten δ^{18} O-Werte von +6,3 % bis +8,3 % sprechen (Fodor et al., 1985; Harris et al., 1989). Der durchschnittliche δ^{18} O-Wert des Mantels liegt bei +5,7±0,3 % (Taylor, 1980). Um diese, für mantelgenerierte Basalte relativ hohen δ^{18} O-Werte zu erreichen, muss kontinentale Kruste assimiliert werden (Harris et al., 1989). Weiterhin sprechen für eine Assimilation von kontinentaler Kruste sowohl die negativen ε_{Nd}-Werte bei vergleichsweise hohen ⁸⁷Sr/⁸⁶Sr_i-Verhältnissen (Abbildung 2.2.2) als auch eine positive Korrelation der ⁸⁷Sr/⁸⁶Sr_i-Verhältnisse mit zunehmenden SiO₂-Gehalten (z.B. Thompson et al., 1984). Nach Gibson et al. (1996) findet die Kontamination der Quelle sowohl bei den "low Ti"- als auch bei den "high Ti"-Basalten in der Lithosphäre statt. Als Kontaminanten kommen nach Hergt et al. (1991) und Molzahn et al. (1996) z. B. subduzierte Sedimente in Frage.

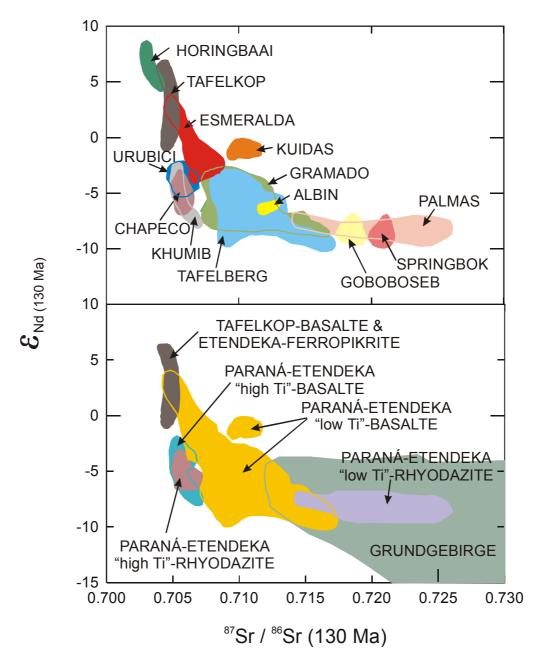


Abbildung 2.2.2: ${}^{87}Sr/{}^{86}Sr_i$ versus ε_{Nd} (i)-Diagramm der "low Ti"- und "high Ti"-Basalte und Rhyodazite der Paraná-Etendeka-Provinz. Der obere Teil der Abbildung zeigt die Klassifikation nach Typlokalitäten und der untere Teil die Einteilung in "low Ti"- und "high Ti"-Flutbasalte. Die Daten stammen von Erlank et al. (1984), Cordani et al. (1988); Peate (1990); Peate & Hawkesworth (1996) und Ewart et al. (1998a). Weiterhin beinhaltet das Diagramm ein Feld der Metamorphite und Granite des Brasiliano- und Damara-Grundgebirges. Die Daten für die Grundgebirgsmetamorphite stammen von McDermott & Hawkesworth (1990), McDermott et al. (1996), Jung et al. (1998b), Basei (1985) und May (1990).

Die Paraná-Etendeka-Rhyodazite. Die heutige Verbreitung der erhaltenen Paraná-Etendeka-Rhyodazite beträgt ca. 17000 km² (Peate, 1997). Für die sauren Vulkanite der Paraná-Provinz wurde erstmals von Bellieni et al. (1986) der Begriff "Paraná-Rhyolithe" verwendet. Dagegen werden in der Etendeka-Provinz die sauren Vulkanite als Latite und Quarzlatite bezeichnet (Erlank et al., 1984; Marsh et al, 2001). Ebenso wie bei den Flutbasalten erfolgt die Einteilung der Paraná-Etendeka-Rhyodazite sowohl nach ihrer Regiostratigraphie (Abbildung 2.1.1) als auch nach dem TiO₂-Gehalt. Die einzelnen Gruppen der Paraná-Etendeka-Rhyodazite sind in der Tabelle 2.2.2 aufgeführt.

Auf Grundlage des TAS-Diagramms ("total alkalis versus silica diagram" von Le Maitre et al., 1989) handelt es sich bei den sauren Vulkaniten um Dazite, Trachydazite und Rhyolithe (Garland et al., 1995; Ewart et al., 1998b). In den nachfolgenden Kapiteln wird für die sauren Vulkanite der Paraná-Etendeka-Provinz der Name "Paraná-Etendeka-Rhyodazite" verwendet. Rhyodazite stellen laut Definition (Bates & Jackson, 1987) Extrusiv-Gesteine dar, die dazitisch bis rhyolithisch zusammengesetzt sind. Die Rhyodazite führen als Phänokristen hauptsächlich Quarz, Plagioklas und Biotit (oder Hornblende) und weisen eine feinkörnige oder glasige Matrix auf. Diese geochemischen und petrographischen Eigenschaften werden ebenfalls von den Paraná-Etendeka-Rhyodaziten erfüllt.

Tabelle 2.2.2: Geochemische Korrelationen zwischen den Paraná- und Etendeka-Rhyodaziten (modifiziert nach Marsh et al. (2001)). Die Einteilung der Gruppen geht auf Milner et al. (1995a), Garland et al. (1996) und Marsh et al. (2001) zurück.

	Etendeka-Provinz	Paraná-Provinz
"low Ti"	Fria	Santa Maria (Palmas-Gruppe)
	Beacon (Tafelberg-Formation)	Anita Garibaldi (Palmas-Gruppe)
	Grootberg (Tafelberg-Formation)	Caxias do Sul (Palmas-Gruppe)
	Wereldsend (Tafelberg-Formation)	
	Hoanib	
	Springbok (Awahab-Formation)	
	Goboboseb (Awahab-Formation)	
	Terrace	
"high Ti"	Naudé	
	Sarusas	Guarapuava (Chapecó-Gruppe)
	Elliott	
	Khoraseb	Ourinhos (Chapecó-Gruppe)
	Ventura	

Zwischen den "low Ti"- und "high Ti"-Rhyodaziten existiert in den TiO₂-Gehalten eine fließende Grenze (Tabelle 2.2.3). Deutliche Unterschiede treten jedoch in den Zr-, Hf-, Nb- und Ta-Gehalten auf (Tabelle 2.2.3). Dieses Verhalten regte Bellieni et al. (1986) an, einen Grenzwert von 400 ppm für Zr zwischen den "low Ti"- und "high Ti"-Rhyodaziten festzulegen. Wegen der genetischen Verwandtschaft mit den Flutbasalten wird in dieser

Arbeit die Einteilung anhand der TiO₂-Gehalte beibehalten (siehe nachfolgender Text). Dies zeigt sich auch daran, dass die Förderung der Rhyodazite zeitgleich mit den regionalen Flutbasalten erfolgte. So ergeben die Rhyodazite der Awahab-Gruppe, die aufgrund von stratigraphischen Gesichtspunkten die ältesten "low Ti"-Rhyodazite der Etendeka-Provinz darstellen, ⁴⁰Ar/³⁹Ar-Alter im Bereich von 131,9±0,6 Ma bis 132,1±0,4 Ma (Renne et al., 1996b). Die stratigraphisch jüngeren "low Ti"-Rhyodazite der Tafelberg-Gruppe zeichnen sich durch ⁴⁰Ar/³⁹Ar-Alter von 132,8±1,1 Ma (Renne et al., 1992) und 130,3±1,2 Ma aus (Stewart et al., 1996).

Tabelle 2.2.3: Haupt- und Spurenelementeigenschaften der "low Ti"- und "high Ti"-Paraná-Etendeka-Rhyodazite. Die Daten stammen von Garland et al. (1995) und Ewart et al. (1998b).

	"low Ti"-Rhyodazite	"high Ti"-Rhyodazite
TiO ₂ [Gew%]	0,57-1,23	0,95-1,59
Zr [ppm]	136-354	370-828
Nb [ppm]	19,6-34,0	46,2-57,7
Ta [ppm]	1,45-2,25	3,01-3,79
Hf [ppm]	6,2-8,7	13,0-15,5
Zr/Hf	37,9-44,4	41,3-43,2
Nb/Ta	9,2-12,9	14,7-16,0
Ti/Sm	267-762	462-535
Nb/U	2,55-5,81	14,2-26,5

Die Tabelle 2.2.3 beinhaltet neben den Spurenelementgehalten auch Spurenelementverhältnisse. Hierbei werden Verhältnisse von Spurenelementen verwendet, deren Gesamtverteilungskoeffizienten nahezu identisch sind. Somit werden Effekte, die durch Prozesse wie fraktionierte Kristallisation bedingt werden, ausgeschlossen (z.B. Hofmann, 1997). Während Unterschiede zwischen den "low Ti"- und "high Ti"-Rhyodaziten in den Nb/Ta- und Nb/U-Verhältnissen auftreten, überlappen die Zr/Hf-, Ti/Sm- und K/Nb-Verhältnisse.

Die "low Ti"-Rhyodazite weisen gegenüber den "high Ti"-Rhyodaziten höhere δ^{18} O-Werte ("low Ti"-Rhyolithe:~+10 ‰ in Pyroxenen; "high Ti"-Rhyolithe:~+6,5 ‰ in Pyroxenen) und höhere 87 Sr/ 86 Sr_i-Verhältnisse ("low Ti"-Rhyolithe: 0,714-0,727; "high Ti"-Rhyolithe: 0,705-0,708) auf (Peate, 1997).

Die Unterschiede innerhalb der Spurenelemente (Tabelle 2.2.3 & Abbildung 2.2.3) und Isotopenverhältnisse werden durch die unterschiedlichen Bildungsprozesse der Paraná-Etendeka-Rhyodazite bedingt. Während die "low Ti"-Rhyodazite durch AFC-Prozesse aus "low Ti"-Flutbasalten hervorgegangen sind (Bellieni et al., 1986; Garland et al.,1995), wurden die "high Ti"-Rhyodazite durch fraktionierte Kristallisation (Bellieni et al., 1986; Garland et al., 1995) aus den entsprechenden "high Ti"-Flutbasaltmagmen gebildet. Neben den oben beschriebenen Geneseprozessen schlagen Harris et al. (1990) aufgrund von δ^{18} O-Werten und 87 Sr/ 86 Sr_i-Verhältnissen vor, dass die "low Ti"-Etendeka-Quarzlatite Krustenschmelzen darstellen und aus der gleichen Quelle wie die Damaraland A Typ-Granite kommen.

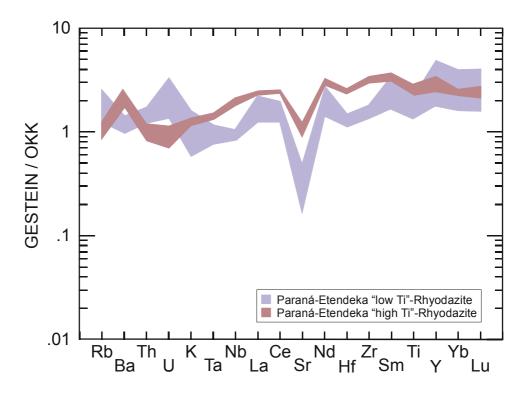


Abbildung 2.2.3: Spiderdiagramm der Paraná-Etendeka-Rhyodazite. Die dargestellten Spurenelemente wurden auf die Werte der durchschnittlichen oberen kontinentalen Kruste (OKK) (Taylor & McLennan, 1985) normiert. Die Daten stammen von Garland et al. (1995) und Ewart et al. (1998b).

2.3 Die Damaraland-Komplexe

Als Damaraland-Komplexe werden mehr als 20 Intrusivkomplexe bezeichnet, die im Bereich zwischen 19° und 22° südlicher Breite und 14° und 17° östlicher Länge vorkommen. Diese Intrusivkomplexe reihen sich entlang eines NE-SW-streichenden Gürtels von der Atlantikküste (Cape Cross) bis ca. 350 km ins Landesinnere (Okorusu) auf (Abbildung 2.3.1). Korn & Martin (1954), Martin et al. (1960) und Pirajno & Schlögl (1987) beschreiben die Intrusivkomplexe strukturell als erodierte Calderen. Martin et al. (1960) unterteilten die Damaraland-Komplexe stofflich in drei Kategorien: (1) Überwiegend granitische Komplexe (z.B. Brandberg, Spitzkoppe und Erongo), (2) differenzierte basische Komplexe (z.B. Cape Cross, Messum und Okenyenya) und (3) Karbonatit-Komplexe (Kalkfeld, Okurusu, Ondurakorume und Osongombe) und Alkali-Komplexe (z.B. Paresis und Etaneno).

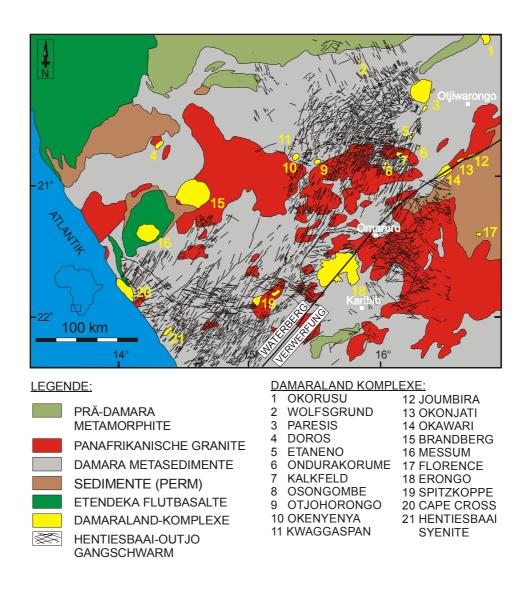


Abbildung 2.3.1: Ausschnitt einer schematisierten geologischen Karte von Namibia (modifiziert nach Diehl, 1990). Dargestellt sind die wichtigsten der Damaraland-Komplexe und der Hentiesbaai-Outjo-Gangschwarm (Hahne et al., 2001).

Tabelle 2.3.1: Zusammensetzung der wichtigsten Damaraland-Komplexe

Intrusivkomplexe	Zusammensetzung der wichtigsten Dam Gesteine	$\delta^{18}\mathrm{O}_{\mathrm{Magma}}[\%]$	⁸⁷ Sr/ ⁸⁶ Sr (130 Ma)	ε _{Nd} (130 Ma)
Granitische Komp	lexe	magna L	, ,	7.00
Erongo	Alkalibasalt, Andesit, Granodiorit, Granit, Phonolith, Rhyodazit, tholeiitischer Basalt	10,1-12,0	0,70425-1,42425	-9,3 bis 3,0
Brandberg	Biotit-Hornblende-Granit, Monzonit, peralkalischer Granit, Rhyolith, Trachydazit	8,1-8,8	0,70706-0,73641	-5,2 bis -0,2
Spitzkoppe	Granit	10,0-10,7	0,70413-0,71143	-6,2 bis -5,1
Differenzierte basi	sche Komplexe			
Messum	Anorthosit, Dazit, Diorit, Gabbro, Nephelin-Syenit Norit, Quarz- monzonit, Rhyolith	7,0-8,0	0,70440-0,71017	-3,1 bis -3,9
Cape Cross	Essexit, Gabbro, Granophyr, Monzogranit, Rhyolith, Syenit, Tinguait (Foidsyenit)	9,4	0,72160-0,72636	-4,1 bis -4,7
Okenyenya	Essexit, Gabbro, Lamprophyr, Nephelinsyenit, Quarzmonzonit, Quarzsyenit, Syenit	5,7-10,0	0,70375-0,71575	-3,9 bis 5,0
Peralkalische und	karbonatitische Komplexe			
Ondurakorume	Dolerit, Karbonatit, Nephelinsyenit, Syenit	-	0,70351-0,70423	0,1 bis 1,0
Paresis	Alkalifeldspatsyenit, Alkali-Olivin- Basalt, Gabbro, Granit, Lamprophyr, peralkalischer Rhyolith (Comendit), Phonolith, Quarzsyenit	4,9-9,3	0,70447-0,72315	-21,4 bis -0,9
Kalkfeld	Dolerit, Karbonatit, Nephelinit, Nephelinsyenit, Syenit	-	0,70287-0,70593	0,9 bis 0,1
Etaneno	Alkalifeldspatsyenit, Nephelin- Monzosyenit	6,8-7,2	0,70463-0,70510	-1,9 bis -0,8
Okorusu	Dolerit, Ijolith, Karbonatit, Monzonit, Nephelinsyenit, Syenit	6,6-6,9	0,70372-0,70468	-0,6 bis -0,4

Die Literaturdaten stammen von Harris (1995), Martinez et al. (1996), Milner & Le Roex (1996), Ewart et al. (1998b), Harris et al. (1999), Mingram et al. (2000), Schmitt et al. (2000), Trumbull et al. (2000), Frindt et al. (in press) und Trumbull et al. (in press).

In Tabelle 2.3.1 sind die stofflichen Eigenschaften der wichtigsten Damaraland-Komplexe zusammengestellt. Geochemisch unterscheiden sich die einzelnen Typen der Damaraland-Komplexe stark voneinander. Vor allem in den Isotopenverhältnissen zeigen sich die Unterschiede, welche Harris et al. (1990), Harris (1995), Trumbull et al. (2000) und Trumbull et al. (in press) auf die variierenden Anteile der Mantel- und Krustenkomponenten bei der Magmengenese zurückführen.

Innerhalb der überwiegend granitischen Komplexe gibt es große Unterschiede in den Srund Nd-Isotopenverhältnissen. Während die peralumischen Granitoide des Erongo-Komplexes (ϵ_{Nd} =-7 bis -9) und der großen Spitzkoppe (ϵ_{Nd} =-6) in ihren Sr- und Nd-Isotopenverhältnissen mit den Damara-Metasedimenten und Damara-Grundgebirgsgraniten überlappen und von Trumbull et al. (2000) und Frindt et al. (in press) als Aufschmelzprodukte der kontinentalen Kruste interpretiert werden, zeigen die metalumischen und peralkalischen Granite des Brandbergs (ϵ_{Nd} -Werte von -1 bis +3) eine Mantelsignatur (Schmitt et al., 2000). Krustengenerierte Magmatite kommen weiterhin im peralkalischen Paresis-Komplex vor. Die Rhyolithe zeigen einen $\epsilon_{Nd(i)}$ -Wert von -21 und ein 87 Sr/ 86 Sr_i-Verhältnis von 0,71170 und wurden laut Mingram et al. (2000) durch Aufschmelzung von Metamorphiten des Prä-Damara-Grundgebirges gebildet. Ein Einfluss kontinentaler Kruste zeigt sich ebenfalls bei den Syeniten des Paresis-Komplexes, die durch den Prozess der Hybridisierung von Mantelund Krustenschmelzen gebildet worden sind (Mingram et al., 2000).

Eine stoffliche Besonderheit innerhalb des magmatischen Spektrums der Etendeka-Provinz stellen die Alkalimagmatit- und Karbonatit-Komplexe dar. Diese weisen die gleichen $\epsilon_{Nd(130 \text{ Ma})}$ -Werte und $^{87}\text{Sr}/^{86}\text{Sr}_{(130 \text{ Ma})}$ -Verhältnisse wie der Tristan-Plume vor 130 Ma auf (Trumbull et al., 2000; Trumbull et al., 2003). Ähnliche geochemische Eigenschaften zeigen ebenfalls die Alkalimagmatite des Okenyenya- und Erongo-Komplexes. Anhand der Alkalimagmatite dieser Komplexe konnte erstmals der direkte Einfluss des "Tristan-plume" auf die Gesteine der Paraná-Etendeka-Provinz belegt werden (Milner & Le Roex, 1996; Le Roex & Lanyon, 1998; Trumbull et al., 2003).

Für die Bildung der bisher datierten Damaraland-Komplexe wird ein Zeitraum von 13 Ma (137-124 Ma) angegeben (Milner et al., 1995b). Somit überlappt die magmatische Aktivität, die zur Bildung der Damaraland-Komplexe geführt hat, weitestgehend mit der aktiven Hauptförderphase der regionalen Flutbasalte (137-128 Ma) (siehe auch Abbildung 6.3.2).

3 Geologischer Aufbau und Entwicklungsgeschichte des Erongo-Komplexes

Der Erongo-Komplex (Cloos, 1911; Cloos, 1919; Emmermann, 1979; Pirajno,1990) ist mit ca. 40 km Durchmesser der größte der Damaraland-Ringkomplexe (Abbildung 3.1). Er ist südlich des Omaruru-Flusses, ca. 25 km südwestlich der Stadt Omaruru, gelegen. Sein geographisches Zentrum befindet sich bei 21°40′ südlicher Breite und 15°40′ östlicher Länge. Das heutige Erscheinungsbild des Erongo-Komplexes ist stark durch Erosionsvorgänge geprägt. Die ehemaligen Außenwände sind durch die Erosion abgetragen worden. Lediglich der Kern der ursprünglichen Caldera-Struktur ist noch vorhanden. Sie wird im NW von einem halbkreisförmigen Ringdike umgeben, dessen Ausdehnung bis zur Waterberg-Omaruru-Störungszone reicht, einer NE-SW-streichenden Störung, die eine der wichtigsten Lineamente des Damara-Grundgebirges darstellt.

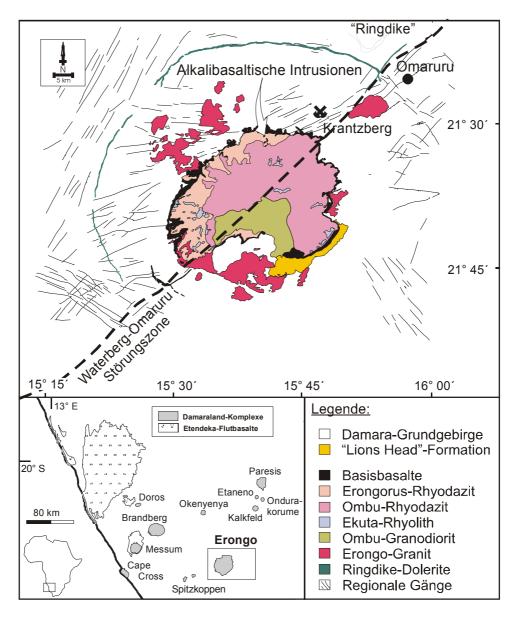


Abbildung 3.1: Vereinfachte geologische Karte des Erongo-Komplexes. Diese Karte stellt einen Ausschnitt der geologischen Karte von Namibia (1:250.000), Blatt 2114-Omaruru dar (Milner, 1997).

Die Nebengesteine bestehen aus glimmerreichen Metagrauwacken und Metapeliten sowie verschiedenen Granitintrusionen des Damara-Orogens. Das Metamorphosealter beträgt ca. 500 Ma (Miller, 1983). Im E, SE und NW ist ein posttektonischer Granit weit verbreitet, der ein Intrusionsalter von ca. 475 Ma aufweist (Miller, 1983). Im Norden des Erongo-Komplexes besteht das Grundgebirge aus syntektonischen Leukograniten, deren Bildungsalter mit ca. 457 Ma angegeben wird (Miller, 1983). Paleozoische Metamorphite werden diskordant von permischen bis triassischen Sedimenten überlagert, die aus lokalem Verwitterungsschutt hervorgegangen sind und aus Quarziten und Konglomeraten (am SE-Rand) sowie Brekzien bestehen (Cloos, 1911; Emmermann, 1979). Sie erreichen ihre größte Mächtigkeit am SE-Rand des Gebirges, während sie am N- und W-Rand meist nur wenige Meter mächtig sind. Im SE werden diese Sedimente von den Vulkaniten des Erongo-Komplexes überlagert (Hegenberger, 1988).

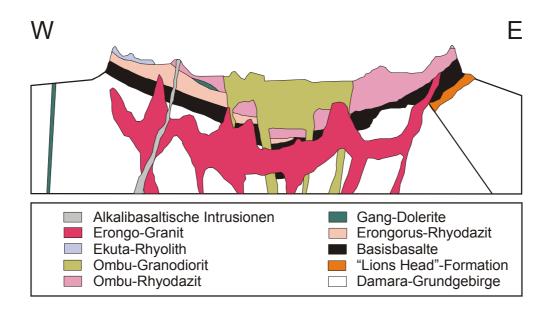


Abbildung 3.2: Schematisches Profil des Erongo-Komplexes (modifiziert nach Milner, 1997).

Der Erongo-Komplex, der sowohl Vulkanite als auch Plutonite (Subvulkanite) umfasst, zeichnet sich durch eine große Gesteinsvielfalt aus. Die drei wesentlichen stofflichen Gruppierungen sind: (1) Tholeiite mit basaltischer bis andesitischer Zusammensetzung, (2) Vulkanite dazitisch, trachydazitisch und rhyolithischer Zusammensetzung mit den chemisch äquivalenten Intrusivgesteinen und (3) alkalibasaltisch zusammengesetzte Gang- und Intrusivgesteine (Basanite, Tephrite, Phonotephrite, Foidite und Trachyte).

Die stofflichen Gruppierungen stellen mit Ausnahme der Ringdike-Dolerite (siehe nachfolgender Text) außerdem zeitlich aufeinander folgende Einzelphasen vulkanischplutonischer Aktivität dar (siehe Abbildung 3.2). Die Basis des Erongo-Komplexes bilden tholeiitische Basalte. Diese stratigraphisch tiefste Einheit erreicht eine maximale Mächtigkeit von 300 m im SE des Komplexes (Pirajno, 1990). Ihre durchschnittliche Mächtigkeit wird mit 80-120 m angegeben (Emmermann, 1979). Pirajno (1990) nimmt an, dass die Platznahme dieser Tholeiite am Ende des Juras (ca. 145 Ma) stattfand. Als Aufstiegsbahnen werden die regional weit verbreiteten basaltischen Gänge angesehen (Emmermann, 1979). Der basaltische Vulkanismus wurde von einem intrusiv-effusiven Magmatismus abgelöst, der in mehreren Schüben rhyodazitisch bis rhyolithisch zusammengesetzte Gesteine förderte.

Einzelheiten des Fördermechanismus werden von früheren Bearbeitern kontrovers diskutiert. Emmermann (1979) unterteilt den postbasaltischen Vulkanismus in zwei Ereignisse, wobei auf die großvolumige Förderung rhyodazitischer Laven rhyolithische Ignimbrit-Eruptionen folgten.

Pirajno (1990) dagegen gliedert den postbasaltischen Vulkanismus in drei Einzelereignisse und interpretiert alle geförderten Vulkanite als Pyroklastite. Im einzelnen wurden zunächst Vulkanite mit andesitischer bis rhyodazitischer Zusammensetzung gefördert, die Pirajno (1990) als Erongo ash-flow tuffs (EAFT) bezeichnet. Diese Gesteine führen im Gegensatz zu den Vulkaniten mit rhyodazitischer bis rhyolithischer Zusammensetzung des nachfolgenden Ombu-Ereignisses (Ombu ash-flow tuffs, OAFT) nur juveniles Material. Die EAFT kommen im N, W und SW des Erongo-Komplexes vor (Abbildung 3.1) und erreichen ihre maximale Mächtigkeit im westlichen Teil. Die OAFT treten nahezu im gesamten Komplex auf und liegen nur im Zentrum auf dem EAFT, während sie im E, NE und SE direkt die Basisbasalte überlagern und maximale Mächtigkeiten von bis zu 500 m erreichen. Der Ombu-Granodiorit stellt das Intrusiväquivalent der OAFT bzw. Rhyodazite dar. Er bildet das Zentrum des Erongo-Komplexes in Form eines ca. 6x15 km umfassenden Stockes (Abbildung 3.1). Rheomorphic rhyolitic rocks (RHEOR) überlagern den EAFT im W und SW und OAFT im E.

Beide Bearbeiter (Emmermann, 1979 & Pirajno, 1990) stimmen in ihrer Interpretation überein, dass der rhyolithische Tuff das Extrusiväquivalent des Erongo-Granits ist, der am Rand des Erongo-Komplexes intrudiert ist (Abbildung 3.1).

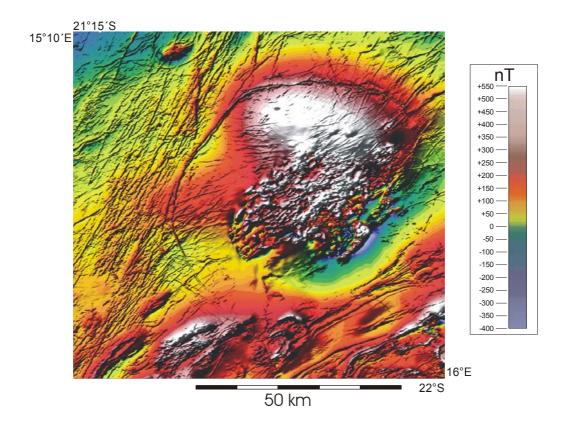


Abbildung 3.3: Aeromagnetische Karte des Erongo-Komplexes (Quelle: Geological Survey of Namibia)

Die dritte und stratigraphisch jüngste Gruppe bilden tholeiitische und alkalibasaltische Gang- und Intrusivgesteine. Dazu gehört ein Ringdike, der eine maximale Mächtigkeit von ca. 200 m und einen Durchmesser von ca. 40 km erreicht. Die Bildung des Ringdikes, welcher

halbkreisförmig den Erongo-Komplex umgibt, scheint ebenfalls eine Folgeerscheinung eines Caldera-Einbruchs zu sein. Aldrich (1986) interpretierte aus aeromagnetischen Daten den Ringdike als "cone sheet". Neue Modellierungen an magnetischen Profilen lassen jedoch den Schluss zu, dass er mit einem Winkel zwischen 75 und 85° nach außen einfällt und es sich somit um einen Ringdike handelt (Vietor et al., 2002). Nach Aldrich (1986) scheint der Ringdike mit einer magnetischen Anomalie, die sich unterhalb des Erongo-Komplexes befindet, unmittelbar verknüpft zu sein (Abbildung 3.3).

Neben dem Ringdike treten im Erongo-Komplex eine Vielzahl von Gängen und Lagergängen mit basaltisch bis rhyolithischer Zusammensetzung auf. Ein herausragendes Beispiel hierfür ist ein ca. 50 m mächtiger Doleritlagergang, der im nördlichen Teil des Erongo-Komplexes an der Grenze zwischen Erongorus-Rhyodazit und Ombu-Rhyodazit auftritt. Daraus ergibt sich eine lagergangartige Intrusion im Anschluss an die Phase der Rhyodazitförderung. Das jüngste Ereignis ist die Intrusion überwiegend alkalibasaltischer Magmatite. Diese treten im N des Erongo-Komplexes sowohl als Gänge als auch als Stöcke auf (Emmermann, 1979; Patel, 1988; Pirajno, 1990).

4 Geochemische Charakterisierung

Einführung. In diesem Kapitel werden die einzelnen Gesteinseinheiten des Erongo-Komplexes geochemisch charakterisiert, untereinander verglichen und hinsichtlich ihrer Beziehung zum regionalen Flutbasaltmagmatismus untersucht. Anhand von neu gewonnenen ¹⁴³Nd/¹⁴⁴Nd-, ⁸⁷Sr/⁸⁶Sr-, ²⁰⁶Pb/²⁰⁴Pb-, ²⁰⁷Pb/²⁰⁴Pb-, ²⁰⁸Pb/²⁰⁴Pb- und ¹⁸⁷Os/¹⁸⁸Os-Isotopenverhältnissen in Kombination mit Haupt- und Spurenelementgehalten kann in den nachfolgenden Kapiteln gezeigt werden, dass die große stoffliche Vielfalt der Magmatite des Erongo-Komplexes durch unterschiedliche Bildungsprozesse und Magmenquellen bedingt wird und ihre Genese in enger Beziehung mit dem Paraná-Etendeka-Ereignis steht.

4.1 Gesteinsnomenklatur nach geochemischen Gesichtspunkten.

In dieser Arbeit erfolgt eine Gesteinsklassifizierung nach dem TAS-Diagramm von Le Maitre et al. (1989). Die Vulkanitserien mit dazitischer bis rhyolithischer Zusammensetzung, die von Emmermann (1979) als Rhyodazite und von Pirajno (1990) als EAFT und OAFT bezeichnet werden, werden nach den jeweiligen Typlokalitäten benannt, die in der geologischen Karte des Erongo-Komplexes (Milner, 1997) aufgeführt sind. Zum Vergleich mit früheren Untersuchungen dient die folgende Synopsis (Tabelle 4.1.1).

Tabelle 4.1.1: Gesteinsbezeichnung der Magmatite des Erongo-Komplexes

Gesteinsbezeichnung (vorliegende Arbeit)	Gesteinsbezeichnung (Emmermann, 1979)	Gesteinsbezeichnung (Pirajno, 1990)		
Basisbasalte	Olivin-Tholeiite Quarz-Tholeiite	Basaltische Laven		
Erongorus-Rhyodazite	Rhyodazitische Vulkanite	Erongorus-Ereignis: "Erongo ash-flow tuffs" (EAFT)		
Ombu-Rhyodazite	Kilyouazitische vulkanne	Ombu-Ereignis: "Ombu ash-flow tuffs" (OAFT)		
Ekuta-Rhyolithe	Rhyolithische Tuffe, Ignimbrite	Erongo-Ereignis: "rheomorphic rhyolitic rocks" (RHEOR)		
Ombu-Granodiorit	Ombu-Granodiorit	Ombu-Granodiorit		
Erongo-Granit	Erongo-Granit	Erongo-Granit		
Gangdolerite: (Ringdike & Lagergänge) Ringdike-Dolerite Lagergang-Dolerite	-	Dolerite: (Cone sheet & dolerite sills) Olivin-Dolerite Olivin-Dolerite		
Alkalibasaltische Stöcke: Foidite Basanite Tephrite Phonotephrite Nephelinite	-	Untersättigte mafische "plugs" ("alkaline plugs"): Basanite Tephrite Phonotephrite Tephriphonolite Phonolite		
Alkalibasaltische Gänge: Basanite Tephrite Phonotephrite	Alkalibasaltische Gänge: Alkalibasalte	Lamprophyr Gänge: Glimmer-Lamprophyre Olivin-Lamprophyre		

Scientific Technical Report STR 05/02 DOI: 10.2312/GFZ.b103-050283

Der Erongo-Komplex zeichnet sich durch seine große Gesteinsvielfalt aus, welche sich auch im TAS-Diagramm (Le Maitre et al., 1989) widerspiegelt (Abbildung 4.1.1). Die Basisvulkanite (Gruppe 1) des Erongo-Komplexes variieren in den SiO₂-, Na₂O- und K₂O-Gehalten stark und weisen basaltische, andesitische und trachyandesitische Zusammensetzung auf. Da der Anteil an Vulkaniten mit andesitischer bis trachyandesitischer Zusammensetzung an dem Gesamtvolumen der Vulkanite an der Basis des Erongo-Komplexes sehr gering ist, werden diese Gesteine mit den basaltisch zusammengesetzten Vulkaniten zu der Gruppe der Basisbasalte zusammengefasst. Ebenfalls in diese Gruppe gehören die Gangdolerite, die sich aus Ringdike- und Lagergang-Doleriten zusammensetzen. Die zweite Gruppe setzt sich stofflich deutlich von der Gruppe der Basalte ab. Sie besteht überwiegend aus Magmatiten mit dazitischer und rhyolithischer Zusammensetzung. Die SiO2-Gehalte der einzelnen Untereinheiten überlagern sich und nehmen von 66 bis 75 Gew.-% zu. Die dritte Gruppe bilden die alkalibasaltischen Gesteine, die aus Basaniten, Tephriten, Phonotephriten und Foiditen bestehen. Sie sind stofflich deutlich von den Basalten der ersten Gruppe getrennt. Bezogen auf das Gesamtvolumen des Erongo-Komplexes macht das Volumen der alkalibasaltischen Magmatite weniger als 1 % aus.

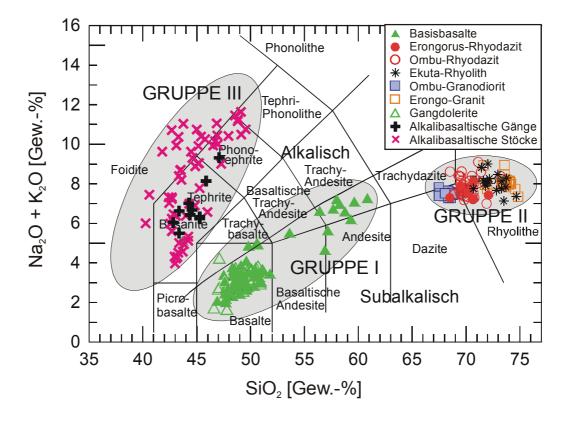


Abbildung 4.1.1: TAS-Diagramm (Le Maitre et al., 1989) der Magmatite des Erongo-Komplexes. Neben den eigenen Daten wurden auch Literaturdaten von Emmermann (1979), Pirajno (1990), Trumbull et al. (2000) und Trumbull et al. (2003) verwendet. Die Linie, die zwischen subalkalischen und alkalischen Gesteinen trennt, stammt von Irvine & Baragar (1971).

In der Abbildung 4.1.2 sind einige ausgewählte Hauptelementoxide-und Spurenelemente gegen die SiO₂-Gehalte aufgetragen. Aus den Variationsdiagrammen geht hervor, dass Gesteine mit SiO₂-Gehalten zwischen 62 und 66 Gew.-% SiO₂ im Erongo-Komplex nicht auftreten. Diese bimodale Verteilung, insbesondere der Gesteine der Gruppe 1 und 2, wurde als Resultat zweier voneinander unabhängiger Bildungsprozesse interpretiert (Emmermann, 1979; Trumbull et al., 2000; Trumbull et al., 2003). In den nachfolgenden Kapiteln werden die

geochemischen Eigenschaften der einzelnen Gesteinseinheiten des Erongo-Komplexes im Einzelnen beschrieben und die neugewonnenen Erkenntnisse dieser Untersuchung den Ergebnissen der bisherigen Arbeiten gegenübergestellt. Die Diskussion und Interpretation der geochemischen Daten erfolgt im Kapitel 6.

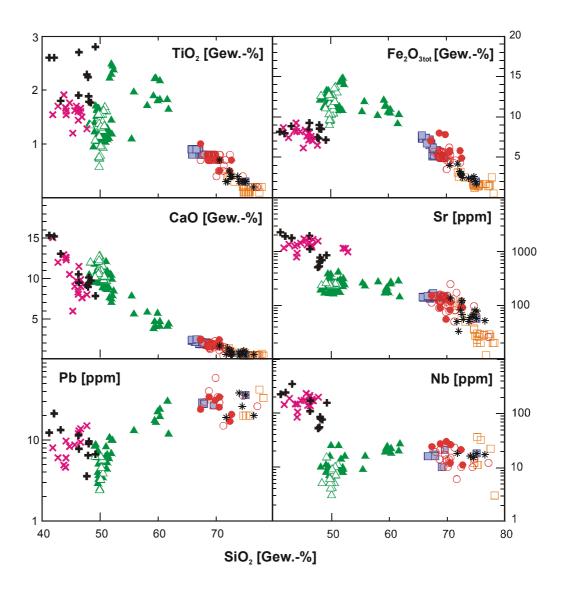


Abbildung 4.1.2: Variationsdiagramme der Vulkanite und Plutonite des Erongo-Komplexes (Legende & Datenquellen: siehe Abbildung 4.1.1).

4.2 Haupt- und Spurenelementchemismus

Die Tholeite an der Basis des Erongo-Komplexes. Von der Gesteinseinheit an der Basis des Erongo-Komplexes wurden insgesamt 46 Proben untersucht, deren Ergebnisse in den Tabellen A9-A17 und A28-A29 (siehe Anhang) dargestellt sind. Wie die Tabellen A9-A17 und A28-A29 und die Abbildungen 4.2.2 zeigen, sind die Basisbasalte von ihrer Zusammensetzung her auffallend heterogen. Die untersuchten Vulkanite haben SiO₂-Gehalte von 46,9 bis 61,8 Gew.-% (Abbildung 4.1.1). Die Summen der Na₂O- und K₂O-Gehalte liegen im Bereich von 2,0-7,6 Gew.-%, wobei der Großteil der Proben Gehalte zwischen 2 und 4 Gew.-% aufweist. Gemäß der CIPW-Norm und der Na₂O+K₂O vs. SiO₂ Klassifikation (Irvine & Baragar, 1971) handelt es sich bei Basisbasalten überwiegend um Olivin-Tholeiite. Basisbasalte mit MgO-Gehalten <5 Gew.% bilden die Gruppe der Quarz-Tholeiite (Abbildung 4.2.1). Bei den Basisbasalten >10 Gew.-% MgO zeigt sich eine Zunahme der normativen Ol- und Hy-Gehalte. Die Mg-#, definiert als Verhältnis von Mg (molar) über die Summe (Mg+Fe²⁺) in Prozent, variieren zwischen 30 und 60.

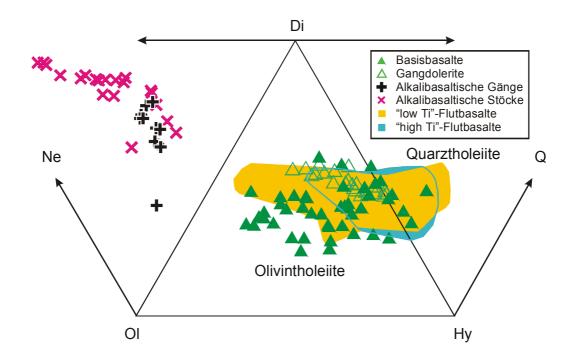


Abbildung 4.2.1: Normatives (CIPW) Diopsid (Di)-Olivin (Ol)-Hypersthen (Hy)-Nephelin (Ne)-Quarz (Q)-Diagramm der Basisbasalte, Gangdolerite und Alkalibasalte des Erongo-Komplexes. Zusätzlich zeigt das Diagramm die Felder der "low Ti"- und "high Ti"-Flutbasalte der Paraná-Etendeka-Provinz (Petrini et al., 1987; Cordani et al., 1988; Peate, 1990; Peate & Hawkesworth, 1996). Die Daten der alkalibasaltischen Stöcke stammen von Trumbull et al. (2003). Zu Vergleichszwecken wurden die Eisenoxidgehalte mit einem angenommenen Fe₂O₃/FeO-Verhältnis von 0,10 (Gibson et al., 2000) aus den Fe₂O_{3tof}-Gehalten berechnet

Abbildung 4.2.2 zeigt die Variation verschiedener Hauptelemente mit den MgO-Gehalten. Dabei unterscheiden sich die Basisbasalte mit 3<MgO<8 Gew.-% deutlich von denen, die außerhalb dieses Bereiches liegen.

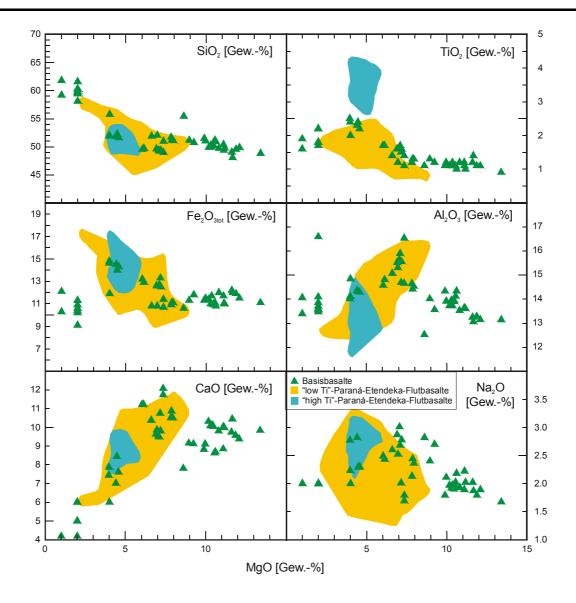


Abbildung 4.2.2: Variationsdiagramme der Basisbasalte, in denen verschiedene Hauptelemente gegen MgO aufgetragen sind. Zu Vergleichszwecken wurden die "low Ti"- und "high Ti"-Paraná-Etendeka-Flutbasalte mit in das Diagramm aufgenommen. Die Daten stammen von Petrini et al. (1987), Cordani et al. (1988), Peate (1990) und Peate & Hawkesworth (1996).

Bei SiO_2 , TiO_2 und Fe_2O_{3tot} zeigt sich im Bereich zwischen 3 und 8 Gew.-% MgO eine positive und bei Al_2O_3 und CaO eine negative Korrelation mit abnehmendem Differentiationsgrad. Entgegengesetzt dazu nehmen bei den Basisbasalten >8 Gew.-% die Al_2O_3 -Gehalte mit zunehmendem Differentiationsgrad zu (Abbildung 4.2.2). Die CaO/ Al_2O_3 -Verhältnisse liegen im Bereich von 0,3 und 0,8, wobei die Basisbasalte mit den höchsten MgO-Gehalten auch die höchsten CaO/ Al_2O_3 -Verhältnisse aufweisen.

Die kompatiblen Spurenelemente Ni (<10-430 ppm) und Cr (16-1190 ppm) nehmen mit zunehmenden SiO₂-Gehalten ab. Interessanterweise beschränken sich die hohen Ni- und Cr-Gehalte keineswegs auf Proben mit MgO-Gehalten >10 Gew.-%. Ein Beispiel ist die Probe G194, die bei einem MgO-Gehalt von 8,61 Gew.-% Cr- und Ni-Konzentrationen von 1012 ppm bzw. 344 ppm aufweist. Die Konzentrationen an inkompatiblen Spurenelementen wie Rb (10-243 ppm), Cs (0,3-13 ppm), Pb (3-30 ppm) und Li (6-39 ppm), die in der kontinentalen Kruste angereichert sind, nehmen mit zunehmendem Differentiationsgrad zu und weisen im Vergleich zum primitiven Erdmantel (Sun & McDonough, 1989) hohe Konzentrationen auf. Die wenig differenzierten Basisbasalte zeigen Zr/Nb- Verhältnisse zwischen 11,5 und 16,6,

wobei niedrigere Verhältnisse mit zunehmenden MgO-Gehalten einhergehen, und Verhältnisse <10 generell für Proben mit MgO-Gehalten >8 Gew.-% vorliegen. Die La/Nb-Verhältnisse korrelieren mit den Zr/Nb-Verhältnissen und weisen bei den stark differenzierten Basisbasalten eine deutliche Zunahme auf. Ähnlich wie die La/Nb-Verhältnisse zeigen die Ba/La-, Ba/Th- und Rb/Nb-Verhältnisse die größte Variation bei Zr/Nb-Verhältnissen zwischen 11,5 und 16,6 (Abbildung 4.2.3).

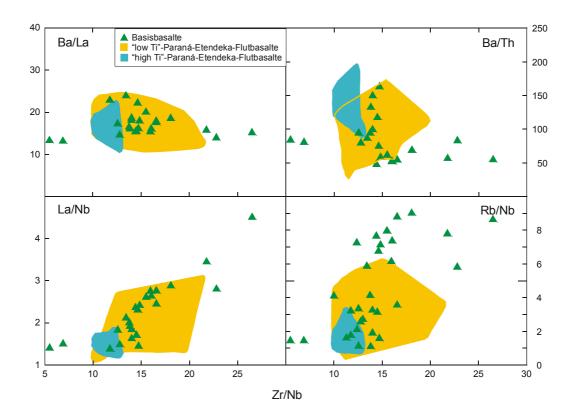


Abbildung 4.2.3: Korrelation der Spurenelementverhältnisse der Basisbasalte im Vergleich mit den "low Ti"- und "high Ti"-Flutbasalten der Paraná-Etendeka-Provinz. Die Literaturdaten stammen von Petrini et al. (1987), Cordani et al. (1988), Peate (1990) und Peate & Hawkesworth (1996).

Im Spiderdiagramm (Abbildung 4.2.4) zeigt sich, dass alle dargestellten Spurenelemente um das 10- bis 2000-fache gegenüber den Werten des primitiven Mantels (Sun & McDonough, 1989) angereichert sind. Außerdem weisen alle Proben eine negative Nb-, Srund P-Anomalie auf. Mit abnehmenden MgO-Gehalten zeigt sich eine deutlichere Ausprägung der negativen Anomalien bei den Elementen Sr und Eu. Stark ausgeprägt ist ebenfalls eine positive Anomalie bei dem Spurenelement Pb, die mit zunehmendem Differentiationsgrad zunimmt. Die chondritnormierten SEE-Gehalte (Abbildung 4.2.5) zeigen eine Anreicherung der leichten Selten Erdelemente (LSEE) gegenüber den schweren Selten Erdelementen (SSEE), was sich in (La/Yb)_{CN}-Verhältnissen zwischen 3,2 und 11,7 ausdrückt. In Abbildung 4.2.5 sind die Muster der Basisbasalte mit MgO-Gehalten zwischen 6 und 8 Gew.-% von denen mit MgO-Gehalten <6 Gew. farblich getrennt, da im nachfolgenden Basisbasalte mit den regionalen Flutbasalten mit entsprechendem Differentiationsgrad verglichen werden sollen. Die Anreicherung der LSEE gegenüber den SSEE nimmt mit steigender Differentiation zu. Weiterhin sind die SEE-Muster durch Eu-Anomalien (Eu/Eu*: 0,51-0,96) gekennzeichnet, deren Ausprägung mit steigenden SEE-Konzentrationen korreliert (Eu*=Eu_{CN}/[Sm_{CN}*Gd_{CN}]^{0,5}).

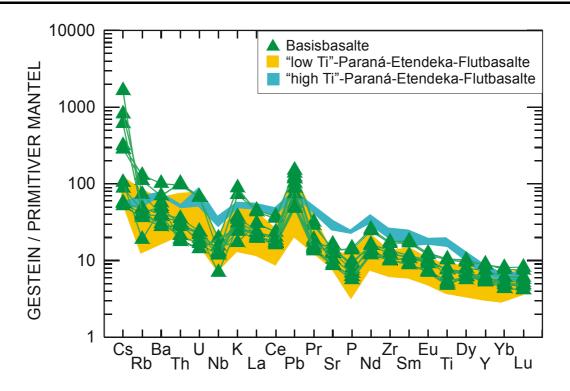


Abbildung 4.2.4: Spiderdiagramm wenig differenzierter (MgO: 6-8 Gew.-%) Basisbasalte im Vergleich mit "low Ti"- und "high Ti"-Flutbasalten der Paraná-Etendeka-Provinz. Die dargestellten Spurenelemente wurden auf die Werte des primitiven Mantels (Sun & McDonough, 1989) normiert.

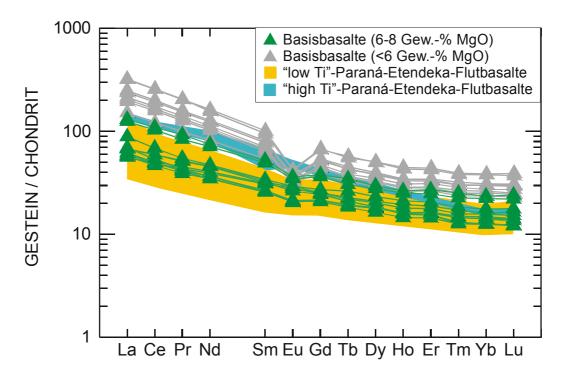


Abbildung 4.2.5: SEE-Diagramm der Basisbasalte im Vergleich mit "low Ti"- und "high Ti"-Flutbasalten der Paraná-Etendeka-Provinz. Die Werte wurden auf Chondrit (Sun & McDonough, 1989) normiert.

Die Gangdolerite des Erongo-Komplexes. Unter dem Oberbegriff Gangdolerite werden in dieser Arbeit die tholeiitischen Intrusivgesteine des Ringdikes und der Lagergänge zusammengefasst (Abbildung 3.2). Von den Gangdoleriten wurden insgesamt 24 Proben analysiert. Die Ergebnisse sind in den Tabellen A18 bis A25 (Anhang) aufgelistet. Nach den Kriterien von Irvine & Baragar (1971) handelt es sich bei den Gangdoleriten ebenso wie bei den Basisbasalten um tholeiitische Basalte. Ähnlich wie bei den Basisbasalten kommen Olivintholeiite und untergeordnet Quarztholeiite vor (Abbildung 4.2.1). In Variationsdiagramm MgO versus SiO₂ (Abbildung 4.2.6) ist zu erkennen, dass die SiO₂-Gehalte im Bereich von 5,5 bis 8 Gew.-% MgO relativ konstant sind. Unterhalb von 5,5 Gew.-% MgO ist eine Zunahme der SiO2-Gehalte zu beobachten. Bei den Gangdoleriten kommen keine Proben mit MgO-Gehalten >9 Gew.-% vor, jedoch weisen die Gangdolerite (Mg-#: 46-78) im Gegensatz zu den Basisbasalten auch Mg-# im Bereich primärer Mantelschmelzen (Mg-#: 68-75; Roeder & Emslie, 1970) auf. Die in Abbildung 4.2.6 dargestellten Hauptelemente der Gangdolerite korrelieren mit MgO. So zeigen die TiO2-, Fe₂O_{3 tot}- und Na₂O-Gehalte eine negative Korrelation mit zunehmenden MgO-Gehalten, während die CaO- und Al₂O₃-Gehalte eine positive Korrelation zeigen.

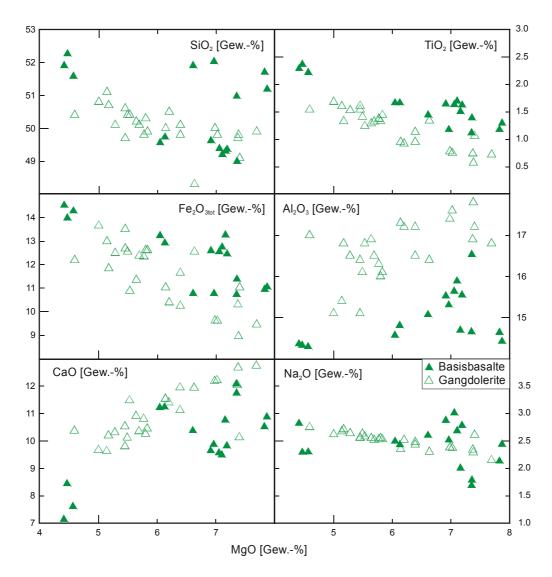


Abbildung 4.2.6: Variationsdiagramme der Gangdolerite im Vergleich mit den Basisbasalten, in denen verschiedene Hauptelemente gegen MgO aufgetragen sind.

Abbildung 4.2.6 verdeutlicht, dass bei gegebenen MgO-Gehalten die Gangdolerite niedrigere TiO₂- und höhere Al₂O₃-Gehalte aufweisen als die Basisbasalte. Bei den kompatiblen Spurenelementen Ni (43-71 ppm) und Cr (47-184 ppm) und den inkompatiblen Spurenelementen Rb (10-25 ppm) und Cs (0,5-2,7 ppm) ist die Variabilität bei den vergleichsweise undifferenzierten Gangdoleriten weniger deutlich ausgeprägt als bei den Basisbasalten mit ähnlichen MgO-Gehalten. Während einige Basisbasalte mit MgO-Gehalten zwischen 6 und 8 Gew-% Cr-Gehalte >350 ppm zeigen, weisen die Gangdolerite in diesem Bereich Cr-Gehalte <200 ppm auf (Abbildung 4.2.7). Gegenüber den Basisbasalten haben die Gangdolerite in der Regel bei vergleichbaren MgO-Gehalten niedrigere Zr-, Nb- und Y-Gehalte (Abbildung 4.2.7).

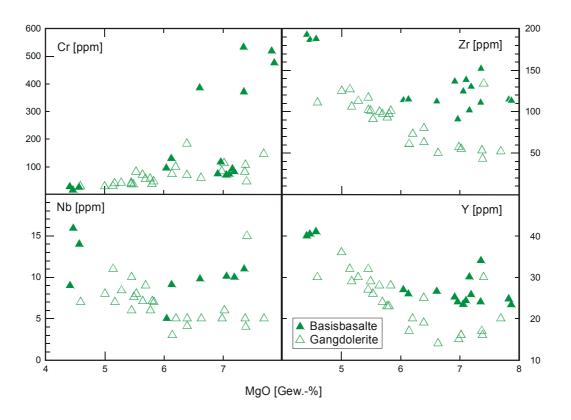


Abbildung 4.2.7: Spurenelementvariationen der Gangdolerite im Vergleich mit den Basisbasalten mit MgO als Differentiationsindex.

Der Vergleich der chondritnormierten SEE-Muster (Sun & McDonough, 1989) zeigt, dass die Gangdolerite gegenüber den Basisbasalten niedrigere SEE-Konzentrationen und charakteristische positive Eu-Anomalien (Eu/Eu*: 1,11-1,26) aufweisen (Abbildung 4.2.8). Ebenso sind bei den wenig differenzierten Gangdoleriten die LSEE gegenüber den SSEE in geringerem Maße angereichert als bei den Basisbasalten mit vergleichbaren MgO-Gehalten. So sind die (La/Yb)_{CN}-Verhältnisse der Gangdolerite (2,5-3,1) ca. 2-3 fach niedriger als die der Basisbasalte (4,6-10,5). Ähnlich verhält es sich mit der Anreicherung der MSEE gegenüber den SSEE. Hier weisen die Gangdolerite ebenfalls niedrigere (Sm/Yb)_{CN}-Verhältnisse (1,6-1,7) als die Basisbasalte (1,9-3,0) auf (Abbildung 4.2.8).

Der Verlauf der Spiderdiagramm-Muster ist bei den wenig differenzierten Gangdoleriten ähnlich. Abbildung 4.2.9 zeigt, dass die Gangdolerite in ihrem Verlauf ein mit den Basisbasalten vergleichbares Muster aufweisen, wobei bei vergleichbarem Differentiationsgrad die Gangdolerite niedrigere Spurenelementkonzentrationen zeigen als die Basisbasalte. Im Einzelnen treten charakteristische negative Ba-, Nb-, P- und Ti-

Anomalien sowohl bei den Gangdoleriten als auch bei den Basisbasalten auf. Im Gegensatz zu den Basisbasalten zeigen die Gangdolerite jedoch stärker ausgeprägte negative Ba-Anomalien und weniger stark ausgeprägte positive Anomalien der Elemente K und U. Die Elemente Cs und Pb sind überproportional gegenüber allen anderen dargestellten Elementen angereichert (Abbildung 4.2.9). So sind z.B. die Cs-Gehalte um das ca. 160- bis 350-fache gegenüber dem primitiven Mantel angereichert und überlappen mit den Gehalten in den Basisbasalten.

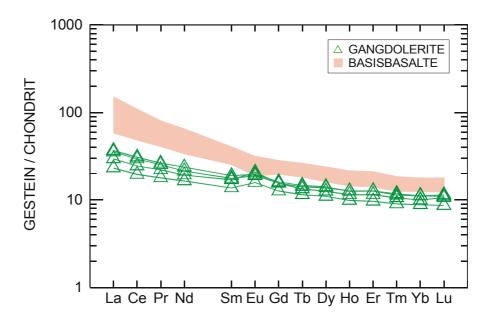


Abbildung 4.2.8: SEE-Diagramm wenig differenzierter Gangdolerite (MgO-Gehalte: 6-8 Gew.-%). Zu Vergleichszwecken sind die SEE-Muster von Basisbasalten mit ähnlichen MgO-Gehalten mit in das Diagramm aufgenommen. Die SEE-Gehalte wurden auf Chondrit normiert (Sun & McDonough, 1989).

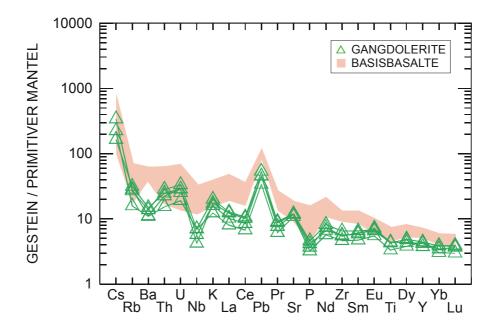


Abbildung 4.2.9: Spiderdiagramm wenig differenzierter Gangdolerite im Vergleich mit Basisbasalten des gleichen Differentiationsgrades (MgO-Gehalte zwischen 6 und 8 Gew.-%). Die dargestellten Spurenelemente wurden auf die Werte des primitiven Mantels (Sun & McDonough, 1989) normiert.

Die alkalibasaltischen Gänge des Erongo-Komplexes. Von den alkalibasaltischen Gangmagmatiten des Erongo-Komplexes wurden insgesamt 9 Proben analysiert. Die Ergebnisse der Haupt- und Spurenelementanalysen finden sich in den Tabellen A26 und A27 (Anhang). Die Alkalibasalte sind gemäß der TAS-Klassifikation (Le Maitre et al., 1989) Basanite, Tephrite und Phonotephrite (Abbildung 4.1.1). Eine genauere Einteilung der Basanite und Tephrite wurde ebenfalls nach Le Maitre et al. (1989) vorgenommen (Gehalt an normativem ol: >10 Gew.-% ol=Basanit; <10 Gew.-% ol=Tephrit). Wie die Magmatite der alkalibasaltischen Stöcke (Trumbull et al., 2003) sind alle analysierten Proben nephelinnormativ (Abbildung 4.2.1). Aus der Variation von MgO gegenüber SiO₂, TiO₂ und CaO lassen sich keine gruppenübergreifenden Trends erkennen (Abbildung 4.2.10).

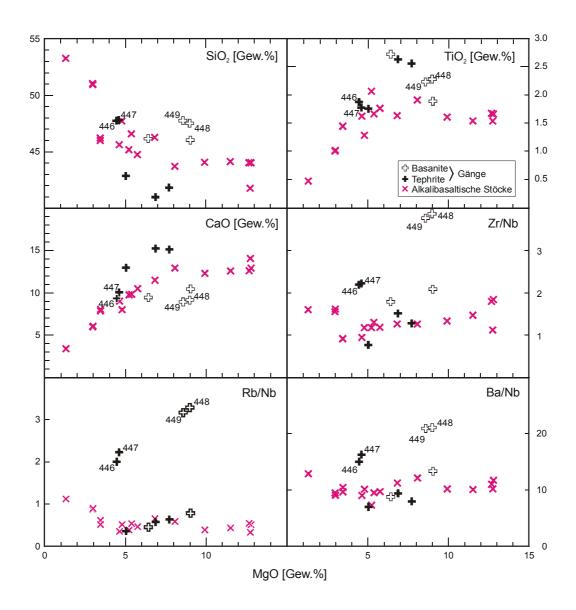


Abbildung 4.2.10: Variationsdiagramme der Alkalibasalte des Erongo-Komplexes. Die Magmatite der alkalibasaltischen Gänge werden in Basanite und Tephrite unterteilt. Die Daten der alkalibasaltischen Stöcke stammen von Trumbull et al. (2003).

Lediglich innerhalb der Tephrite ist eine Zunahme der SiO₂-Gehalte bzw. eine Abnahme der TiO₂- und CaO-Gehalte zu erkennen (Abbildung 4.2.10). Neben den MgO-Gehalten ist die Mg-# ein Indikator für das Differentiationsverhalten. Für die alkalibasaltischen

Gangintrusiva liegt diese zwischen 58 und 40. Während bei den Basaniten die TiO₂-Gehalte mit zunehmendem Differentiationsgrad zunehmen, zeigen die Tephrite eine Abnahme der TiO₂-Gehalte mit abnehmenden MgO-Gehalten. Gegenüber den Tephriten weisen die Basanite bei vergleichbaren MgO-Gehalten niedrigere CaO-Gehalte auf. Vier der in Abbildung 4.2.10 dargestellten Proben (446, 447, 448 und 449) sind in den Erongo-Granit intrudiert. Diese weisen bei vergleichbarem Differentiationsgrad höhere SiO₂-, TiO₂- und niedrigere CaO-Gehalte auf als die Proben, die in die Rhyodazite intrudierten.

Die Spurenelemente verhalten sich in Bezug auf das Nebengestein, in das sie intrudiert sind, ähnlich. Die in den Erongo-Granit intrudierten Basanite und Tephrite weisen gegenüber den in die Rhyodazite intrudierten Basaniten und Tephriten und den Magmatiten der alkalibasaltischen Stöcke höhere Zr/Nb-, Rb/Nb- und Ba/Nb-Verhältnisse auf (Abbildung 4.2.10). Die Abbildungen 4.2.11 A und B zeigen einen Vergleich der Spurenelementgehalte der Basanite und Tephrite anhand von Spiderdiagrammen. In der Abbildung 4.2.11 wurden die Spurenelemente auf einen durchschnittlichen Basanit der alkalibasaltischen Stöcke normiert (Trumbull et al., 2003). Die beiden Basanite, die in den Erongo-Granit intrudierten, sind mit Ausnahme der Spurenelemente Rb, K, Zr und Ti gegenüber dem durchschnittlichen Basanit der alkalibasaltischen Stöcke verarmt (Abbildung 4.2.11 A). Hingegen zeigen zwei in die Rhyodazite intrudierte Basanite im Vergleich mit den Basaniten der alkalibasaltischen Stöcke ähnliche bis leicht erhöhte Spurenelementkonzentrationen. Ähnliche Reaktionen zwischen Spurenelementgehalten und Nebengestein ergeben sich auch bei den Tephriten, die in der Abbildung 4.2.11 B auf die durchschnittliche Tephritzusammensetzung der alkalibasaltischen Stöcke normiert wurden (Trumbull et al., 2003). Während Tephrite, die den Erongo-Granit intrudierten, gegenüber dem durchschnittlichen Tephrit der alkalibasaltischen Stöcke verarmt sind, zeigen die Tephrite im Kontakt zu den Rhyodaziten entsprechend leicht erhöhte Spurenelementkonzentrationen. Die Spiderdiagramm-Muster machen deutlich, dass die Nebengesteine einen bedeutenden Einfluss auf die Spurenelementgehalte der jeweiligen Alkalibasalte ausüben.

Tabelle 4.2.1: SEE-Daten der Alkalibasalte des Erongo-Komplexes. Die Daten für die Basanite und Tephrite der alkalibasaltischen Stöcke stammen von Trumbull et al. (2003).

	Bas	anite	Tephrite			
	Alkalibasaltische Gänge	Alkalibasaltische Stöcke	Alkalibasaltische Gänge	Alkalibasaltische Stöcke		
(La/Yb) _{CN}	14,7-32,0	23,8-40,8	15,0-58,7	34,6-49,8		
(La/Sm) _{CN}	3,99-6,83	4,78-6,66	5,37-8,71	6,05-7,69		
(Sm/Yb) _{CN}	3,68-5,06	4,97-6,12	2,72-7,44	5,09-6,81		
Eu/Eu*	1,03-1,06	1,02-1,10	0,97-1,06	1,06-1,11		

Aus den SEE-Diagrammen (Abbildung 4.2.12 A & B) und Tabelle 4.2.1 geht hervor, dass die Basanite und Tephrite der alkalibasaltischen Gänge Gemeinsamkeiten mit den Basaniten und Tephriten der alkalibasaltischen Stöcke zeigen. So weisen beide Gruppen einen ähnlichen Anreicherungsgrad der LSEE und MSEE gegenüber den SSEE auf. Allerdings zeigen einige Basanite der alkalibasaltischen Stöcke im Gegensatz zu den Basaniten der alkalibasaltischen Gänge eine negative Ho-Anomalie.

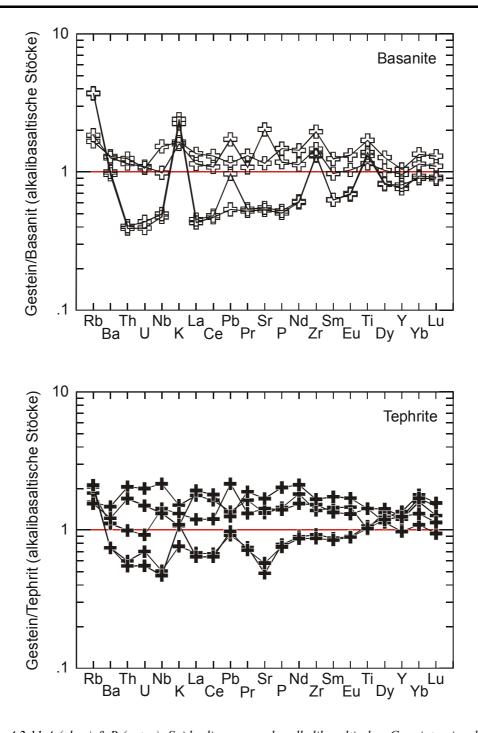


Abbildung 4.2.11 A (oben) & B (unten): Spiderdiagramme der alkalibasaltischen Gangintrusiva des Erongo-Komplexes. Die dargestellten Spurenelemente wurden auf die Werte eines durchschnittlichen Basanits bzw. Tephrits der alkalibasaltischen Stöcke des Erongo-Komplexes normiert. Dazu wurden wenig differenzierte Basanite (>11 Gew.-% MgO) und Tephrite (MgO-Gehalte zwischen 6 und 10 Gew.-%) der alkalibasaltischen Stöcke verwendet. Die Literaturdaten stammen von Trumbull et al. (2003).

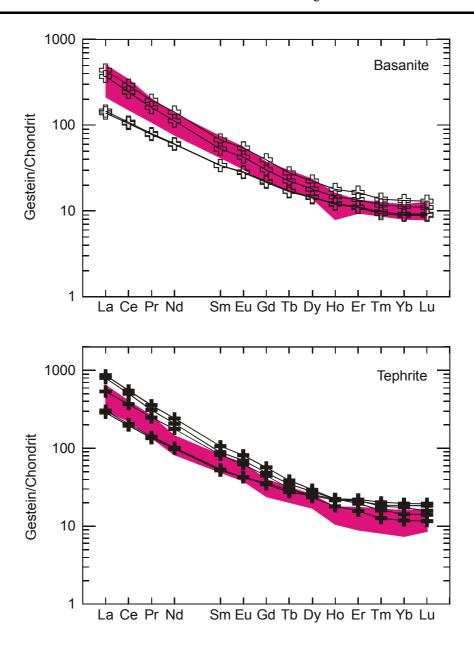


Abbildung 4.2.12 A (oben) & B (unten): SEE-Diagramme der Basanite und Tephrite der alkalibasaltischen Gänge des Erongo-Komplexes. Zu Vergleichszwecken wurden alle zu Verfügung stehenden Basanite und Tephrite der alkalibasaltischen Stöcke in einem Wertebereich zusammengefasst. Als Quelle für die Literaturdaten stand die Arbeit von Trumbull et al. (2003) zur Verfügung.

Die sauren Magmatite des Erongo-Komplexes. Von den sauren Magmatiten des Erongo-Komplexes wurden insgesamt 30 Proben analysiert (Tabellen A30-A35 im Anhang). Bei den analysierten Proben handelt es sich um Rhyodazite, Rhyolithe, Granodiorite und Leukogranite mit überwiegend peralumischem Charakter (Abbildung 4.2.13). Der A-Wert (A=Al-(K+Na+2Ca)) (Debon & Le Fort, 1982) ist in den meisten Fällen positiv und das A/CNK-Verhältnis (Al₂O₃ / (CaO+Na₂O+K₂O) (molar)) weist Werte zwischen 1,02 und 1,44 auf. Die (Fe+Mg+Ti)-Summen (B-Wert nach Debon & Le Fort, 1982) zeigen den geringeren Anteil mafischer Mineralphasen im Erongo-Granit (B=5-69) gegenüber dem Ombu-Granodiorit (B=101-141). Dabei weist der Ombu-Rhyodazit eine größere Variationsbreite insbesondere in den B-Werten gegenüber den anderen vulkanischen Einheiten (Erongorus-Rhyodazit & Ekuta-Rhyolith) auf. Die SiO₂-Gehalte der sauren Magmatite liegen im Bereich zwischen 65,8 und 78,2 Gew.-%. Hauptelement-Variationsdiagramme zeigen, dass die TiO₂-, Fe₂O_{3 (tot)}, CaO- und MgO-Gehalte mit zunehmenden SiO₂-Gehalten abnehmen (Abbildung 4.1.2).

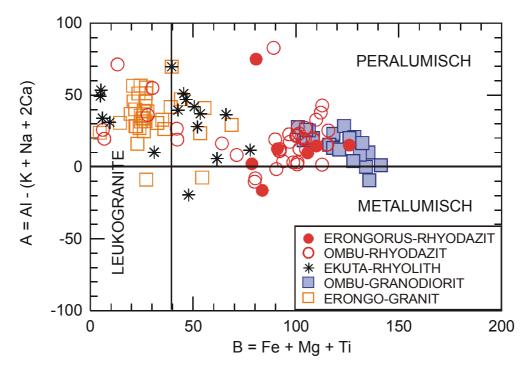


Abbildung 4.2.13: B versus A-Diagramm der sauren Magmatite des Erongo-Komplexes nach Debon & Le Fort (1982). Neben den eigenen Daten wurden ebenfalls Literaturdaten von Emmermann (1979), Pirajno (1990) und Trumbull et al. (2000) verwendet.

Ebenso nimmt Sr mit zunehmenden SiO₂-Gehalten ab (Abbildung 4.1.2). Darüberhinaus existieren zwischen Erongorus-Rhyodazit und Ombu-Rhyodazit Unterschiede in den Spurenelementgehalten. Die Abbildung 4.2.14 zeigt die Spiderdiagramme der sauren Magmatite normiert auf die Werte der durchschnittlichen oberen kontinentalen Kruste (OKK) (Taylor & Mc Lennan, 1985). Die meisten der dargestellten Spurenelemente des Erongorus-und Ombu-Rhyodazits sind gegenüber der OKK angereichert. Bei allen sauren Magmatiten treten negative Anomalien bei den Elementen Nb, Ta, Sr und Ti auf, wobei festzustellen ist, dass die Nb-, Sr und Ti-Anomalien bei den Erongorus-Rhyodaziten ausgeprägter sind als bei den Ombu-Rhyodaziten. Ebenso weisen die Erongorus-Rhyodazite höhere Zr und Hf-Gehalte als die Ombu-Rhyodazite auf. Im Vergleich mit den Rhyodaziten zeigt der Ekuta-Rhyolith deutlich niedrigere Ba-, La-, Ce-, Sr-, Zr-, Sm- und Ti-Gehalte. Zusätzlich zeichnen sich Ekuta-Rhyolith und Erongo-Granit durch eine ausgeprägte negative Ba-Anomalie aus. In den Nb/Ta-Verhältnissen überlappen die Wertebereiche der sauren Magmatite. Unterschiede

zwischen Erongorus- und Ombu-Rhyodazit zeigen sich in den Ti/Sm-, Ba/Sr-, Th/Yb- und Ta/Yb-Verhältnissen (Tabelle 4.2.2).

Tabelle 4.2.2: Spurenelementverhältnisse der sauren Magmatite des Erongo-Komplexes

	Erongorus- Rhyodazit	Ombu-Rhyodazit	Ekuta-Rhyolith	Ombu- Granodiorit	Erongo-Granit
Nb/Ta	9,9-20,0	11,6-17,5	5,83-12,9	12,9-17,5	4,85-9,56
Ti/Sm	203-316	416-479	300-330	300-531	41-456
Ba/Sr	8,04-26,2	3,5-7,6	3,33-7,40	4,39-6,44	0,6-10,0
Th/Yb	4,40-5,32	5,47-6,49	3,93-4,97	4,97-6,36	3,17-5,26
Ta/Yb	0,21-0,23	0,29-0,33	0,43-0,67	0,31-0,43	0,30-1,74
(La/Yb) _{CN}	8,8-10,6	9,4-10,1	3,0-4,4	4,4-9,9	1,6-4,0
Eu/Eu*	0,37-0,44	0,37-0,43	0,17-0,21	0,21-0,49	0,03-0,20
$(Gd/Yb)_{CN}$	1,7-2,0	1,9-2,1	1,0-1,5	1,5-2,0	0,7-1,1

Bemerkungen: Neben eigenen Daten wurden ebenfalls Literaturdaten von Emmermann (1979), Pirajno (1990) und Trumbull et al. (2000) verwendet. Die La-, Eu-, Sm, Gd- und Yb-Konzentrationen, aus denen die Berechnung der $(La/Yb)_{CN}$, $(Gd/Yb)_{CN}$ und Eu/Eu^* -Verhältnisse erfolgte, wurden auf Chondrit normiert (Sun & McDonough, 1989).

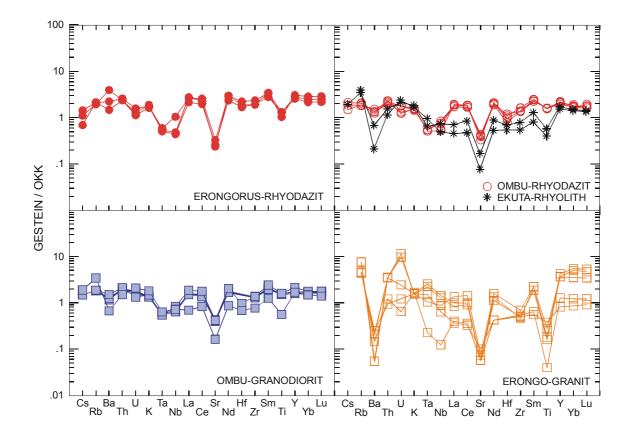


Abbildung 4.2.14: Spiderdiagramme der sauren Magmatite des Erongo-Komplexes. Die Spurenelementgehalte wurden auf die Werte der oberen kontinentalen Kruste (OKK) normiert (Taylor & McLennan, 1985). Ein Teil der Daten wurde von Trumbull et al. (2000) übernommen.

Die chondritnormierten SEE-Muster der sauren Magmatite des Erongo-Komplexes sind in Abbildung 4.2.15 dargestellt. Deutliche Unterschiede zeigen die Muster der Ombu-Rhyodazite zu den Mustern der Ekuta-Rhyolithe. Neben einer stärkeren Anreicherung der LSEE gegenüber den SSEE, zeichnen sich die Ombu-Rhyodazite weiterhin durch eine geringere Eu-Anomalie gegenüber den Ekuta-Rhyolithen aus (siehe Abbildung 4.2.15 & Tabelle 4.2.2). Einen ähnlichen Verlauf wie die SEE-Muster der Ombu-Rhyodazite zeigen die SEE-Muster der Erongorus-Rhyodazite. Sowohl die Vulkanite als auch Plutonite zeigen negative Eu-Anomalien, die beim Ekuta-Rhyolith und Erongo-Granit am stärksten ausgeprägt sind. Bei den Plutoniten des Erongo-Komplexes sind ebenfalls die LSEE gegenüber den SSEE angereichert und sowohl der Ombu-Granodiorit als auch der Erongo-Granit weisen negative Eu-Anomalien auf. Im Gegensatz zu den Rhyodaziten und dem Ombu-Granodiorit sind bei dem Ekuta-Rhyolith und Erongo-Granit die MSEE gegenüber den SSEE weniger stark angereichert (siehe neben Abbildung 4.2.15 ebenfalls (Gd/Yb)_{CN}-Verhältnisse in Tabelle 4.2.2). Für den Erongo-Granit ergeben sich aus dem SEE-Diagramm zwei Gruppierungen, die deutlich unterschiedliche SEE-Konzentrationen bei weitestgehend parallelen SEE-Mustern aufweisen. Die Diskussion und Interpretation bezüglich der Genese der sauren Magmatite erfolgt in Kapitel 6.2.

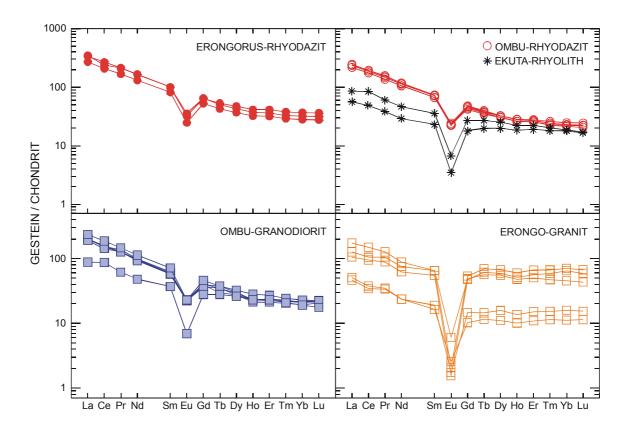


Abbildung 4.2.15: SEE-Diagramme der sauren Magmatite des Erongo-Komplexes. Die SEE-Gehalte wurden auf Chondrit normiert (Sun & McDonough, 1989). Wie bei Abbildung 4.2.14 wurden ebenfalls Daten von Trumbull et al. (2000) verwendet.

4.3 Nd-, Sr- und Pb-Isotopengeochemie

Einleitung. Wie im vorangehenden Kapitel beschrieben, zeigen Haupt-Spurenelementgehalte innerhalb der einzelnen Gesteinseinheiten häufig systematische Variationen. Ein möglicher Prozess, der für die Variabilität verantwortlich sein kann, ist z.B. fraktionierte Kristallisation. Infolgedessen eignen sich Haupt- und Spurenelementgehalte nur Untersuchung der jeweiligen Magmenquellen, Isotopenverhältnissse. Da die jeweiligen Isotope die gleichen Verteilungskoeffizienten haben, ändern sich die Isotopenverhältnisse bei fraktionierter Kristallisation nicht. Prozesse, die ebenfalls die Isotopenverhältnisse ändern können, stellen z.B. Assimilation von kontinentaler Kruste oder Mischung verschiedener Schmelzreservoire dar. Somit liefern Isotopenverhältnisse neben quellenspezifischen Informationen auch eine Antwort auf die Frage, welche Prozesse bei der Magmengenese eine Rolle gespielt haben. Besonders bei den mantelgenerierten Magmatiten können ebenfalls AFC-Prozesse die Ursache für die Variabilität innerhalb der Haupt- und Spurenelementgehalte sein (siehe Kapitel 2.2). In dieser Untersuchung werden ¹⁴³Nd/¹⁴⁴Nd-, ⁸⁷Sr/⁸⁶Sr-, ²⁰⁶Pb/²⁰⁴Pb-, ²⁰⁷Pb/²⁰⁴Pb-, ²⁰⁸Pb/²⁰⁴Pb- und ¹⁸⁷Os/¹⁸⁸Os-Isotopenverhältnisse verwendet, um Quellen und magmenverändernde Prozesse zu charakterisieren.

Von den Gesteinen des Erongo-Komplexes lagen bisher nur vom Ombu-Granodiorit, vom Erongo-Granit und von den alkalibasaltischen Stöcken ¹⁴³Nd/¹⁴⁴Nd- und ⁸⁷Sr/⁸⁶Sr-Messungen vor (Trumbull et al., 2000; Trumbull et al., 2003). Im Rahmen dieser Arbeit wurden von insgesamt 40 Proben die ¹⁴³Nd/¹⁴⁴Nd-, ⁸⁷Sr/⁸⁶Sr-, ²⁰⁶Pb/²⁰⁴Pb-, ²⁰⁷Pb/²⁰⁴Pb- und ²⁰⁸Pb/²⁰⁴Pb-Isotopenverhältnisse bestimmt. Die gemessenen Isotopenverhältnisse sind in den Tabellen A36-A41 (Anhang) zusammengefasst. Neben den gegenwärtigen (Index m steht für measured) Isotopenverhältnissen beinhalten die Tabellen A36-A41 ebenfalls die auf 130 Ma zurückgerechneten Isotopenverhältnisse, die einen Vergleich der Magmatite des Erongo-Komplexes untereinander und mit den Gesteinen des Paraná-Etendeka-Flutbasalt-Ereignisses, erlauben. Das Alter von 130 Ma entspricht dem Höhepunkt des regionalen Paraná-Etendeka-Flutbasaltvulkanismus.

Für die einzelnen Proben wurden jeweils die 2σ -Fehler mittels der Gaußschen Fehlerfortpflanzung berechnet. In die Berechnung des 2σ -Fehlers gingen die analytischen Fehler und die Fehler der verwendeten Konstanten, die zur Umrechnung der Isotopenverhältnisse auf das Alter von 130 Ma verwendet wurden, ein. Die zur Umrechnung auf die initialen Isotopenverhältnisse benötigten Rb-, Sr-, Sm-, Nd-, Pb-, Th- und U-Konzentrationen wurden mit der ICP-MS bestimmt (siehe Anhang). Die Ermittlung der Re- und Os-Konzentrationen erfolgte mittels eines Thermionenmassenspektrometers (TIMS).

Nd-, Sr- und Pb-Isotopengeochemie der basaltischen Einheiten. Die Abbildung 4.3.1 zeigt die Magmatite des Erongo-Komplexes im 87 Sr/ 86 Sr $_{130~Ma}$ versus $\varepsilon_{Nd~(130~Ma)}$ -Diagramm. Die Basisvulkanite des Erongo-Komplexes weisen innerhalb der basaltischen Gesteine die größte Variationsbreite in den Nd-, Sr- und Pb-Isotopenverhältnissen auf. So liegen die initialen 143 Nd/ 144 Nd $_{130~Ma}$ -Verhältnisse zwischen 0,512099 und 0,512451 und die initialen 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnisse zwischen 0,71477 und 0,71648. Aus den initialen 143 Nd/ 144 Nd $_{130~Ma}$ -Verhältnissen ergeben sich $\varepsilon_{Nd~(130~Ma)}$ -Werte von –0,4 bis -7,3. Die 206 Pb/ 204 Pb $_{130~Ma}$ -(18,40-20,86), 207 Pb/ 204 Pb $_{130~Ma}$ - (15,64-15,91) und 208 Pb/ 204 Pb $_{130~Ma}$ -Verhältnisse (38,40-39,05) zeigen ebenfalls eine relativ große Variationsbreite im Vergleich zu den Gangdoleriten und überlappen innerhalb des 2σ-Fehlers sowohl mit den Pb-Isotopenverhältnissen der Alkalibasalte als auch mit denen der rhyodazitisch zusammengesetzten Gesteine. Aus der

Abbildung 4.3.1 wird deutlich, dass die Ringdike-Dolerite bei vergleichbaren $\epsilon_{Nd~(130~Ma)}$ -Werten höhere $^{87}\text{Sr}/^{86}\text{Sr}_{130~Ma}$ -Verhältnisse aufweisen als die Basisvulkanite. Ein ähnliches Verhalten zeigt auch die Probe des Doleritlagergangs. Weiterhin sind die Ringdike-Dolerite sowohl in ihren initialen $^{143}\text{Nd}/^{144}\text{Nd}_{130~Ma}$ -Verhältnissen (0,512361-0,512428) als auch in den initialen $^{87}\text{Sr}/^{86}\text{Sr}_{130~Ma}$ -Verhältnissen (0,71005-0,71085) homogener als die Basisvulkanite.

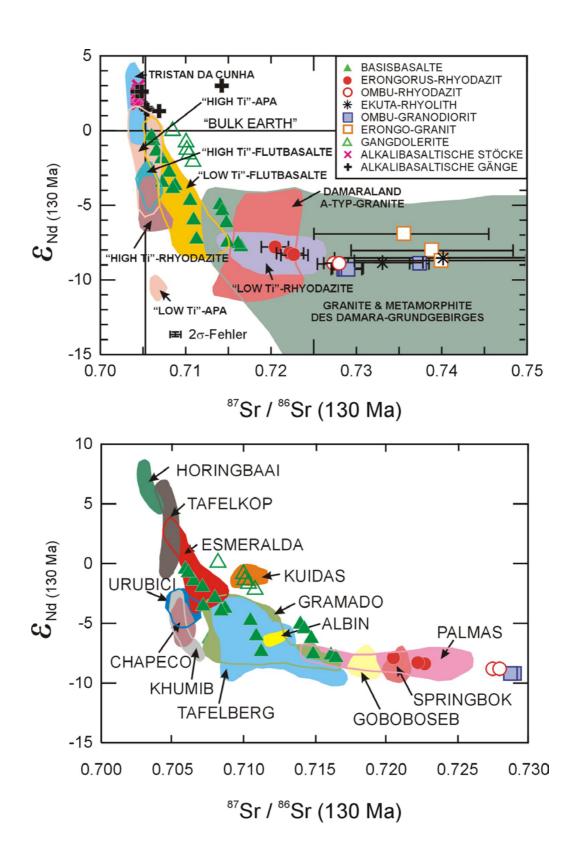


Abbildung 4.3.1 (vorherige Seite): ${}^{87}Sr/{}^{86}Sr_{130\ Ma}$ vs. $\varepsilon_{Nd\ (130\ Ma)}$ -Diagramm der Magmatite des Erongo-Komplexes. Die Fehlerbalken geben den Bereich des 2σ-Fehlers an, der sich bei der Umrechnung der jeweiligen Isotopenverhältnisse auf 130 Ma ergibt. Die 2\sigma-Fehler wurden nur für die sauren Magmatite im Diagramm angegeben, da sie für einige Proben über einen großen Bereich variieren. Aus Gründen der Übersichtlichkeit gilt für die basaltischen Magmatite der 2 σ -Fehler, der im unteren Teil des Diagramms aufgeführt ist. Die Daten für die alkalibasaltischen Stöcke und für einige Granitoide stammen von Trumbull et al. (2000) und Trumbull et al. (2003). Weiterhin zeigt das Diagramm die Variationen in den 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnissen und $\varepsilon_{Nd~(130~Ma)}$ -Werten der Magmatite der Paraná-Etendeka-Provinz (Erlank et al., 1984; Cordani et al., 1988; Peate, 1990; Peate & Hawkesworth, 1996 und Ewart et al., 1998a) und der Damara-Grundgebirgs-Gesteine (McDermott & Hawkesworth, 1990; McDermott et al., 1996 und Jung et al., 1998b). Die verwendeten Daten von Tristan da Cunha stammen von Le Roex et al. (1990). Zusätzlich zeigt das Diagramm die Alkaligesteine der Paraná-Provinz, die in "low Ti"- ("low Ti"-APA) und "high Ti"-Magmatite ("high Ti"-APA) unterteilt werden (Carlson et al., 1996; Gibson et al., 1996) und die nach Gibson et al. (1996) die Isotopensignatur des SCLM unterhalb der Paraná-Etendeka-Provinz wiedergeben. Der untere Teil der Abbildung stellt eine Ausschnittsvergrößerung des oberen Teils dar und bezieht sich auf die Einteilung der Gesteine des Paraná-Etendeka-Ereignisses nach ihren Typlokalitäten, wobei die einzelnen Felder von Marsh et al. (2001) übernommen wurden. Die Legende aus dem oberen Teil der Abbildung gilt auch für den unteren Teil. Auf die Genese und Vergleiche der Erongo-Magmatite mit den Gesteinen der Paraná-Etendeka-Provinz wird in den nachfolgenden Kapiteln näher eingegangen.

Während sich die 207 Pb/ 204 Pb $_{130~Ma}$ - (15,69-15,70) und 208 Pb/ 204 Pb $_{130~Ma}$ -Verhältnisse (38,84-38,87) der Ringdike-Dolerite in geringem Maße unterscheiden, zeigen die 206 Pb/ 204 Pb $_{130~Ma}$ -Verhältnisse (18,93-18,99) eine größere Variationsbreite. In den Pb-Isotopenverhältnissen unterscheidet sich der Doleritlagergang von den tholeiitschen Basalten und zeigt große Ähnlichkeit mit den Proben der alkalibasaltischen Stöcke (Abbildung 4.3.2 A & B). Im Vergleich mit den alkalibasaltischen Intrusionen (Trumbull et al., 2003) weisen die alkalibasaltischen Gänge ähnliche 206 Pb/ 204 Pb $_{130~Ma}$ -Verhältnisse (18,70-18,90), jedoch höhere 207 Pb/ 204 Pb $_{130~Ma}$ -Verhältnisse (38,73-38,90) auf. Die ε_{Nd} (130 $_{Ma}$)-Werte (+1,3 bis +3,0) und 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnisse (0,70434-0,71424) der alkalibasaltischen Gänge variieren stärker als die ε_{Nd} (130 $_{Ma}$)-Werte und 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnisse der alkalibasaltischen Intrusionen.

Nd-, Sr- und Pb-Isotopengeochemie der rhyodazitischen und rhyolithischen Gesteine. Im Gegensatz zu den Ombu-Rhyodaziten weisen die Erongorus-Rhyodazite niedrigere 87 Sr/ 86 Sr $_{130~Ma^-}$ (0,72048-0,72265), 206 Pb/ 204 Pb $_{130~Ma^-}$ (18,59-18,61) und 207 Pb/ 204 Pb $_{130~Ma^-}$ Verhältnisse (15,68-15,71) auf. Die εNd (130 Ma)-Werte (-8,9 bis-8,5) der Ombu-Rhyodazite sind negativer als die εNd (130 Ma)-Werte (-8,3 bis -7,8) der Erongorus-Rhyodazite. In der Abbildung 4.3.1 ist deutlich zu erkennen, dass die 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnisse (0,72752-0,74011) der Ombu-Rhyodazite sowohl innerhalb des 2σ-Fehlers der 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnisse des Ombu-Granodiorits als auch des Erongo-Granits liegen. Die größten 2σ-Fehler der 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnisse innerhalb der Erongo-Magmatite ergeben sich für den Ekuta-Rhyolith und den Erongo-Granit. Bedingt werden diese Fehler in großem Maße durch die hohen Rb/Sr-Verhältnisse, die mittels ICP-MS gemessen wurden und Bestandteil der Gleichung zur Berechnung der 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnisse sind. Während bei den Basalten das Rb/Sr-Verhältnis maximal 1/20 beträgt, erreichen z.B. die Erongo-Granite Rb/Sr-Verhältnisse von bis zu 50/1. Aufgrund des analytischen 2σ-Fehlers der Rb- und Sr-Konzentrationen, in beiden Fällen 10% (Dr. K. Hahne, mündliche Mitteilung, 2003), variieren die Rb/Sr-Verhältnisse der Erongo-Granitproben sehr stark, was sich wiederum auf die Berechnung der 87 Rb/ 86 Sr-Verhältnisse auswirkt.

Scientific Technical Report STR 05/02 DOI: 10.2312/GFZ.b103-050283

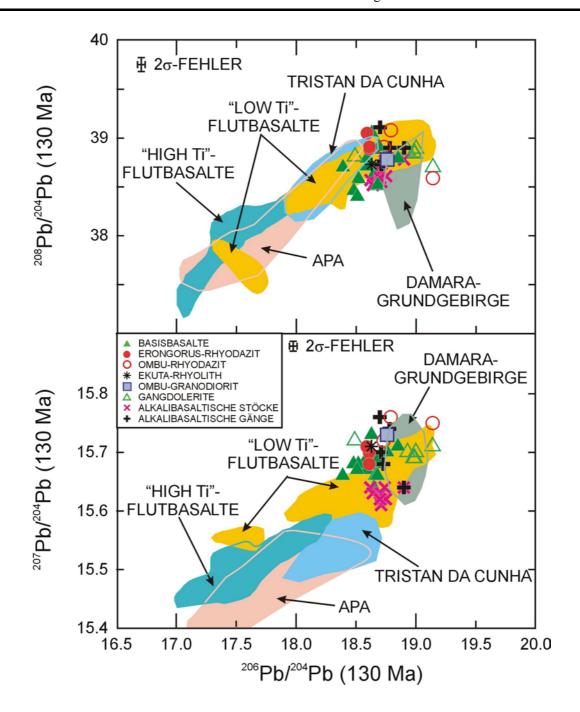


Abbildung 4.3.2 A & B: ²⁰⁶Pb/²⁰⁴Pb vs. ²⁰⁷Pb/²⁰⁴Pb_{130 Ma}- und ²⁰⁶Pb/²⁰⁴Pb vs. ²⁰⁸Pb/²⁰⁴Pb_{130 Ma}-Diagramm der Magmatite des Erongo-Komplexes. Der Variationsbereich des 2 σ -Fehlers, der sich aus der Umrechnung der Pb-Isotopenverhältnisse auf 130 Ma ergibt, ist oben links in den Diagrammen aufgeführt. Die Pb-Isotopenverhältnisse der alkalibasaltischen Stöcke des Erongo-Komplexes stammen von Trumbull et al. (2003). Die verwendeten Daten von Tristan da Cunha stammen von Le Roex et al. (1990). Weiterhin beinhaltet das Diagramm Magmatite der Paraná-Etendeka-Provinz (Erlank et al., 1984; Cordani et al., 1988; Peate, 1990; Peate & Hawkesworth, 1996 und Ewart et al., 1998a) und der Damara-Grundgebirgs-Gesteine (McDermott & Hawkesworth, 1990; McDermott et al., 1996 und Jung et al., 1998b). Die Abkürzung APA steht für die Alkaligesteine der Paraná-Provinz (Carlson et al., 1996; Gibson et al., 1996) und die nach Gibson et al. (1996) die Isotopensignatur des SCLM unterhalb der Paraná-Etendeka-Provinz wiedergeben.

4.4 Re/Os-Isotopengeochemie der basaltischen Gesteine des Erongo-Komplexes

Einleitung. Einer der Hauptdiskussionspunkte bei der Genese von kontinentalen Flutbasalten besteht darin, ob die Magmen der "low Ti"-Basalte bei ihrer Genese eine Kontamination mit kontinentaler Kruste erfahren haben oder die typischen geochemischen Signaturen wie z.B. negative ε_{Nd}-Werte, hohe ⁸⁷Sr/⁸⁶Sr-Verhältnisse und negative Nb-Anomalien aus einem metasomatisch überprägten peridotitischen SCLM ererbt wurden (siehe Kapitel 2.2). Eine Möglichkeit zwischen diesen genesespezifischen Eigenschaften zu unterscheiden, bietet das Re/Os-Isotopensystem. Der SCLM weist ¹⁸⁷Os/¹⁸⁸Os-Verhältnisse im Bereich von 0,105-0,129 auf (Pearson et al., 1995a; Pearson et al., 1995b; Pearson et al., 1995c). Im Gegensatz dazu zeichnet sich die durchschnittliche kontinentale Kruste durch hohe ¹⁸⁷Os/¹⁸⁸Os-Verhältnisse (1,439-1,919) aus (Esser & Turekian, 1993). Somit würde schon die Assimilation einer geringen Menge an kontinentaler Kruste zu einer Mantelschmelze ausreichen, um deutlich gegenüber SCLM-Werten erhöhte ¹⁸⁷Os/¹⁸⁸Os-Verhältnisse zu erhalten.

Von Gesteinen, die im direkten Zusammenhang mit dem Paraná-Etendeka-Flutbasaltmagmatismus stehen, wurden bisher keine Os-Isotopendaten veröffentlicht. Jedoch existieren Re/Os-Daten von Gesteinen, deren Genese in unmittelbarem Zusammenhang mit dem Tristan-Plume steht. So wurden von Roy-Barman & Allègre (1995) Os-Isotopendaten von der ozeanischen Insel Gough veröffentlicht. Das Alter der analysierten Proben wird mit 0,55 bzw. 1,0 Ma angegeben und deren ¹⁸⁷Os/¹⁸⁶Os-Verhältnisse betragen 1,082±0,003 bzw. 1,088±0,007. Diese Isotopenverhältnisse sind insofern interessant, da es sich hier um Gesteine handelt, die aufgrund ihrer Genesebedingungen keine Kontamination durch kontinentale Kruste erfahren haben und somit die Os-Isotopenzusammensetzung des Tristan-Plumes zum Zeitpunkt ihrer Bildung wiedergeben.

Weiterhin existieren Os-Isotopendaten von Kamafugiten, Kimberliten und Lamproiten aus der Alto Paranaíba-Alkaliprovinz (Minas Gerais/Brasilien) (Carlson et al., 1996; Araujo et al., 2001), die im Zeitraum zwischen 90 und 80 Ma gebildet wurden (Amaral et al., 1967; Sonoki & Garda, 1988; Bizzi, 1993; Gibson et al., 1995). Die initialen ¹⁸⁷Os/¹⁸⁸Os-Verhältnisse der Kimberlite und Kamafugite der Alto Paranaíba Alkaliprovinz variieren zwischen 0,117 und 0,129 und werden von Araujo et al. (2001) als Folge einer Mischung von zwei Mantelkomponenten gesehen. Ein Endglied stellt ein Peridotit aus dem lithosphärischen Mantel dar, der ein ¹⁸⁷Os/¹⁸⁸Os-Verhältnis von 0,118 hat. Das zweite Endglied zeichnet sich durch ein höheres ¹⁸⁷Os/¹⁸⁸Os-Verhältnis von 0,135 aus und liegt im Bereich des ¹⁸⁷Os/¹⁸⁸Os-Verhältnisses des FOZO-Mantelreservoires. Gibson et al. (1996) sehen die K-reichen Alkalivulkanite der Alto Paranaíba-Provinz als Träger der primären SCLM-Signatur unterhalb der Paraná-Etendeka-Provinz.

Im Rahmen dieser Arbeit wurden insgesamt 8 Proben auf ihre Re/Os-Isotopenverhältnisse untersucht. Die Analytik zur Bestimmung der Re/Os-Isotopenverhältnisse wurde von Dr. C. M. Brauns an der Justus Liebig Universität Gießen durchgeführt. Re und Os reichern sich aufgrund ihres siderophilen und chalkophilen Charakters z.B. in Eisenoxiden bzw. Sulfiden an (Shirey & Walker, 1998). Aus diesem Grund wurden anstelle des Gesamtgesteins die Fe-Ti-Oxide zur Bestimmung der Re- und Os-Isotope verwendet. Die Verwendung der Fe-Ti-Oxide hat gegenüber der Verwendung des Gesamtgesteins den Vorteil, dass der analytische Blindwert geringer ist (geringere Volumina der verwendeten Aufschlussmedien, usw.).

Mineralzusammensetzung der Fe-Ti-Oxide der basaltischen Magmatite. Bei den Fe-Ti-Oxiden, die zur Bestimmung der Os-Isotopenverhältnisse verwendet wurden handelt es sich um Mitglieder der Mischreihe zwischen Magnetit und Ulvöspinel. Die Mineralzusammensetzung der Fe-Ti-Oxide wurde mittels einer Mikrosonde (CAMECA SX 100) bestimmt. Die Variation der einzelnen Hauptelementgehalte ist der Tabelle 4.4.1 zu entnehmen. Deutliche Unterschiede treten zwischen den Tholeiiten und Alkalibasalten in den TiO₂-Gehalten auf, die bei den Gangdoleriten bis zu 19,2 Gew.-% erreichen können.

Tabelle 4.4.1: Durchschnittliche Zusammensetzung der Fe-Ti-Oxide der basaltischen Gesteine des Erongo-

Komplexes. Die Konzentrationsangaben erfolgen in Gew.-%.

	Basisbasalte	basalte Gangdolerite Alkalibasaltische					
	N=48	N=32	N=36				
SiO_2	0,06-0,68	0,02-0,173	0,02-0,21				
TiO_2	10,7-15,7	7,22-19,2	8,67-10,4				
Al_2O_3	0,08-2,83	0,24-3,72	0,21-2,59				
Cr_2O_3	-	0,06-0,10	0,02-0,13				
$\mathrm{FeO}_{\mathrm{tot}}$	81,8-88,5	78,2-87,4	80,4-89,9				
MnO	0,07-3,22	0,23-1,47	0,03-2,83				
MgO	0,04-0,11	0,03-1,71	0,05-3,75				
CaO	0,04-0,14	0,03-2,29	0-0,35				

N: Anzahl der zur Verfügung stehenden Analysen.

Re/Os-Geochemie. Von den Basisbasalten wurden insgesamt 4 Proben, von den Gangdoleriten und den alkalibasaltischen Stöcken jeweils 2 Proben untersucht, deren gemessene Re- und Os-Konzentrationen und Os-Isotopenverhältnisse in der Tabelle A42 (Anhang) dargestellt sind. Um die Os-Isotopenverhältnisse der einzelnen Gesteinseinheiten des Erongo-Komplexes untereinander vergleichen zu können, wurden sie auf das Alter von 130 Ma, welches dem Höhepunkt des regionalen Paraná-Etendeka-Flutbasaltvulkanismus entspricht, zurückgerechnet. Neben den auf 130 Ma zurückgerechneten Os-Isotopenverhältnissen beinhaltet Tabelle A42 (Anhang) weiterhin die $\gamma_{Os(130 \text{ Ma})}$ -Werte und die T_{MA} . Bei T_{MA} handelt es sich um ein Modellalter, das den Zeitpunkt angibt, an dem die Abtrennung der Schmelze aus dem chondritisch zusammengesetzten primitiven Erdmantel erfolgte (Shirey & Walker, 1998).

Die 187 Os/ 186 Os($_{130\ Ma}$)- und 187 Os/ 188 Os($_{130\ Ma}$)-Isotopenverhältnisse der Basisbasalte variieren über einen großen Bereich und sind im Vergleich mit 187 Os/ 186 Os($_{130\ Ma}$)- und 187 Os/ 188 Os($_{130\ Ma}$)-Isotopenverhältnissen der Gangdolerite deutlich erhöht. Weiterhin zeigen die Basisbasalte die höchsten $\gamma_{Os(130\ Ma)}$ -Werte (+50,2 bis +192) und die höchsten T_{MA} , die im Bereich zwischen 169 und 840 Ma liegen. Die Gangdolerite zeichnen sich durch die niedrigsten 187 Os/ 186 Os($_{130\ Ma}$)- und 187 Os/ 188 Os($_{130\ Ma}$)-Isotopenverhältnisse aus und zeigen als einzige Gesteinseinheit des Erongo-Komplexes negative $\gamma_{Os(130\ Ma)}$ -Werte (-0,2 und -8,1). Die T_{MA} der Gangdolerite weisen Werte von 126 bzw. 130 Ma auf und liegen somit innerhalb des Zeitraums, in dem magmatische Aktivitäten innerhalb der Damaraland-Provinz stattfanden. Die alkalibasaltischen Stöcke zeichnen sich durch 187 Os/ 186 Os($_{130\ Ma}$)-Verhältnisse im Wertebereich von 1,096 bis 1,157 und 187 Os/ 188 Os($_{130\ Ma}$)-Isotopenverhältnisse im Wertebereich von 0,1319 bis 0,1334 aus (Tabelle A43 (Anhang)). Die $\gamma_{Os(130\ Ma)}$ -Werte der alkalibasaltischen Stöcke variieren von +4,1 bis +5,3 und die T_{MA} weisen Werte von 131 bzw. 139 Ma auf.

4.5 Regionale Vergleiche

Vergleich der tholeiitischen Basalte mit den Paraná-Etendeka-Flutbasalten. Für den Vergleich der tholeiitischen Basalte, welche die Basisbasalte und Gangdolerite umfassen, mit den Paraná-Etendeka-Flutbasalten werden nur Proben mit MgO-Gehalten zwischen 6 und 8 Gew.% berücksichtigt. Diese Einschränkung auf weitgehend undifferenzierte Basalte hat den Vorteil, dass sowohl Haupt- als auch Spurenelemente durch Prozesse wie fraktionierte Kristallisation wenig beeinflusst sind.

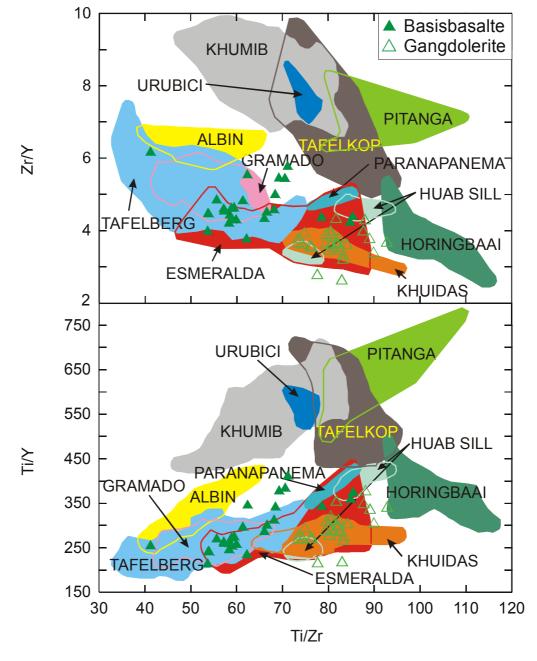


Abbildung 4.5.1 A & B: Ti/Zr vs. Ti/Y- & Ti/Zr vs. Zr/Y-Diagramm. Vergleich der Basisbasalte und Gangdolerite mit den Paraná-Etendeka-Flutbasalten. Die dargestellten Felder wurden von Marsh et al. (2001) übernommen.

Die TiO₂-Gehalte der tholeiitischen Basalte des Erongo-Komplexes liegen im Bereich der "low Ti"-Flutbasalte der Paraná-Etendeka-Provinz und korrelieren mit MgO in gleicher Weise wie in den regionalen Flutbasalten (Abbildungen 4.2.2 & 4.2.6). Sowohl die Tholeiite des Erongo-Komplexes als auch die "low Ti"-Flutbasalte zeigen im Spiderdiagramm markante negative Nb-, Sr-, P- und positive Pb-Anomalien (Abbildung 4.2.4 & 4.2.9). Während der Hauptanteil der Tholeiite ähnliche Spurenelementgehalte wie die "low Ti"-Flutbasalte aufweist, treten bei einigen Tholeiiten Unterschiede in den Cs- und K-Gehalten Die Ähnlichkeiten mit den "low Ti"-Flutbasalten zeigen sich auch Spurenelementverhältnissen wie Zr/Nb, Ba/La, Ba/Th und La/Nb und eingeschränkt auch für die Rb/Nb-Verhältnisse (Abbildung 4.2.3). Sowohl die Gangdolerite als auch die Basisbasalte überlappen innerhalb des 2σ-Fehlers mit den Nd-, Sr und Pb-Isotopenverhältnissen der "low Ti"-Flutbasalte (Abbildung 4.3.1). Die "high Ti"-Flutbasalte hingegen zeichnen sich durch niedrigere ²⁰⁷Pb/²⁰⁴Pb_{130 Ma}- und ²⁰⁸Pb/²⁰⁴Pb_{130 Ma}-Verhältnisse bei vergleichbaren ²⁰⁶Pb/²⁰⁴Pb_{130 Ma}-Verhältnissen aus. Folgt man der Nomenklatur nach der Regiostratigraphie bzw. Typlokalität (z.B. Peate et al., 1999; Turner et al., 1999; Marsh et al., 2001) zeigen die Basisbasalte sowohl in den kombinierten Haupt- und Spurenelement- (Abbildungen 4.5.1 A & B) als auch in den Isotopenverhältnissen Ähnlichkeiten mit nahezu allen "low Ti"-Typen der Paraná-Etendeka-Provinz (Abbildung 4.3.1). Während die wenig differenzierten Basisbasalte im Feld der Esmeralda-Basalte liegen, überlappen die Proben mit den niedrigeren MgO-Gehalten mit den Feldern der Tafelberg-, Gramado- und Albin-Basalte.

Die Gangdolerite hingegen überlappen innerhalb des 2σ-Fehlers in den Ti/Zr-, Ti/Y- und Zr/Y-Verhältnissen und Isotopenverhältnissen mit dem Feld der Etendeka-Khuidas- und der Paraná-Etendeka-Esmeralda-Gruppe (Abbildungen 4.3.1 & 4.5.1 A & B).

Zusammenfassend ergibt sich eine Zugehörigkeit der tholeiitischen Basalte des Erongo-Komplexes zu der Gruppe der "low Ti"-Flutbasalte. Dieser Zusammenhang stimmt mit der regionalen Verbreitung der "low Ti"-Flutbasalte in der Etendeka-Provinz überein, die generell auf Vorkommen südlich 19°21,6′S (auf der Höhe von Möwe Bay) (Marsh et al., 2001) beschränkt sind. Eine Zuordnung nach Typlokalitäten ist bei den Basisbasalten nicht möglich, da diese sowohl in Haupt- und Spurenelementen als auch Isotopenverhältnissen mit nahezu allen in der Paraná-Etendeka-Provinz vorkommenden "low Ti"-Flutbasalten überlappen.

Vergleich der Erongorus-Rhyodazite mit den Paraná-Etendeka-Rhyodaziten. Während für die Ombu-Rhyodazite bzw. Ekuta-Rhyolithe die jeweiligen Intrusiväquivalente im Erongo-Komplex vorkommen, existieren für die Erongorus-Rhyodazite keine Intrusiväquivalente. Zudem fehlen Xenolithe aus dem Grundgebirge, die beispielsweise für die Ombu-Rhyodazite eine Zuordnung zum Ombu-Granodiorit erlauben. Daher besteht neben einer separaten Förderung der Erongorus-Rhyodazite (Pirajno, 1990) auch die Möglichkeit, dass die Erongorus-Rhyodazite Reste der ehemaligen Paraná-Etendeka-Rhyodazite darstellen.

So weisen die Erongorus-Rhyodazite wie die "low Ti"-Rhyodazite in ihren Spiderdiagramm-Mustern negative Ba-, Nb-, Sr-, P- und Ti- und positive Pb-Anomalien auf (Abbildungen 2.2.3 & 4.2.14). Gemeinsam mit den "low Ti"-Rhyodaziten sind die Erongorus-Rhyodazite gegenüber den "high Ti"-Rhyodaziten bei niedrigeren Nb/U-Verhältnissen in Rb angereichert (Abbildung 4.5.2) und zeigen höhere Th/La- und Rb/Zr-Verhältnisse. Ähnliche ¹⁴³Nd/¹⁴⁴Nd (130Ma)- und die ⁸⁷Sr/⁸⁶Sr (130 Ma)-Verhältnisse sind ein Hinweis darauf, dass die Erongorus-Rhyodazite und die "low Ti"-Rhyolithe aus einer gemeinsamen Magmenquelle stammen könnten. Somit lassen sich die Erongorus-Rhyodazite aufgrund der geochemischen Gemeinsamkeiten den "low Ti"-Rhyodaziten der Paraná-Etendeka-Provinz zuordnen.

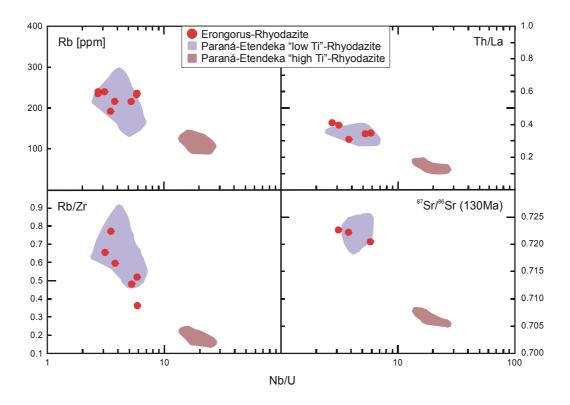


Abbildung 4.5.2: Vergleich der Erongorus-Rhyodazite mit den "low Ti"- und "high Ti"-Rhyodaziten der Paraná-Etendeka-Provinz anhand inkompatibler Spurenelemente und deren Verhältnisse. Weiterhin werden die ⁸⁷Sr/⁸⁶Sr _(130 Ma)-Verhältnisse zu Vergleichszwecken verwendet. Die Legende im oberen Teil gilt für alle Diagramme. Die verwendeten Literaturdaten stammen von Pirajno (1990), Garland et al. (1995) und Ewart et al. (1998b).

5 Geochronologie des Erongo-Komplexes

Einleitung. In diesem Kapitel werden die Ergebnisse der ⁴⁰Ar/³⁹Ar- und der U-Pb-Datierung vorgestellt. Bisher liegen nur zwei Alter von Gesteinen des Erongo-Komplexes vor, die über einen großen Bereich streuen. Zum einen handelt es sich um ein Rb/Sr-Gesamtgesteinsalter des Erongo-Granits von 144±2 Ma (McNeill, 1989) und zum anderen um ein SHRIMP U/Pb-Zirkon-Alter von 135±1.6 Ma (1σ) (Pirajno et al., 2000). Anhand der neu gewonnenen ⁴⁰Ar/³⁹Ar- und U-Pb-Alter kann in den nachfolgenden Kapiteln gezeigt werden, dass die Bildung der Magmatite des Erongo-Komplexes in einem engen Zeitfenster stattfand und mit dem Höhepunkt des Paraná-Etendeka-Ereignisses zusammenfällt.

5.1 ⁴⁰Ar/³⁹Ar-Datierung

⁴⁰Ar/³⁹Ar-Alter von Mineralseparaten wurden aus dem Entgasungsspektrum (kumulative ³⁹Ar-Freisetzung gegen scheinbares Alter), sowie aus der Regression der ³⁶Ar/⁴⁰Ar vs. ³⁹Ar/⁴⁰Ar ermittelt. Für die Datierung der sauren Magmatite wurde Biotit und für die alkalibasaltischen Magmatite sowohl Phlogopit als auch Kaersutit verwendet. Die gemessenen Altersspektren wurden auf das Vorliegen von Plateaus nach der Methode von Lanphere & Dalrymple (1971) getestet. Ein Plateau lag vor, wenn mindestens drei aufeinander folgende Altersschritte innerhalb des Fehlers lagen, gemäß der Beziehung:

$$\left| \left(\frac{^{40}Ar}{^{39}Ar} \right)_{i} - \left(\frac{^{40}Ar}{^{39}Ar} \right)_{i+1} \right| \le 1,96 * \sqrt{\sigma_{i}^{2} + \sigma_{i+1}^{2}}$$

Dabei stellen (40 Ar/ 39 Ar)_i und (40 Ar/ 39 Ar)_{i+1} die 40 Ar/ 39 Ar-Verhältnisse aufeinander folgender Entgasungsschritte und σ_i und σ_{i+1} die entsprechenden Fehler dar. Weiterhin müssen diese Schritte mindestens 50 % der gesamten 39 Ar-Menge beinhalten (Dalrymple & Lanphere, 1974).

Das Plateau-Alter wird mit dem Isochronenalter verglichen, wobei die Isochrone im ³⁹Ar/⁴⁰Ar vs. ³⁶Ar/⁴⁰Ar-Diagramm einen Achsenabschnitt aufweisen soll, der dem ⁴⁰Ar/³⁶Ar-Verhältnis von Luft (295,5) entspricht. In einem solchen Fall liegt kein Exzess-Argon vor und daher kann das Plateaualter als das Bildungsalter des jeweiligen Gesteins angesehen werden.

In allen Altersspektren ergaben die ersten Heizschritte deutlich jüngere Alter (Abbildung 5.1.1 & 5.1.2) und wurden zur Berechnung der ⁴⁰Ar/³⁹Ar-Alter nicht herangezogen (z.B. Villa et al., 2000). Diese jüngeren Alter resultieren aus ⁴⁰Ar* (radiogenes Ar aus Kalium-Zerfall) und können als eine Folge von Alteration interpretiert werden. Weitere Einzelheiten, die die Auswertung der ⁴⁰Ar/³⁹Ar-Alter betreffen, finden sich im Anhang A1.

Neben Exzess-Argon und Alteration der Mineralphasen besteht weiterhin die Möglichkeit, dass Fremdmineralphasen als Einschlüsse in den zu datierenden Mineralen vorliegen. Enthalten diese Fremdmineralphasen K, so entsteht bei der Neutronenbestrahlung im Kernreaktor ebenfalls ³⁹Ar. Falls ein unterschiedliches Diffusionsverhalten zwischen Einschluss und Wirtsphase vorliegt, kann das Altersspektrum des zu datierenden Minerals verfälscht werden. Um das Vorhandensein von Sekundärphasen zu prüfen und diese von der Altersberechnung auszuschließen, wurden die Ca-, K- und Cl-Gehalte der zu datierenden Mineralphase mittels Elektronenstrahl-Mikrosondenmessungen bestimmt und die aus den Mikrosondenmessungen erhaltenen Ca/K- und Cl/K-Verhältnisse mit denen der ⁴⁰Ar/³⁹Ar-

Messung verglichen (z.B. Villa et al., 1997; Villa et al., 2000). Aus den Heizschritten, deren Ca/K- und Cl/K-Verhältnisse mit denen der primär magmatischen Mineralphasen identisch sind, kann ein Bildungsalter berechnet werden. Die Tabellen A44 & A45 im Anhang beinhalten die Ergebnisse der ⁴⁰Ar/³⁹Ar-Messungen.

⁴⁰Ar/³⁹Ar-Alter der sauren Magmatite. Die Biotite des Ombu-Granodiorits (Probe 391) ergaben ein mittleres Plateau-Alter von 132,6±1,0 Ma (1σ-Fehler; MSWD=0,6). Dieses Alter stimmt mit dem Isochronenalter innerhalb des Fehlers überein (Abbildung 5.1.1 B). Beide ⁴⁰Ar/³⁹Ar-Alter des Ombu-Granodiorits überlappen mit dem von Pirajno et al. (2000) veröffentlichten U-Pb-Alter des Ombu-Rhyodazits (135,0±1,6 Ma) innerhalb des Fehlers.

Im Gegensatz zum Ombu-Granodiorit konnten für Biotit-Separate von zwei Proben des Erongo-Granits (212 und 454) in beiden Fällen keine Plateau-Alter ermittelt werden (Abbildung 5.1.2 A & C). Abbildung 5.1.2 E & F zeigt die Ca/K versus Cl/K-Diagramme dieser beiden Proben im Vergleich mit Elektronenstrahl-Mikrosondenmessungen der Biotitzusammensetzung der entsprechenden Probenaliquote. Bei den datierten Biotiten handelt es sich um Annite, die Ca-frei sind und folglich Ca/K-Verhältnisse von Null aufweisen. In den Cl/K-Verhältnissen ist eine Variation festzustellen, die von 0,063 bis 0,108 (212) bzw. 0,056-0,089 (454) reicht. Die niedrigen Cl/K-Verhältnisse treten in den Kornrandbereichen auf und sind wahrscheinlich durch Alterationsprozesse nachträglich verändert worden. Die Kernbereiche der Annite ergeben Cl/K-Verhältnisse im Bereich von 0,080 bis 0,092 (212) bzw. 0,082-0,089 (454). Die Berechnung der mittleren ⁴⁰Ar/³⁹Ar-Alter erfolgte nach der Beschreibung von Villa et al. (2000) mit den Heizschritten, die dieser Zusammensetzung entsprachen. Bei der Probe 212 handelte es sich hierbei um die Heizschritte 2, 3, 4, 5 und 6, die zusammen eine ³⁹Ar-Menge von 87,1 % ergeben. Im Fall der Probe 454 wurden die Heizschritte 5, 6 und 7 ausgewählt, die einen Anteil von 90,6% der extrahierten ³⁹Ar ausmachen. Die durchschnittlichen ⁴⁰Ar/³⁹Ar-Alter der Proben 212 und 454 liegen bei 133,3±1,1 Ma bzw. 133,1±1,1 Ma. Im Vergleich zum Plateau-Alter des Ombu-Granodiorits weisen diese Mittelwerte hohe MSWD-Werte (7,5 und 6,4) auf, der nichtanalytische Fehlerquellen anzeigt. Beide Proben ergaben jedoch trotz ihres unterschiedlichen Gasfreisetzungsverhaltens übereinstimmende Alter. ebenfalls Isochronenalter lassen daher ein Bildungsalter des Biotits von ~133 Ma als wahrscheinlich erscheinen.

⁴⁰Ar/³⁹Ar-Alter der alkalibasaltischen Magmatite. Die Kaersutite und Phlogopite der alkalibasaltischen Intrusionen ergaben jeweils überlappende Plateau-Alter von 132,0±1,0 Ma (MSWD=0,4) und 130,8±1,0 Ma (MSWD=0,5) (Abbildung 5.1.1 C & E). Weiterhin zeigen beide Plateau-Alter eine gute Übereinstimmung mit ihren Isochronenaltern (435: 132,6±1,0 Ma; 432: 130,3±0,6 Ma). Bei dem Altersspektrum des Phlogopits 432 fällt auf, dass der Heizschritt 7 ein deutlich jüngeres Alter (89,6±3,0 Ma) ergibt als der vorangehende und der darauf folgende Schritt. Da dies an einem apparativen Fehler während der Messroutine liegt, wurde dieser Heizschritt von der Altersberechnung ausgeschlossen. Die etwas jüngeren ⁴⁰Ar/³⁹Ar-Alter der alkalibasaltischen Stöcke im Vergleich zum U-Pb-Alter des Ombu-Rhyodazits (135,0±1,6 Ma; Pirajno et al., 2000) stimmen mit der Feldbeobachtung überein, dass die alkalibasaltischen Stöcke den Ombu-Rhyodazit intrudierten. Diese stellen daher die jüngste bekannte magmatische Aktivität im Erongo-Komplex dar.

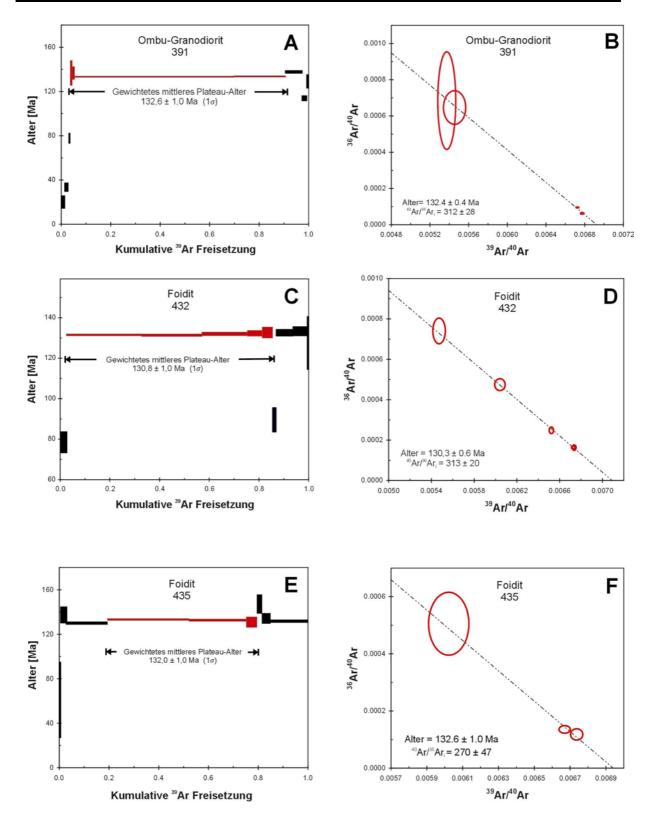


Abbildung 5.1.1 A-F: Altersspektren (links) und $^{39}Ar/^{40}Ar$ vs. $^{36}Ar/^{40}Ar$ -Diagramme (rechts) der Biotite (391) und Phlogopite (432 & 435) des Ombu-Granodiorits und der Alkalimagmatite des Erongo-Komplexes. Die Angabe des 1σ -Fehlers in den $^{39}Ar/^{40}Ar$ vs. $^{36}Ar/^{40}Ar$ -Diagrammen erfolgt durch Fehlerellipsen.

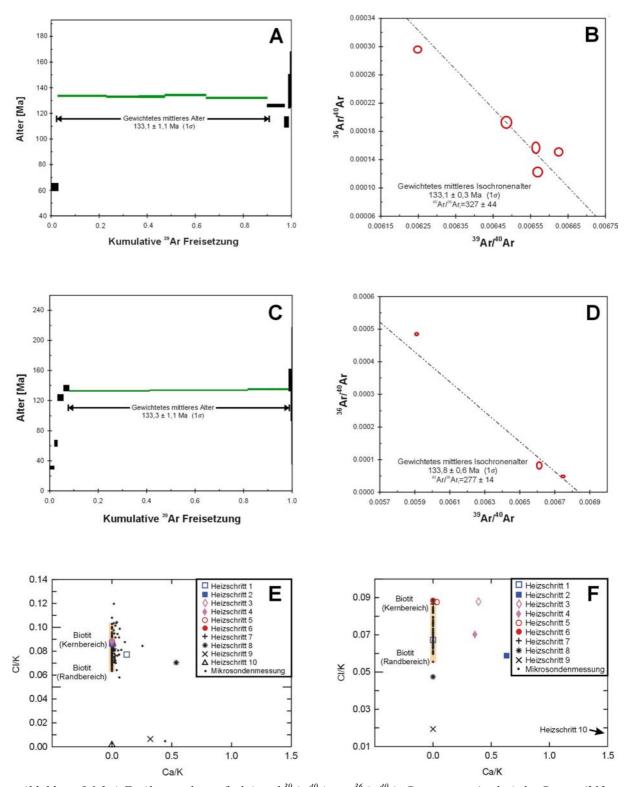


Abbildung 5.1.2 A-F: Altersspektren (links) und 39 Ar/ 40 Ar vs. 36 Ar/ 40 Ar-Diagramme (rechts) der Biotite (212 & 454) des Erongo-Granits. Die Abbildungen 5.1.2 E & F stellen die Ca/K versus Cl/K-Diagramme der Probe 212 und 454 dar. Die Angabe des 1σ -Fehlers in den 39 Ar/ 40 Ar vs. 36 Ar/ 40 Ar-Diagrammen erfolgt durch Fehlerellipsen.

5.2 U/Pb-Datierung

Neben den ⁴⁰Ar/³⁹Ar-Datierungen wurden ebenfalls U-Pb-Datierungen an Zirkonen des Erongorus-Rhyodazits und des Ekuta-Rhyoliths sowie an Zirkonen des Erongo-Granits und Ombu-Granodiorits durchgeführt. Die U/Pb-Datierungen erfolgten an einer hochauflösenden Ionensonde (CAMECA IMS 1270) an der Universität von Los Angeles (UCLA) in Kooperation mit Dr. A. K. Schmitt. Die gemessenen Zirkone wurden außerdem auf ihre interne Zonierung und das Vorhandensein von Einschlüssen mittels Kathodolumineszenz (CL) untersucht. Ein Rasterelektronenmikroskop (Leo 1430 VP) der UCLA diente zur Erstellung der Kathodolumineszenz- und Sekundärelektronen-Aufnahmen. Die Messbedingungen und die Probenpräparation werden im Anhang A 1 beschrieben.

²⁰⁶Pb/²³⁸U-Alter der sauren Magmatite. Die Zirkone des Erongorus-Rhyodazits (Probe 467) weisen einen langprismatischen Habitus auf (Abbildung 5.2.2 A & B). Im Kern befinden sich Schmelzkanäle, die sie als magmatische Zirkone ausweisen. Es wurden insgesamt 14 Ionensonden-Messungen an 13 Zirkonen durchgeführt. Die U-Gehalte variieren zwischen 1559 und 7535 ppm und die Th-Gehalte zwischen 2076 und 8478 ppm. Daraus ergeben sich für einige Proben ungewöhnlich hohe Th/U-Verhältnisse (0,49-3,02). Die Proben ergeben ein mittleres ²⁰⁶Pb/²³⁸U-Alter von 124,9±3 Ma. Die ²⁰⁶Pb/²³⁸U-Alter der Einzelmessungen variieren von 116±3 Ma und 133±3 Ma, wobei zwei innerhalb der Fehler konkordant erscheinende Gruppierungen (129-133 Ma und 116-124 Ma) festzustellen sind (Abbildung 5.2.1).

Im Gegensatz zum Erongorus-Rhyodazit weisen die Zirkone des Ekuta-Rhyoliths (Probe 469) eine magmatisch oszillierende Zonierung auf. Kernbereiche ergeben konkordante prämesozoische Alter im Bereich zwischen 360 und 480 Ma. Weiterhin zeigen die Zirkone des Ekuta-Rhyoliths deutlich niedrigere U- und Th-Gehalte als die Zirkone des Erongorus-Rhyodazits. Die Th/U-Verhältnisse variieren zwischen 0,41 und 1,31. Mesozoische Zirkone des Ekuta-Rhyoliths ergeben ein mittleres ²⁰⁶Pb/²³⁸U-Alter von 132,6±4,2 Ma (MSWD=3,0).

Abbildung 5.2.2 zeigt deutlich, dass starke Variationen in den ²⁰⁶Pb/²³⁸U-Zirkon-Altern innerhalb eines Zirkonkorns existieren können. Neben ererbten prämesozoischen Zirkonen spielt dabei auch ein postmagmatischer Pb-Verlust eine Rolle. An den Zirkonen des Erongorus-Rhyodazits zeigt sich dieser Effekt sehr deutlich. Aus der Kathodolumineszenz-Aufnahme geht hervor, dass der Zirkon 467 g14 Mikrorisse aufweist, die die Folge von Metamiktisierungsprozessen sein können. Insbesondere durch den diadochen Einbau der radioaktiven Elemente Uran und Thorium kann es zu dieser Gitterzerstörung kommen. Die außergewöhnlich hohen U- und Th-Gehalte in den Zirkonen des Erongorus-Rhyodazits könnten einen Pb-Verlust und die scheinbar jüngeren Alter von ~ 116 Ma in dieser Probe erklären. Ebenso ist das mittlere ²⁰⁶Pb/²³⁸U-Alter von 124,9±3 Ma aufgrund der stratigraphischen Zusammenhänge innerhalb des Erongo-Komplexes als Kristallisationsalter als unwahrscheinlich einzustufen. Zur Altersberechnung wurden daher nur ²⁰⁶Pb/²³⁸U-Alter aus ungestörten Bereichen der Zirkonkörner herangezogen. Für die verbleibenden fünf Analysen ergibt sich daher für den Erongorus-Rhyodazit ein Kristallisationsalter von 131,8±1,0 Ma (MSWD=0,6).

Die U- (200-442 ppm) und Th-Gehalte (57-279 ppm) der Zirkone des Ombu-Granodiorits überlappen mit den Wertebereichen für U (263-634 ppm) und Th (80-187 ppm) der Zirkone des Erongo-Granits (Tabelle 5.2.2). Ein gleiches Verhalten gilt auch für die Th/U-Verhältnisse. Eine magmatische Zonierung ist auch bei den Zirkonen des Ombu-Granodiorits

deutlich zu erkennen. Aus der Tabelle 5.2.2 geht hervor, dass die ermittelten ²⁰⁶Pb/²³⁸U-Alter stark variieren. Innerhalb der Zirkone des Ombu-Granodiorits treten Bereiche mit ²⁰⁶Pb/²³⁸U-Altern auf, die mit den Altern des regionalen Grundgebirges überlappen (Abbildung 5.2.2) und sich durch konkordante panafrikanische Alter ausweisen. Einzelmessungen zeigen ²⁰⁶Pb/²³⁸U-Alter im Bereich von 128-147 Ma. Die ²⁰⁶Pb/²³⁸U-Alterspopulation im Bereich von 150-140 Ma erscheint aufgrund der Tatsache, dass es sich bei dem Ombu-Granodiorit um das Intrusionsäquivalent zu den Rhyodaziten handelt, als zu alt. Ebenso würden die Alter im Bereich von 150-140 Ma der stratigraphischen Abfolge innerhalb des Erongo-Komplexes wiedersprechen (siehe Milner, 1997).

Einschließlich der ²⁰⁶Pb/²³⁸U-Alter im Bereich von 150-140 Ma lässt sich ein mittleres ²⁰⁶Pb/²³⁸U-Alter von 137,7±2,5 Ma (MSWD=3,2; Anzahl der Analysen n=9) für den Ombu-Granodiorit ermitteln. Dieses stimmt mit Ergebnissen von Pirajno et al. (2000) für das Extrusiväquivalent des Ombu-Granodiorits (Ombu-Rhyodazit) überein (137,2±2,6 Ma; MSWD=7,6; n=12). Pirajno et al. (2000) erzielten ebenfalls ²⁰⁶Pb/²³⁸U-Alter im Bereich von 150 und 175 Ma und interpretierten diese Alter als Mischalter aus einem Zirkonbereich, in dem eine Zone mit prämesozoischem Alter an eine Zone mit mesozoischem Alter angrenzt. Aus diesem Grund schlossen Pirajno et al. (2000) diese Mischalter aus und gaben für den Ombu-Rhyodazit ein mittleres ²⁰⁶Pb/²³⁸U-Alter von 135,0±1,6 Ma an. Unter Ausschluss möglicher Mischalter ergibt sich für den Ombu-Granodiorit ein mittleres ²⁰⁶Pb/²³⁸U-Alter von 132,3±1,9 Ma (MSWD=1,5; n=5).

Die ²⁰⁶Pb/²³⁸U-Alter des Erongo-Granits variieren zwischen 126 und 136 Ma. Das mittlere ²⁰⁶Pb/²³⁸U-Alter beträgt 130±1 Ma (MSWD=0,68). Aus dem U-Pb-Konkordia-Diagramm (Abbildung 5.2.1) ist weiterhin ersichtlich, dass für den Erongo-Granit ebenfalls zwei diskordante Alter zwischen 300 und 350 Ma bzw. um die 450 Ma auftreten. Die mittleren ²⁰⁶Pb/²³⁸U-Alter des Ekuta-Rhyoliths (132,6±4,2; MSWD=3,0) und des Erongo-Granits (130,3±1,4 Ma; MSWD=0,7) überlappen innerhalb des Fehlers. Ebenso wie beim Ombu-Granodiorit wurden die prämesozoischen Alter nicht zur Bildung des mittleren ²⁰⁶Pb/²³⁸U-Bildungsalters des Ekuta-Rhyoliths und des Erongo-Granits herangezogen. Sowohl die Zirkone des Ekuta-Rhyoliths als auch die Zirkone des Ombu-Granodiorits und des Erongo-Granits enthalten Bereiche, die ²⁰⁶Pb/²³⁸U-Zirkon-Alter zwischen 944±43,4 Ma und 475±18,9 Ma (Tabelle 5.2.2) aufweisen. Diese korrelieren mit den Altern der Panafrikanischen Damara-Sequenz (930-470 Ma; Miller, 1983). Texturell sind die Bereiche mit panafrikanischen Altern nicht von den Bereichen mit mesozoischen Altern unterscheidbar (Abbildung 5.2.2 C, D, E, F, I & J). Weiterhin stellt man fest, dass bei den Zirkonen des Ekuta-Rhyoliths und bei Zirkonen des Erongo-Granits auch ²⁰⁶Pb/²³⁸U-Zirkon-Alter von 371,2±9,5 und 314,4±5,6 Ma auftreten. Hierbei könnte es sich wie beim Ombu-Granodiorit um Mischalter handeln.

Die prämesozoischen ²⁰⁶Pb/²³⁸U-Alter des Ekuta-Rhyoliths, Ombu-Granodiorits und Erongo-Granits überlappen zum größten Teil mit den ²⁰⁶Pb/²³⁸U-Altern des Ombu-Rhyodazits, die von Pirajno et al. (2000) ermittelt wurden. Die Ausnahme stellen die ²⁰⁶Pb/²³⁸U-Alter > 1000 Ma des Ombu-Rhyodazits dar, die keiner der untersuchten Zirkone, die im Rahmen dieser Arbeit untersucht wurden, zeigt. Die meisten konkordanten prämesozoischen ²⁰⁶Pb/²³⁸U-Alter liegen im Bereich zwischen 550 und 600 Ma. Die wenigen diskordanten ²⁰⁶Pb/²³⁸U-Alter, die innerhalb der Zeitspanne der konkordanten Alter liegen, ergeben ²⁰⁷Pb/²⁰⁶Pb-Alter von 560±30 Ma und 520±24 Ma.

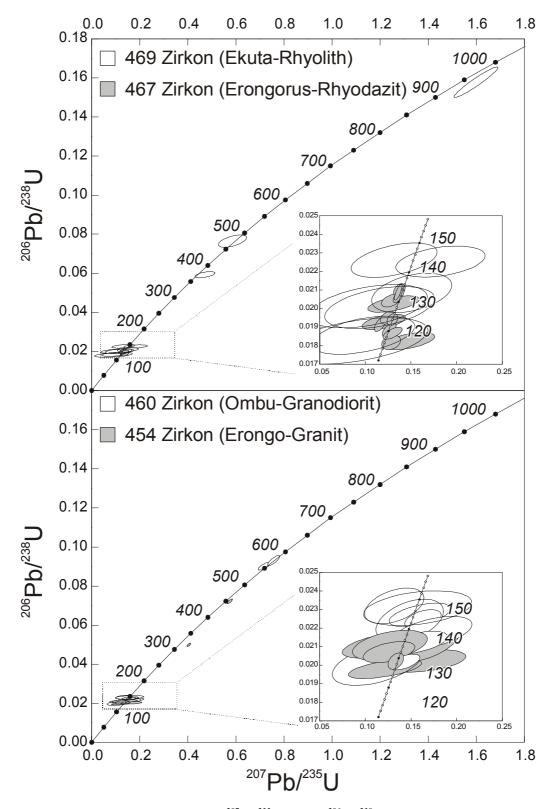


Abbildung 5.2.1: Konkordia-Diagramm (207 Pb/235 U versus 206 Pb/238 U) des Erongorus-Rhyodazits (Probe 467) und des Ekuta-Rhyoliths (Probe 469) (oben) und des Ombu-Granodiorits (Probe 460) und des Erongo-Granits (Probe 454) (unten). Die Diagramme im unteren rechten Teil stellen eine Vergrößerung des Bereiches, der sich in dem kleinen Kasten befindet, dar.

Abbildung 5.2.2 A-J: Kathodolumineszenz- (D, F, H, J) und Sekundärelektronen-Aufnahmen (A, B, C, E, G, I) von Zirkonen des Erongorus-Rhyodazits, Ekuta-Rhyoliths, Ombu-Granodiorits und Erongo-Granits.

Tabelle 5.2.1: U- & Th-Gehalte [ppm] und $^{206}Pb/^{238}U$ -, $^{207}Pb/^{235}U$ - & $^{207}Pb/^{206}Pb$ -Alter des Erongorus-Rhyodazits und des Ekuta-Rhyolith	S
--	---

Probe	U [ppm]	Th	elte [ppm] un 206Pb/238Ua	$\frac{nd^{206}Pb/^{238}U^{a}}{^{206}Pb/^{238}U^{a}}$	$^{207}\text{Pb}/^{235}\text{U}^{\text{a}}$	<u>U- & ²⁰⁷Pb/</u> ²⁰⁷ Pb/ ²³⁵ U ^a 1σ	Fehler- Korrelation	²⁰⁷ Pb/ ²⁰⁶ Pb ^a	²⁰⁷ Pb/ ²⁰⁶ Pb ^a 1σ	% radiogenes 206Pb			Alter ^a (Ma)	±Alter ^a (Ma)
	[bhiii]	[ppm]		10		10	Konciation		10	10	206 Pb/ 238 U	206 Pb/ 238 U	$^{207}\text{Pb}/^{206}\text{Pb}$	$^{207}\text{Pb}/^{206}\text{Pb}$
Erongorus-Rhy	odazit													
467_g3_1	3134	7187	0,0192	0,0004	0,117	0,006	0,63	0,0443	0,0020	98,3	122,4	2,5	-	-
467_g4_1	2185	4653	0,0207	0,0004	0,137	0,006	0,66	0,0480	0,0016	99,0	132,1	2,4	97,2	79,8
467_g5_1	1559	3362	0,0195	0,0003	0,125	0,008	0,39	0,0466	0,0029	98,6	124,6	2,2	29,5	150,0
467_g6_1	2186	6554	0,0204	0,0003	0,129	0,011	0,46	0,0459	0,0034	97,0	130,4	2,2	-	-
467_g7_1	2920	5196	0,0209	0,0004	0,136	0,004	0,78	0,0473	0,0009	99,5	133,3	2,7	65,4	46,2
467_g8_1	3483	8478	0,0182	0,0004	0,131	0,010	0,30	0,0523	0,0039	92,0	116,0	2,5	297,5	171,0
467_g10_1	2335	7059	0,0189	0,0003	0,127	0,008	0,63	0,0487	0,0025	99,0	120,5	2,2	130,9	118,0
467_g11_1	3108	6671	0,0194	0,0003	0,130	0,006	0,32	0,0486	0,0021	98,8	123,9	2,0	127,8	99,2
467_g12_1	1766	3063	0,0187	0,0003	0,131	0,011	0,65	0,0506	0,0036	98,6	119,4	2,0	224,1	164,0
467_g14_1	2436	6059	0,0210	0,0004	0,138	0,006	0,41	0,0475	0,0020	99,1	133,9	2,3	76,3	102,0
E467_g7_2	6280	3892	0,0202	0,0004	0,132	0,028	0,58	0,0474	0,0095	96,3	129,2	2,8	67,2	478,0
E467_g8_2	7535	3966	0,0193	0,0004	0,122	0,024	0,56	0,0459	0,0084	94,6	122,9	2,6	-	-
E467_g14_2	4274	2076	0,0182	0,0005	0,149	0,029	0,54	0,0592	0,0106	96,0	116,3	2,9	576,1	390,0
Ekuta-Rhyolith														
469_g2_1	227	163	0,0208	0,0011	0,154	0,044	0,40	0,0535	0,0144	92,9	132,9	6,7	348,0	608,0
469_g4_1	227	100	0,0225	0,0008	0,185	0,049	0,38	0,0594	0,0151	94,6	143,6	5,3	582,5	551,0
469_g6_1	-	-	0,0765	0,0032	0,589	0,058	0,57	0,0559	0,0046	97,4	475,0	18,9	447,8	184,0
469_g8_1	209	274	0,0226	0,0009	0,134	0,047	0,49	0,0431	0,0142	93,2	144,0	5,8	-	-
469_g9_1	-	-	0,0593	0,0016	0,474	0,041	0,54	0,0580	0,0044	97,4	371,2	9,5	528,3	165,0
469_g11_1	-	-	0,1580	0,0078	1,600	0,091	0,96	0,0736	0,0013	99,2	944,7	43,4	1030,0	35,1
469_g12_1	198	144	0,0200	0,0011	0,120	0,060	0,44	0,0434	0,0207	88,8	127,8	7,2	-	-
469_g13_1	140	103	0,0182	0,0013	0,096	0,078	0,48	0,0381	0,0297	85,6	116,4	7,9	-	-
469_g15_1	376	176	0,0186	0,0010	0,101	0,056	0,48	0,0396	0,0210	89,9	118,5	6,5	-	-
469_g15_2	229	93	0,0201	0,0012	0,108	0,064	0,44	0,0388	0,0223	88,8	128,3	7,4	-	-

^a Nach Korrektur mittels der anthropogenen Verhältnisse ²⁰⁶Pb/²⁰⁴Pb = 18.9 und ²⁰⁷Pb/²⁰⁴Pb = 15.6 von Sanudo-Wilhelmy und Flegal (1994). → Die Werte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

Tabelle 5.2.2: U- & Th-Gehalte [ppm] und 206Pb/238U-, 207Pb/235U- & 207Pb/206Pb-Alter des Ombu-Granodiorits und des Erongo-Granits

Probe	U [ppm]	Th [ppm]	$^{206}\text{Pb}/^{238}\text{U}^{a}$	²⁰⁶ Pb/ ²³⁸ U ^a 1σ	$^{207}\text{Pb}/^{235}\text{U}^{\text{a}}$	$^{207}\text{Pb}/^{235}\text{U}^{a}$ 1σ	Fehler- Korrelation	²⁰⁷ Pb/ ²⁰⁶ Pb ^a	²⁰⁷ Pb/ ²⁰⁶ Pb ^a 1σ	% radiogenes ²⁰⁶ Pb	Alter ^a (Ma)	±Alter ^a (Ma)	Alter ^a (Ma)	±Alter ^a (Ma)
	[bbiii]	[bbiii]		10		10	Konciation		10	10	206 Pb/ 238 U	$^{206}\text{Pb}/^{238}\text{U}$	$^{207}\text{Pb}/^{206}\text{Pb}$	$^{207}\text{Pb}/^{206}\text{Pb}$
Erongo-Granit														
E454_g3_s1	263	80	0,0211	0,0007	0,117	0,041	0,55	0,0404	0,0133	96,0	134,3	4,3	-	-
454_g3_2	-	-	0,0211	0,0008	0,129	0,041	0,44	0,0446	0,0134	94,0	134,3	5,1	-	-
454_g3_3	-	-	0,0202	0,0006	0,167	0,045	0,40	0,0599	0,0154	94,7	129,1	3,8	600,6	557,0
454_g4_s1	634	85	0,0202	0,0004	0,134	0,008	0,41	0,0480	0,0028	98,8	129,0	2,8	99,1	136,0
E454_g7_s1	-	-	0,0722	0,0012	0,575	0,011	0,82	0,0577	0,0006	99,8	449,3	7,4	519,6	24,1
454_g7_2	-	-	0,0500	0,0009	0,406	0,008	0,76	0,0589	0,0008	98,4	314,4	5,5	562,5	27,8
E454_g15_s1	302	138	0,0198	0,0005	0,123	0,040	0,59	0,0451	0,0139	95,4	126,4	3,3	-	-
E454_g15_s2	366	187	0,0207	0,0006	0,128	0,028	0,48	0,0447	0,0093	95,6	132,1	3,6	-	-
454_g15_3	310	126	0,0213	0,0011	0,164	0,040	0,48	0,0560	0,0127	96,1	135,5	6,9	453,1	502,0
Ombu-Granodio	orit													
E460_g1_s1	409	154	0,0202	0,0004	0,144	0,016	0,55	0,0517	0,0054	98,6	128,7	2,7	269,8	238,0
E460_g2_s1	303	165	0,0227	0,0006	0,161	0,033	0,53	0,0513	0,0100	97,5	144,8	4,0	255,0	447,0
E460_g3_s1	-	-	0,0902	0,0020	0,719	0,025	0,75	0,0578	0,0014	99,6	556,5	11,6	522,3	51,1
E460_g5_s1	437	223	0,0225	0,0005	0,164	0,020	0,44	0,0529	0,0060	97,9	143,3	3,3	325,1	256,0
E460_g6_s1	-	-	0,0931	0,0026	0,758	0,025	0,82	0,0591	0,0011	99,3	573,8	15,3	569,8	41,5
E460_g7_s1	230	57	0,0212	0,0006	0,158	0,033	0,53	0,0540	0,0106	96,6	135,3	3,9	372,1	441,0
460_g8_1	200	89	0,0201	0,0012	0,116	0,049	0,49	0,0418	0,0166	93,0	128,0	7,3	-	-
460_g9_1	242	105	0,0217	0,0009	0,175	0,044	0,52	0,0584	0,0136	93,6	138,5	5,6	546,1	510,0
460_g10_1	249	124	0,0230	0,0009	0,161	0,059	0,35	0,0506	0,0179	91,7	146,8	5,9	222,0	820,0
460_g11_1	263	115	0,0224	0,0012	0,151	0,037	0,44	0,0488	0,0110	94,7	142,7	7,2	139,3	531,0
460_g12_1	442	279	0,0232	0,0010	0,134	0,032	0,44	0,0418	0,0095	95,2	147,7	6,0	-	-

^a Nach Korrektur mittels der anthropogenen Verhältnisse ²⁰⁶Pb/²⁰⁴Pb = 18.9 und ²⁰⁷Pb/²⁰⁴Pb = 15.6 von Sanudo-Wilhelmy und Flegal (1994). -: Die Werte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

6 Diskussion der geochemischen Ergebnisse

6.1 Genese der basaltischen Magmatite

Die Verteilung von Fe und Mg zwischen Olivin und der koexistierenden basaltischen Schmelze hängt von der Temperatur, Zusammensetzung und Sauerstofffugazität ab (Roeder & Emslie, 1970). Aus diesem Zusammenhang heraus ergeben sich für basaltische Schmelzen, die im Gleichgewicht mit Olivinen des oberen Erdmantels (Fo₈₆₋₉₀) stehen, Mg-# im Bereich von 68-75 (Abbildung 6.1.1 grauschattierter Bereich). Weiterhin weisen undifferenzierte Schmelzen eines peridotitisch zusammengesetzten Mantels hohe Ni- (250-300 ppm) und Cr-Gehalte (500-600 ppm) auf (Wilson, 1989). Weder Alkalibasalte noch Tholeiite des Erongo-Komplexes haben entsprechende Zusammensetzungen und zeigen somit, dass Prozesse wie z.B. fraktionierte Kristallisation, Assimilation von kontinentaler Kruste und Kumulatbildung primäre Zusammensetzung verändert haben. Die Kenntnis der primären Schmelzzusammensetzung ist jedoch wichtige Voraussetzung zur Identifikation von Magmenquellen mantelgenerierter Gesteine. In diesem Kapitel werden die geochemischen Eigenschaften der basaltischen Magmatite des Erongo-Komplexes auf Prozesse wie krustale Kontamination, fraktionierte Kristallisation und Kumulatbildung hin untersucht. Weiterhin liefert dieses Kapitel eine Quantifizierung der krustalen Kontamination und eine Eingrenzung der möglichen Kontaminanten. Mit einer Diskussion über die Herkunft der basaltischen Magmatite anhand von Basalten mit annähernd primärer Zusammensetzung wird das Kapitel 6.1 abgeschlossen.

Krustale Kontamination der basaltischen Magmatite. Die Korrelation der 87 Sr/ 86 Sr $_{130}$ $_{Ma}$ -Verhältnisse der basaltisch zusammengesetzten Magmatite mit der als Fraktionierungsindex geltenden Mg-# zeigt, dass krustale Kontamination neben Prozessen wie fraktionierter Kristallisation und partieller Aufschmelzung eine wichtige Rolle spielt (Abbildung 6.1.1). Dies gilt allerdings nur für die Gruppe der Basisbasalte, bei denen mit abnehmender Mg-# die initialen 87 Sr/ 86 Sr $_{130}$ $_{Ma}$ -Verhältnisse deutlich zunehmen. Ähnliche Korrelationen zeigen auch die ϵ_{Nd} $_{130}$ $_{Ma}$ - und γ_{Os} $_{130}$ $_{Ma}$ -Werte. Bei den Alkalibasalten und Gangdoleriten ist eine solche Beziehung nicht zu beobachten.

Neben den Isotopenverhältnissen deuten auch ausgeprägte positive Pb-Anomalien und die starke Anreicherung der Spurenelemente Ba, Cs, K, Rb und Th gegenüber dem primitiven Erdmantel bei einigen Tholeiiten auf eine Krustenkontamination hin (siehe Abbildung 4.2.4). Ein weiterer Hinweis auf die Assimilation kontinentaler Kruste liefern die erhöhten La/Nb-Verhältnisse in den Basisbasalten. Schmelzen, die aus dem asthenosphärischen Mantel stammen, zeichnen sich durch La/Nb-Verhältnisse <1 aus (z.B. Wilson, 1989). La/Nb-Verhältnisse >1 hingegen zeigen Mantelschmelzen, die entweder kontinentale Kruste assimiliert haben (Thompson et al., 1984) oder aus einem angereicherten lithosphärischen Mantel stammen (z.B. Hawkesworth et al., 1990).

Die Alkalibasalte dagegen zeigen La/Nb-Verhältnisse <1, während Basisbasalte und Gangdolerite bei ähnlichen ⁸⁷Sr/⁸⁶Sr_{130 Ma}-Verhältnissen La/Nb-Verhältnisse >1 aufweisen. Während die Alkalibasalte und Gangdolerite (bis auf eine Ausnahme) relativ homogen in ihren La/Nb-Verhältnissen sind, zeigen die Basisbasalte eine deutliche Variation (Abbildung 6.1.2). Allerdings ergibt sich aus den gegenüber unkontaminierten Plume-Alkalibasalten von Tristan da Cunha (Le Roex et al., 1990) erhöhten Rb/Nb-Verhältnissen der in den Erongo-Granit intrudierten Alkalibasalte ein Hinweis auf eine Kontamination auch bei den

Alkalibasaltgängen. Im Gegensatz zu den Basisbasalten weichen die Isotopenverhältnisse der Alkalibasalte kaum von typischen Mantelwerten ab.

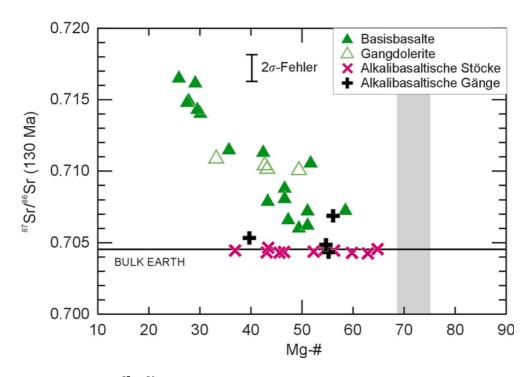


Abbildung 6.1.1: Mg-# vs. ⁸⁷ $Sr/^{86}Sr_{130\,Ma}$ -Diagramm der basaltischen Magmatite des Erongo-Komplexes. Die Daten der alkalibasaltischen Stöcke stammen von Trumbull et al. (2003). $Mg-\#=100*Mg/(Mg+Fe^{2+})$. Da für die Magmatite der alkalibasaltischen Stöcke keine Fe (II)-Gehalte vorhanden waren, wurden diese unter der Annahme, dass Fe (III) gleich 10 % des Fe₂O_{3 tot} ist, berechnet. Der Wert für Bulk Earth stammt von De Paolo & Wasserburg (1976) und DePaolo (1988).

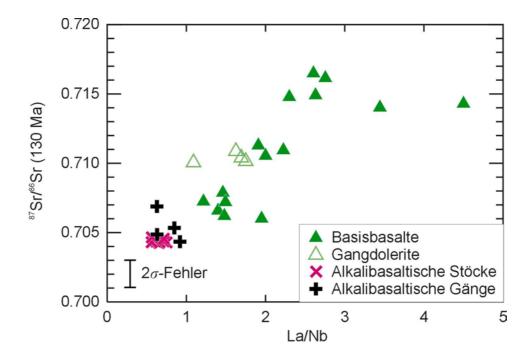


Abbildung 6.1.2: La/Nb vs. ⁸⁷Sr/⁸⁶Sr_{130 Ma}-Diagramm der Magmatite des Erongo-Komplexes. Die Daten der alkalibasaltischen Stöcke stammen von Trumbull et al. (2003).

Effekte der fraktionierten Kristallisation und Kumulatbildung. Während bei den entwickelten Basisbasalten die Haupt- und Spurenelementgehalte durch krustale Kontamination signifikant beeinflusst wurden, ist der Effekt der krustalen Kontamination bei den Gangdoleriten weniger stark ausgeprägt. Für die wenig krustal kontaminierten Gangdolerite spielt daher fraktionierte Kristallisation eine wichtige Rolle, die die stoffliche Variationsbreite dieser Gesteine erklären kann. Negative Korrelationen zwischen MgO und SiO₂, sowie zwischen MgO und CaO bzw. Al₂O₃ deuten auf eine Fraktionierung der phänokristischen Phasen Ca-reicher Klinopyroxene und Plagioklas hin. FeO* und TiO₂ nehmen mit zunehmenden MgO-Gehalten ab, was ein Hinweis auf fraktionierte Kristallisation von Fe-Ti-Oxiden bei den Gangdoleriten ist. Insbesondere die höher differenzierten Gangdolerite zeigen negative Eu-Anomalien, die mit der Fraktionierung von Plagioklas einhergehen. Neben fraktionierter Kristallisation gibt es bei den Gangdoleriten mit niedrigem Differentiationsgrad ebenso positive Eu-Anomalien, die als Folge einer Plagioklas-Akkumulation zu deuten sind (Abbildung 4.2.8 und 4.2.9).

Olivinakkumulation kann für die MgO-Gehalte >10 Gew.-% einiger Tholeiite des Erongo-Komplexes verantwortlich sein. Zu diesem Zweck wurden die Olivine mittels Elektronenstrahlmikrosonde untersucht und die sich aus den Analysen errechneten Forsterit-Gehalte den Mg-# des Gesamtgesteins (Mg-# = $100 * Mg / (Mg + Fe^{2+})$ gegenübergestellt. Roeder & Emslie (1970) zeigten, dass das Fe/Mg-Verhältnis zwischen Olivin und Gesamtgestein in primären Mantelschmelzen 0,30±0,03 beträgt. Zu Vergleichszwecken wurden die Etendeka-Ferropikrite (Gibson et al., 2000), die sich ebenfalls durch MgO-Gehalte > 10 Gew.-% auszeichnen, mit in das Diagramm (Abbildung 6.1.3 A) aufgenommen. Im Gegensatz zu den Ferropikriten weisen zwei der dargestellten Tholeiite Mg-# >80 auf und liegen nicht im Bereich, in dem Gleichgewichtsbedingungen primärer Mantelschmelzen vorherrschen. Ein Tholeiit zeigt eine ähnliche Mg-# aber niedrigere Fo-Gehalte als der dargestellte Etendeka-Ferropikrit. Bedingt durch die Olivinakkumulation zeigen die Basisbasalte und Gangdolerite mit MgO-Gehalten > 10 Gew.-% hohe Ni-Gehalte. Hinweise auf Kumulatbildung geben ebenfalls die mittels Elektronenstrahlmikrosonde ermittelten Pyroxenzusammensetzungen (Abbildung 6.1.3 B). Während es sich bei den Klinopyroxenen der Ferropikrite (Gibson et al., 2000) und der meisten Tholeiite mit MgO-Gehalten <10 Gew.-% um Augite handelt, beinhalten die Tholeiite mit MgO-Gehalten > 10 Gew.-% neben Klinopyroxenen auch Orthopyroxene, deren Zusammensetzung ebenfalls auf eine Kumulatbildung hinweist.

Somit sind vor allem die tholeitischen Basalte mit 6>MgO>10 Gew.-% durch Prozesse wie krustale Kontamination, fraktionierte Kristallisation und Kumulatbildung in ihrer primären Zusammensetzung verändert worden. Während krustale Kontamination einen entscheidenden Einfluss auf die Sr-, Nd- und Pb-Isotopenverhältnisse ausübt, spielt fraktionierte Kristallisation aufgrund der Verteilungskoeffizienten der einzelnen Isotope und Kumulatbildung keine Rolle. Ebenso unbeeinflusst bleiben Verhältnisse inkompatibler Spurenelemente mit annähernd gleichen Verteilungskoeffizienten, die ebenso wie die Isotopenverhältnisse für die Identifikation der Magmenquelle herangezogen werden (z.B. Weaver, 1991; Hofmann, 1997). Aus diesem Grund werden für die Identifikation der Magmenquelle anhand von Isotopen- und Spurenelementverhältnissen auch Tholeite mit MgO-Gehalten >10 Gew.-% MgO verwendet.

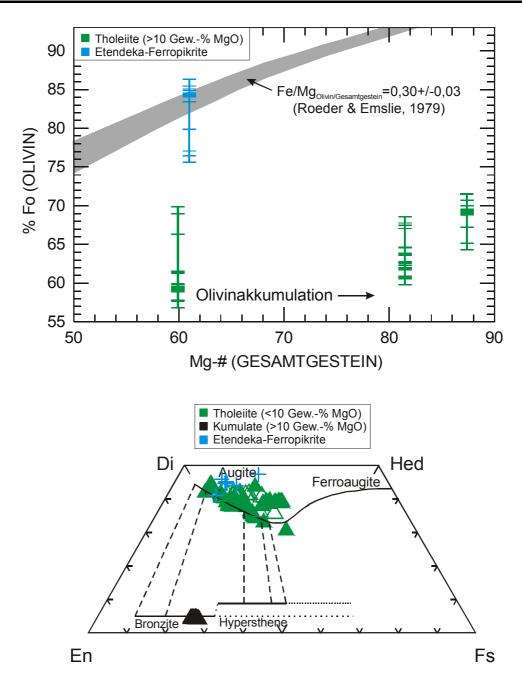


Abbildung 6.1.3 A & B: (A): Mg-# (Gesamtgestein) vs. % Forsterit (Olivin) von Basisbasalten mit MgO-Gehalten > 10 Gew.-% und der Etendeka-Ferropikrite (Gibson et al., 2000). $Mg-\# = 100 * Mg / (Mg + Fe^{2+})$. Die Balken in Abbildung 6.1.3 A stellen den Variationsbereich des prozentualen Forsteritgehalts in den Olivinen dar. (B): Zusammensetzung der Pyroxene der Basisbasalte und Etendeka-Ferropikrite (Gibson et al., 2000).

AFC- & Mischungsmodelle zur krustalen Kontamination der tholeiitischen Basalte des Erongo-Komplexes. Die folgenden AFC- und Mischungsmodellierungen erlauben es, die krustale Kontamination der tholeiitischen Basalte des Erongo-Komplexes zu quantifizieren. Dabei wurden zwei Mantelendglieder, jeweils repräsentiert durch die Proben 312 (Basisbasalte) und G152 (Gangdolerite), ausgewählt, die sich durch primitive 87Sr/86Sr_{130 Ma}-Verhältnisse und ε_{Nd (130 Ma)}-Werte nahe "bulk earth" (DePaolo & Wasserburg, 1976; DePaolo, 1988) innerhalb der jeweiligen Gesteinseinheiten auszeichnen (Tabelle A5). Die Variationen in den Sr- und Nd-Isotopenverhältnissen wurden gemäß dem Algorithmus von DePaolo (1981) berechnet, wobei ein r-Wert (r=Krustenassimilationsrate/Rate fraktionierte Kristallisation) von 0,5 verwendet wurde (Petrini et al., 1987; Peate & Hawkesworth, 1996). Die für die Modellierung verwendeten Minerale und deren Modalbestand ergaben sich aus petrographischen Untersuchungen und sind zusammen mit Mineral-Schmelzverteilungskoeffizienten Tabelle A6 zusammengefasst. Die Mineral-Schmelzverteilungskoeffizienten aus der Literatur für die Mineralphasen Plagioklas, Klinopyroxen, Olivin und Magnetit dienten Berechnung zur Gesamtverteilungskoeffizienten D für Nd und Sr, die sowohl für den Basisbasalt als auch für den Gangdolerit (Werte in Klammern) ähnliche Werte ergeben: $D_{Nd} = 0.215$ (0.195) und D_{Sr} 0,687 (0,760). In den AFC Modellierungen wird unterkrustale Kontamination durch einen durchschnittlich zusammengesetzten Damaraland A Typ-Granit (C1) angenommen (Tabelle A5), da dieser Granittyp am ehesten die Zusammensetzung von Aufschmelzungsprodukten der tiefen Kruste im Anschluss an die Damara Orogenese repräsentiert (Jung et al., 1998a). Als Endglieder für die obere Kruste werden gemittelte Zusammensetzungen für Kuisebschiefer (C3) (McDermott & Hawkesworth, 1990) und der Damaraland S Typ-Granite (C2) verwendet (Jung et al., 1998b) (Tabelle A5).

Berechnete Variationstrends (Abbildung 6.1.4 A) zeigen überwiegend Übereinstimmung mit den beobachteten Isotopenzusammensetzungen der Basisbasalte im Falle von krustaler Kontamination durch A Typ-Granite und S Typ-Granite. Die Kuisebschiefer hingegen scheiden als Krustenendglied für die Kontamination der Basisbasalte aus (Abbildung 6.1.4 A). Sowohl die Assimilation von unterer Kruste (A Typ-Granit) als auch von oberer Kruste (S Typ-Granit) ist erforderlich, um den Trend der Basisbasalte im 87 Sr/ 86 Sr_{130 Ma} vs. $\epsilon_{Nd~(130~Ma)}$ -Diagramm zu erklären (Abbildung 6.1.4 A). Jedoch erklären die AFC-Kurven mit den Grundgebirgsgraniten nicht die Isotopenverhältnisse der Basisbasalte mit den negativsten ε_{Nd (130 Ma)}-Werten bei vergleichsweise geringen ⁸⁷Sr/⁸⁶Sr_{130 Ma}-Verhältnissen. Diese überlappen innerhalb des 2σ-Fehlers mit den Kurven aus der Mischungskalkulation zwischen Basisbasalt und A Typ-Granit (Abbildung 6.1.4 B). Auch im Falle einer Zweikomponentenmischung zeigt sich, dass ein signifikanter Anteil an Kuisebschiefer als Krustenendglied unwahrscheinlich ist. Der Anteil an Krustenkomponente variiert je nach Basisbasalt und Granittyp als Krustenendglied zwischen ~4 und ~65%. Bei dem AFC-Prozess liegt bei Verwendung der Damaraland-Granite als Krustenendglied der Anteil des Restmagmas (F-Werte) zwischen 0,02 und 0,74.

Im Gegensatz zu den Basisbasalten plotten die Gangdolerite entlang von AFC- und Mischungskurven, bei denen als Krustenendglied die Kuisebschiefer angenommen wurden. Die Damaraland-Granite sind dagegen als Kontaminant für die Gangdolerite auszuschließen. Im Vergleich zu den Basisbasalten ist der Anteil an assimilierter Kruste jedoch gering, was sich in F-Werten zwischen 0,1 und 0,3 (Abbildung 6.1.5 A) bzw. einem Krustenanteil von ~ 10 bis ~ 25 % zeigt (Abbildung 6.1.5 B).

Zusammenfassend weisen die AFC- und Mischungsmodelle auf eine signifikante Kontamination der Basisbasalte und der Gangdolerite durch kontinentaler Kruste hin. Im Gegensatz zu den Gangdoleriten ist die krustale Kontamination der Basisbasalte vielfach deutlich stärker ausgeprägt. Während als Kontaminant der Gangdolerite überwiegend Kuisebschiefer in Frage kommen, sind unterkrustale Kontamination (A Typ-Granite) und ein Beitrag von oberkrustalen S Typ-Graniten für die Basisbasalte ein möglicher magmenverändernder Prozess.

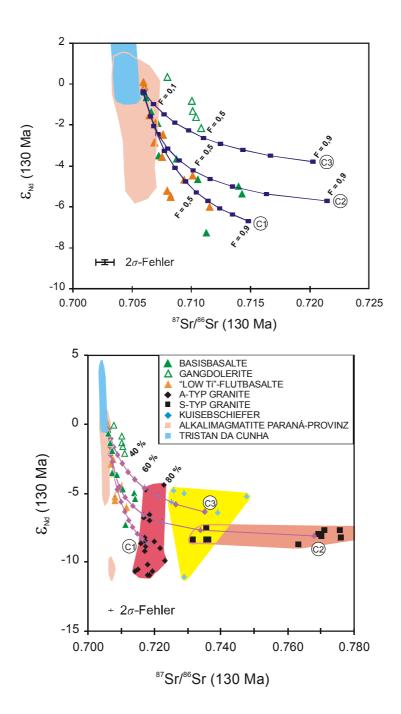
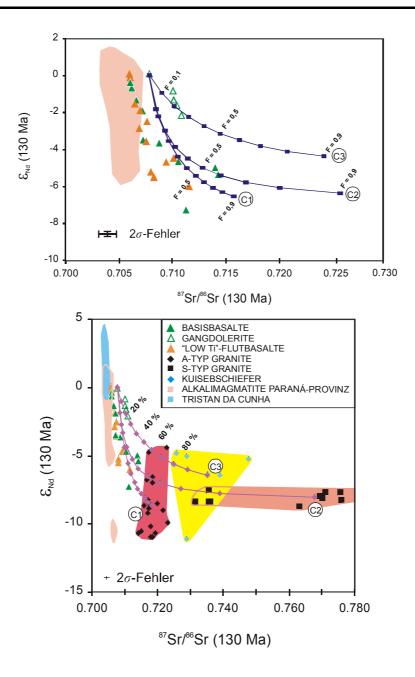
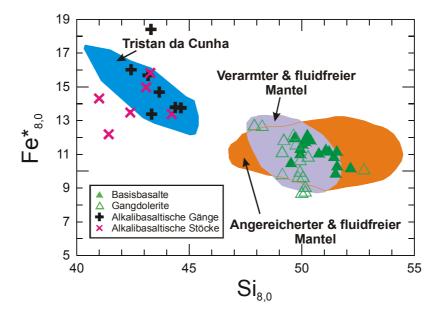


Abbildung 6.1.4 A & B: AFC- (6.1.4 A) und Mischungsmodelle (6.1.4 B) zur Charakterisierung der krustalen Kontamination der Basisbasalte des Erongo-Komplexes. Die drei verwendeten Krustenendglieder stellen Durchschnittswerte von Literaturdaten der Damara A Typ- (C1) (Jung et al., 1998a) und S Typ-Granite (C2) (Jung et al., 1998b) sowie der Kuisebschiefer (C3) (McDermott & Hawkesworth, 1990) dar. Weiterhin wurden die Alkalimagmatite der Paraná-Provinz (Carlson et al., 1996; Gibson et al., 1996; Gibson et al., 1999) und die von Tristan da Cunha (Le Roex et al., 1990) mit in die Diagramme aufgenommen.




Abbildung 6.1.5 A & B: AFC- (6.1.5 A) und Mischungsmodelle (6.1.5 B) zur Charakterisierung der krustalen Kontamination der Gangdolerite des Erongo-Komplexes. Die drei verwendeten Krustenendglieder stellen Durchschnittswerte von Literaturdaten der Damara A Typ- (C1) (Jung et al., 1998a) und S Typ-Granite (C2) (Jung et al., 1998b) sowie der Kuisebschiefer (C3) (McDermott & Hawkesworth, 1990) dar. Weiterhin wurden die Alkalimagmatite der Paraná-Provinz (Carlson et al., 1996; Gibson et al., 1996; Gibson et al., 1999) und die von Tristan da Cunha (Le Roex et al., 1990) mit in die Diagramme aufgenommen.

Bildungstiefe der basaltischen Magmen. In diesem Abschnitt werden verschiedene Verfahren zur Ermittlung von Druck und Temperatur bei der Magmengenese eingesetzt, die auf einem experimentell kalibrierten Austausch von Hauptelementkomponenten zwischen peridotitischem Mantel und Schmelze basieren. Im Einzelnen werden zwei Verfahren, basierend auf dem Austausch von Na₂O und FeO (Kinzler & Grove, 1992) bzw. von SiO₂ und MgO (Kushiro 1968; Kushiro, 1996; Jaques & Green 1980) genutzt. Um den Einfluss magmenverändernder Fraktionierungsprozesse zu minimieren, werden für das Verfahren von Kinzler & Grove (1992) auf 8 Gew.-% MgO normierte Na_{8,0}- und Fe_{8,0}-Gehalte verwendet. Die Theorie zu diesem Extrapolationsverfahren, das ursprünglich für ozeanische Basalte entwickelt wurde (Klein & Langmuir, 1987), wird im Anhang beschrieben. Aus dem gleichen Grund werden auch im zweiten hier verwendeten Verfahren nur wenig differenzierte Basaltzusammensetzungen mit MgO Gehalten >8 Gew.% berücksichtigt.

Die Ergebnisse aus dem Verfahren von Kinzler & Grove (1992) zeigen für die Gangdolerite und Basisbasalte durchschnittliche Bildungstemperaturen von 1475 bzw. 1490 °C sowie durchschnittliche Drücke im Bereich von 14-15 kbar. Für wenig differenzierte Basisbasalte und Gangdolerite ergeben sich aus dem Verfahren von Kushiro (1996) Drücke von 7-16 bzw. 9-14 kbar. Die unrealistisch niedrigen Drücke aus dem letzteren Verfahren weisen darauf hin, dass sich die Fe_{8,0}- und Na_{8,0}-Gehalte gegenüber den SiO₂-Gehalten besser zur Berechnung der Bildungstiefe und –temperatur eignen. Die Temperaturen und Drücke, die sich aus den Gleichungen von Kinzler & Grove (1992) ergeben, entsprechen Tiefen des subkontinentalen lithosphärischen Mantels (SCLM). Geht man von einer durchschnittlichen Krustenmächtigkeit von 35 km (Bauer et al., 2000) und einer durchschnittlichen Druckzunahme von 3 kbar pro km Tiefe aus, ergeben sich daher für die Schmelzbildung der Basisbasalte und Gangdolerite Tiefen zwischen ca. 40 und 45 km.

Trumbull et al. (2003) wendeten die Gleichungen von Albarède (1992), Scarrow & Cox (1995) und Haase (1996) zur Feststellung der Bildungstiefe der Basanite und Tephrite der alkalibasaltischen Stöcke an und gaben einen Druckbereich von 29-44 kbar für die wenig differenzierten Proben bzw. 45-56 kbar für die Probe mit den niedrigsten SiO2-Gehalten (FNA105) an. Für die hier untersuchten wenig differenzierten Basanite und Tephrite der alkalibasaltischen Gänge ergibt sich ein ähnlicher Druckbereich von 13-53 kbar bzw. für die Probe mit den niedrigsten SiO₂-Gehalten (425) ein Druckbereich von 25-53 kbar, was einer ungefähren Bildungstiefe von 46-186 km bzw. 88-186 km entspricht. Die Schmelzbildung der alkalibasaltischen Magmen fand daher wahrscheinlich unterhalb ~80 km im Stabilitätsfeld von Granatperidotit statt (z.B. Wyllie, 1975). Es ist daher zu erwarten, dass bei partieller Aufschmelzung Schmelzen generiert werden, die in den SSEE verarmt sind. Tatsächlich weisen sowohl die alkalibasaltischen Stöcke (Trumbull et al., 2003) als auch die alkalibasaltischen Gänge erhöhte (Sm/Yb)_{CN}-Verhältnisse im Bereich von 4-7 auf. Dies entspricht dem (Sm/Yb)_{CN}-Verhältnis von Schmelzen, die im Granatstabilitätsfeld gebildet wurden (McKenzie & O'Nions, 1991; Ellam, 1992) und unterstreicht die unabhängig davon den Hauptelementzusammensetzungen ermittelten größeren Bildungstiefen der alkalibasaltischen Magmen.

Obwohl ursprünglich für ozeanische Basalte entwickelt, nutzten andere Autoren (z.B. Hergt et al., 1991; Turner et al., 1996) die oben angeführten Verfahren auch für kontinentale Flutbasalte. Ein Nebeneffekt des Extrapolationsverfahrens nach Klein & Langmuir (1987) ist die weitestgehende Minimierung der Folgen krustaler Kontamination (Turner et al., 1996). In den Abbildungen 6.1.6 A & B sind verschiedene auf 8 Gew.-% MgO normierte Hauptelemente gegeneinander aufgetragen.

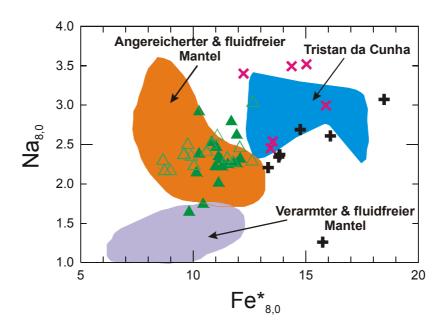


Abbildung 6.1.6 A (oben): Variationsdiagramm $Si_{8,0}$ vs. $Fe^*_{8,0}$. Abbildung 6.1.6 B (unten): Variationsdiagramm $Fe^*_{8,0}$ vs. $Na_{8,0}$. Die Felder von Schmelzen aus dem angereicherten und verarmten fluidfreien Mantel wurden von Turner et al. (1996) übernommen. Die $Fe^*_{8,0}$ -, $Si_{8,0}$ -, $Na_{8,0}$ -Werte wurden aus den Fe_2O_3 tot-, SiO_2 -, Na_2O -, Gehalten wenig differenzierter Gangdolerite und Basisbasalte mit dem Extrapolationsverfahren von Klein & Langmuir (1987) errechnet. Die verwendeten Daten von Tristan da Cunha stammen von Le Roex et al. (1990) und die der alkalibasaltischen Stöcke von Trumbull et al. (2003) und Trumbull et al. (unpublished data).

Die Felder des verarmten fluidfreien und angereicherten fluidfreien Mantels stammen von Turner et al. (1996) und basieren auf Daten aus Schmelzexperimenten von Takahashi & Kushiro (1983) Falloon et al. (1988) und Kushiro (1990). Als Vertreter plumegenerierter Schmelzen wurden ebenfalls die Alkalibasalte von Tristan da Cunha (Le Roex et al., 1990) mit in das Diagramm aufgenommen. In beiden Diagrammen zeigen die Tholeiite keine Affinität zu den Alkalimagmatiten von Tristan da Cunha (Le Roex et al., 1990). Während im Si_{8,0} vs. Fe*_{8,0} die Felder des angereicherten fluidfreien und verarmten fluidfreien Mantels

überlappen und somit keine eindeutige Trennung möglich ist, werden die Unterschiede vor allem in den Na_{8,0}-Gehalten deutlich. Die Tholeiite zeigen ähnliche Si_{8,0}, Fe*_{8,0} und Na_{8,0}-Gehalte und liegen im Fe*_{8,0} vs. Na_{8,0}-Diagramm im Feld des angereicherten fluidfreien Mantels. MORB, der aus einem verarmten Mantel stammt, zeigt mit zunehmenden Fe*_{8,0}-Gehalten eine negative Na_{8,0}-Korrelation (Klein & Langmuir, 1987). Klein & Langmuir (1987) erklären diesen Trend als Folge eines zunehmenden Grades an Schmelzbildung mit steigendem Druck. Im Gegensatz zu MORB zeigen die Gangdolerite einen schwach positiven bis parallelen Trend und die Basisbasalte eine deutliche Zunahme der Na_{8,0}-Werte mit steigenden Fe*_{8,0}-Werten (Abbildung 6.1.6 B). Dieses Verhalten spricht ebenfalls für eine Schmelzbildung bei niedrigeren Drücken. Die Alkalimagmatite des Erongo-Komplexes hingegen überlappen in Abbildung 6.1.6 A & B weitestgehend mit den Feldern von Tristan da Cunha. Die Magmenzusammensetzungen sowohl der Erongo- als auch der Tristan da Cunha-Alkalibasalte entsprechen daher niedrigen Aufschmelzgraden bei hohen Drücken.

Ursprung der basaltischen Schmelzen: Subkontinentaler lithosphärischer Mantel vs. Mantelplume. Aus dem Vergleich der isotopischen Zusammensetzung basaltischer Gesteine des Erongo-Komplexes mit denen relevanter Mantelreservoire ergeben sich weitere Hinweise auf den Ursprung des basischen Magmatismus. Während die isotopische Zusammensetzung des Tristan-Plume durch die Alkalimagmatite der ozeanischen Inseln Tristan da Cunha und Gough bekannt ist (Le Roex et al., 1990), kann auf die Isotopenzusammensetzung des SCLM unterhalb der Paraná-Etendeka-Provinz nur auf indirektem Weg geschlussfolgert werden, indem frühe Aufschmelzprodukte des SCLM, die keine Prozesse wie z.B. krustale Kontamination erfahren haben, untersucht werden (Gibson et al., 1995). Gesteine, die diese Eigenschaften erfüllen, stellen nach Carlson et al. (1996) und Gibson et al. (1999) z.B. die Alkalimagmatite der Paraná-Provinz dar. Ebenso wie bei den regionalen Flutbasalten erfolgt bei den Alkalimagmatiten der Paraná-Provinz eine Unterteilung aufgrund ihrer Ti-Gehalte (Gibson et al., 1996). Die "low Ti"-Magmatite unterscheiden sich ebenfalls aufgrund ihrer niedrigeren ¹⁴³Nd/¹⁴⁴Nd- und höheren ⁸⁷Sr/⁸⁶Sr-Verhältnisse (Abbildung 4.3.1).

Die Abbildungen 6.1.7 A & B zeigen die ²⁰⁶Pb/²⁰⁴Pb_{130 Ma}-, ¹⁴³Nd/¹⁴⁴Nd_{130 Ma}- und ⁸⁷Sr/⁸⁶Sr₁₃₀ Ma-Verhältnisse der Tholeiite und Alkalibasalte des Erongo-Komplexes im Vergleich mit den von Zindler & Hart (1986) und Hart et al. (1992) definierten Mantelreservoiren und den Alkalimagmatiten der Paraná-Provinz (Carlson et al., 1996; Gibson et al., 1999). Sowohl in Abbildung 4.3.1 als auch in Abbildung 6.1.7 überlappen die undifferenzierten Basisbasalte und Gangdolerite in ihren ε_{Nd 130 Ma}- und ⁸⁷Sr/⁸⁶Sr_{130 Ma}-Verhältnissen mit denen des SCLM und Tristan da Cunha. Weiterhin liegen die Basisbasalte mit den niedrigsten ¹⁴³Nd/¹⁴⁴Nd_{130 Ma}-Verhältnissen sowohl im Feld des EM2-Reservoirs als auch in dem des Damara-Grundgebirges. Diese Isotopensignatur mit krustaler Kontamination dieser Proben zu erklären, scheint sinnvoll, da eine reine EM2-Signatur in der Südatlantik-Provinz noch nicht nachgewiesen werden konnte (z.B. Zindler & Hart, 1986; Wilson, 1992) und das EM2-Reservoir isotopisch eine große Ähnlichkeit mit oberer kontinentaler Kruste oder terrigenen Sedimenten hat (Hawkesworth & Vollmer, 1979; Carlson, 1984).

Im Vergleich mit den Os-Isotopenverhältnissen verschiedener Mantelreservoire (Tabelle 6.1.1) zeigen die Basisbasalte keine Affinität zu den Mantelreservoiren EM1, EM2, HIMU, EP (FOZO ?) und DMM (Tabelle 6.1.1). Shirey & Walker (1998) verwenden das EP-Mantelreservoir (enriched plume), um die Os-Isotopenverhältnisse aller Mischungsendglieder der ozeanischen Inselbasalte zu erklären und stellen es in den Zusammenhang mit dem FOZO-Reservoir, das von Hart et al. (1992) als ein an ³He angereichertes Mantelreservoir

interpretiert wird. Ebenso sind die $\gamma_{Os~(130~Ma)}$ -Werte (-11,6 bis +111) des SCLM der Paraná-Etendeka-Provinz (Carlson et al., 1996) im Vergleich mit dem durchschnittlichen SCLM (Shirey & Walker, 1998) eher untypisch. Carlson et al. (1996) interpretieren die hohen $\gamma_{Os~(130~Ma)}$ -Werte trotzdem als primäre Mantelsignaturen und schließen Krustenkontamination aufgrund der hohen Os-Konzentrationen und Re/Os-Verhältnisse aus. Schlagkräftige Argumente für den SCLM als Mantelquelle der Gangdolerite liefern dagegen die negativen $\gamma_{Os~(130~Ma)}$ -Werte. Zwar überlappen sie auch mit den γ_{Os} -Werten des DMM-Reservoirs, zeigen jedoch einen deutlichen Trend zu niedrigeren $\gamma_{Os~(130~Ma)}$ -Werten von bis zu -8,1. Solche negativen $\gamma_{Os~(130~Ma)}$ -Werte können nicht durch Assimilation oder Mischung einer Komponente zum DMM-Reservoir erreicht werden. Die Basisbasalte dagegen könnten aufgrund der positiven $\gamma_{Os~(130~Ma)}$ -Werte sowohl dem SCLM als auch dem Tristan-Plume entstammen, wenn z.B. kontinentale Kruste assimiliert wird.

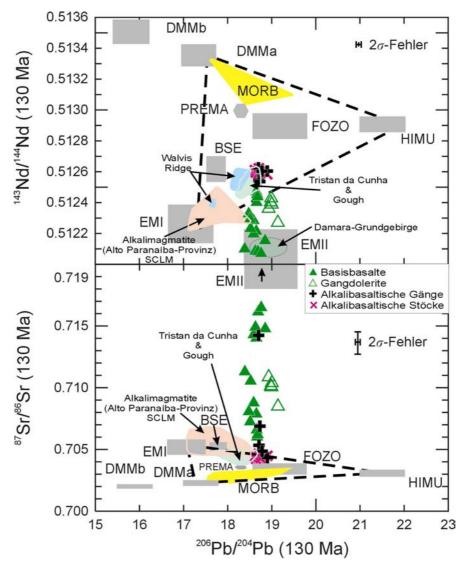


Abbildung 6.1.7 A (oben): Variationsdiagramm ²⁰⁶Pb/²⁰⁴Pb (130 Ma) vs. ¹⁴³Nd/¹⁴⁴Nd (130 Ma). Abbildung 6.1.7 B (unten) Variationsdiagramm ²⁰⁶Pb/²⁰⁴Pb (130 Ma) vs. ⁸⁷Sr/⁸⁶Sr (130 Ma). Vergleich der Basalte des Erongo-Komplexes mit den Gesteinen von Tristan da Cunha (Le Roex et al., 1990), Walvis Ridge (Richardson et al. 1982) und Gough (Le Roex, 1985). Die geochemischen Daten der alkalibasaltischen Stöcke stammen von Trumbull et al. (2003) und die des Damara-Grundgebirges von McDermott & Hawkesworth (1990). Weiterhin sind die Isotopenverhältnisse der verschiedenen Mantelreservoire und MORB (nach Zindler & Hart, 1986; Hart et al., 1992) sowie des SCLM, repräsentiert durch die Alkalimagmatite der Paraná-Provinz (Carlson et al., 1996; Gibson et al., 1996), dargestellt.

Tabelle 6.1.1: $^{187}Os/^{188}Os$ und γ_{Os} verschiedener Mantel- und Krustenreservoire

	$^{187}{ m Os}/^{188}{ m Os}$	$\gamma_{ m Os}$
Chondrit	0,127	0,0
SCLM (Durchschnitt)	0,105-0,129	-17,3 bis +1,6
DMM	0,123-0,126	-3,1 bis -0,8
EM1	0,152	+19,7
EM2	0,136	+7,1
HIMU	0,150	+18,1
EP (FOZO ?)	0,130-0,135	+2,4 bis +6,3
Kontinentale Kruste (Durchschnitt)*	1,335-1,919	+958 bis +1421

Bemerkung: *Die 187 Os/ 188 Os-Verhältnisse und γ_{os} -Werte der durchschnittlichen kontinentalen Kruste stammen von Esser & Turekian (1993) und wurden auf 130 Ma zurückgerechnet. Die Daten stammen von Ellam et al. (1992), Carlson & Irving (1994), Pearson et al. (1995a), Pearson et al. (1995c), Roy-Barman & Allègre (1995), Carlson et al. (1996), Shirey & Walker (1998) und Araujo et al. (2001).

Während somit die Isotopenverhältnisse der Gangdolerite eindeutige Hinweise auf einen Ursprung im SCLM liefern, lässt sich die Mantelquelle der Basisbasalte nicht eindeutig eingrenzen. Ebenso ergeben die Beziehungen zu den regionalen Flutbasalten keine eindeutige Lösung (Kapitel 4.5). Die "low Ti"-Flutbasalte der Paraná-Provinz zeigen sowohl eine SCLM- (Gramado-Typ) als auch Asthenosphären-Signatur (Esmeralda-Typ), wobei dies mit der tektonischen Entwicklung in der Provinz in Zusammenhang steht (Peate & Hawkesworth, 1996). Bei einem geringen Extensionsgrad der Lithosphäre findet die Schmelzbildung innerhalb des SCLM statt. Lediglich im Spätstadium der Extension kommt es zu einer Dekompressionsschmelzbildung in der Asthenosphäre, was in den geochemischen Eigenschaften der Esmeralda-Basalte dokumentiert ist (Gallagher & Hawkesworth, 1992). Da Paraná-Etendeka-Magmen unterschiedliche verschiedenen Bildungsalter Eruptionszentren aufweisen (Peate, 1990; Peate et al., 1992), schlussfolgern Peate & Hawkesworth (1996), dass die Magmen nicht die zeitlich-petrogenetische Entwicklung einer einzigen Mantelquelle widerspiegeln, sondern Produkte unterschiedlicher Magmenquellen innerhalb des Erdmantels sind (Hawkesworth et al, 1988). Diese Interpretation lässt sich anhand der neugewonnenen geochemischen Daten der Basisbasalte weder bestätigen noch widerlegen, da zwar die Basisbasalte geochemisch auf eng begrenztem Raum nahezu alle "low Ti"-Flutbasalt-Typen repräsentieren, aber weder ihre Bildungsalter noch ihre Eruptionszentren bekannt sind (siehe Kapitel 4.5). Das Genesemodell für die "low Ti-Flutbasalte der Paraná-Provinz von Gibson et al. (1996) hingegen scheidet aus, da eine Mischung aus plumegenerierten Schmelzen und ~20% "low Ti"-Schmelzen aus dem SCLM als Magmenquelle, sich nicht mit den positiven $\gamma_{Os (130 \text{ Ma})}$ -Werten der Basisbasalte von +50,2 bis +194 vereinbaren lässt.

Die Zusammensetzung der tholeiitischen Basalte weist sowohl hinsichtlich ihrer Hauptelement- als auch isotopischen Zusammensetzung keine Affinität zu den alkalibasaltischen Schmelzen des Tristan-Plumes auf. Ebenso sprechen die niedrigen Eruptionsraten von ~0,1 km³ a⁻¹ in der Paraná-Etendeka-Provinz (Stewart et al., 1996) gegen eine Plumequelle, weil Flutbasaltprovinzen, in denen die Flutbasalte durch Dekompressionsschmelzbildung aus der Asthenosphäre hervorgehen (z.B. Deccan-Provinz (Duncan & Pyle, 1988; Courtillot et al., 1988; Venkatesan et al., 1993)), durch deutlich höhere Eruptionsraten charakterisiert sind (>1 km³ a⁻¹) (White & McKenzie, 1995).

Obwohl sich die Alkalimagmatite der Paraná-Provinz sowohl durch negative als auch positive γ_{Os (130 Ma)}-Werte auszeichnen, deuten Carlson et al. (1996) vor allem die negativen $\gamma_{Os~(130~Ma)}\text{-Werte}$ als entscheidenden Hinweis auf eine Herkunft aus dem SCLM. Die Alkalibasalte des Erongo-Komplexes hingegen zeigen ausschließlich positive γ_{Os (130 Ma)}-Werte. Aus den Os-Isotopenverhältnissen ist jedoch keine eindeutige Zuordnung zu einem Mantelreservoir möglich, da sowohl der SCLM der Paraná-Provinz als auch das EP-Reservoir ähnliche $\gamma_{Os~(130~Ma)}$ -Werte aufweisen wie die Alkalibasalte des Erongo-Komplexes. Deutliche Hinweise auf einen Plume-Ursprung liefern hingegen die 206 Pb/ 204 Pb $_{130~Ma}$ - und 143 Nd/ 144 Nd $_{130}$ Ma-Verhältnisse der Alkalibasalte des Erongo-Komplexes. Unter Verwendung der Mantelreservoire von Zindler & Hart (1986) liegen die Gesteine von Tristan da Cunha, Gough und Walvis Ridge sowie der Alkalimagmatite der Paraná-Provinz innerhalb eines Dreiecks, das aus den Mantelreservoiren DMM (depleted MORB mantle), EM1 (enriched mantle 1) und HIMU (high µ mantle) gebildet wird (Wilson, 1992) (Abbildung 6.1.7 A & B). Die aus dem SCLM stammenden Alkalimagmatite der Paraná-Provinz unterscheiden sich isotopisch gegenüber den Magmatiten mit Plume-Ursprung (Tristan da Cunha und Gough) durch geringere ²⁰⁶Pb/²⁰⁴Pb-Verhältnisse bei vergleichbaren ¹⁴³Nd/¹⁴⁴Nd_{130 Ma}-Verhältnissen und zeigen wie die Basalte von Walvis Ridge eine größere EM1-Affinität (Abbildung 6.1.7 A & B). Die Alkalibasalte des Erongo-Komplexes überlappen in Abbildung 6.1.7 A mit den Magmatiten von Tristan da Cunha und Gough und zeigen somit deutlich höhere ²⁰⁶Pb/²⁰⁴Pb-Verhältnisse als der SCLM. Dies spricht deutlich für den Tristan-Plume als Quelle der Alkalibasalte des Erongo-Komplexes.

Zusammenfassend ergibt sich für die basaltischen Magmatite des Erongo-Komplexes der folgende Zusammenhang. Während die tholeiitischen Basalte des Erongo-Komplexes aus dem lithosphärischen Mantel stammen, bildet der asthenosphärische Mantel die Magmenquelle der stratigraphisch jüngsten Gesteinseinheit. Die Basisbasalte als Vertreter der Paraná-Etendeka-Flutbasalte lassen sich geochemisch keinem der regiostratigraphisch vorkommenden Flutbasalttypen zuordnen, sondern überlappen mit allen der in der Paraná-Etendeka-Provinz vorkommenden "low Ti"-Flutbasalten. AFC- und Mischungskalkulationen sowie Os-Isotopenverhältnisse zeigen, dass die geochemische Variabilität der Basisbasalte durch Assimilation von Kruste bzw. Mischung kontinentaler Kruste entstanden ist. Die Gangdolerite zeigen isotopisch eine große Affinität zu dem regional vorkommenden Kuidas-Typ und haben ähnlich wie die Basisbasalte eine krustale Kontamination erfahren. Die negativen $\gamma_{\rm Os~(130~Ma)}$ -Werte zeigen jedoch, dass die Krustenkontamination bei den Gangdoleriten deutlich geringer war.

6.2 Genese der sauren Magmatite des Erongo-Komplexes

Zahlreiche geochemische Eigenschaften der sauren Magmatite des Erongo-Komplexes sind typisch für anorogene Granitoide (Whalen et al., 1987). Beispielsweise weist der Erongo-Granit charakteristisch niedrige CaO-Gehalte, hohe FeO/(FeO+MgO)- und Ga/Al-Verhältnisse auf. Desweiteren zeichnet er sich gegenüber I Typ- und S Typ-Graniten durch hohe Zr-, Nb- und Y-Gehalte aus (Whalen et al., 1987). Neben diesen auf anorogene Suiten beschränkten Charakteristiken gibt es andere geochemische Parameter, die weitgehend typisch für entwickelte granitoide Schmelzen sind. So resultieren negative Korrelationen in den Variationsdiagrammen (Abbildung 4.1.2) wie z.B. zwischen TiO₂- oder Fe₂O_{3tot}-Gehalten mit zunehmenden SiO₂-Gehalten auf der Fraktionierung oxidischer Mineralphasen. Charakteristisch für Fraktionierungsprozesse sind ebenfalls deutlich ausgeprägte aber variable negative Eu- und Sr-Anomalien in den sauren Magmatiten, die aus einer Fraktionierung von Plagioklas entstanden sein können (Abbildungen 4.2.14 & 4.2.15). Weiterhin weisen alle sauren Magmatite des Erongo-Komplexes mit Ausnahme des Erongorus-Rhyodazits, negative Ba-Anomalien auf. Eine wahrscheinliche Ursache dafür ist eine Alkalifeldspat-Fraktionierung.

Diese geochemischen Fraktionierungstrends sind qualitativ mit dem beobachteten Mineralbestand konsistent. Aus petrographischen Untersuchungen geht hervor, dass der Ombu-Granodiorit folgenden mittleren Modalbestand (in Vol-%) aufweist: 37 Oligoklas; 25 Quarz; 21 Orthoklas-Perthit; 6,8 Hypersthen-Ferrohypersthen; 5,8 Biotit; 3,2 Fe-Ti-Oxide; 1,2 Cordierit und Akzessorien (Emmermann, 1979). Somit können im Fall der Ombu-Rhyodazite und Ombu-Granodiorite Fraktionierungsprozesse mit Hypersthen-Ferrohypersthen, Biotit und/oder Fe-Ti-Oxide für die Abnahme der TiO₂- und Fe₂O_{3tot}-Gehalte mit zunehmendem Differentiationsgrad verantwortlich sein. Im Fall des Erongo-Granits ist eine Beteiligung von Pyroxenen am Fraktionierungsprozess auszuschließen, da Pyroxen als Mineralphase im Erongo-Granit nicht beobachtet wird (Emmermann, 1979). Eine wichtige Beobachtung jedoch, die bei den folgenden diskutierten petrogenetischen Modellen berücksichtigt wird, ist das Fehlen intermediärer andesitischer Gesteine im Bereich zwischen 61,8 und 65,8 Gew.-% SiO₂ (Abbildung 4.1.2). Dies zeigt, dass es im Erongo-Komplex keine Übergangsglieder zwischen der basaltischen und der rhyodazitisch-rhyolithischen Magmensuite gab. Daher wird die Petrogenese der rhyodazitisch-rhyolithischen Schmelzen in einem separaten Modell behandelt.

Petrogenetische Modelle. Hinweise auf eine gemeinsame Magmenquelle des Ombu-Rhyodazits, Ekuta-Rhyoliths, Ombu-Granodiorits und des Erongo-Granits ergeben sich sowohl aus radiogenen als auch aus stabilen Isotopenverhältnissen. Aus der Abbildung 4.3.1 geht hervor, dass sowohl die 87 Sr/ 86 Sr $_{130~Ma}$ -Verhältnisse als auch die $\epsilon_{Nd~(130~Ma)}$ -Werte der Erongo-Granitoide innerhalb des Wertebereiches der Gesteine des Damara-Grundgebirges liegen (Trumbull et al., 2000). Die δ 18 O-Werte des Ombu-Granodiorits und des Erongo-Granits (10,1 bis 11,0 ‰) liegen im Bereich der Damara-Grundgebirgsgranite (Trumbull et al., in press). Diese Granite gliedern sich in proterozoische bis paleozoische A Typ- und S Typ-Granite, die δ 18 O-Werte von 6-15 ‰ (durchschnittlicher δ 18 O-Wert 11,4‰) zeigen. Die δ 18 O-Werte metapelitischer Schiefer der Kuiseb- und Zerrissene Gruppe liegen im Bereich von 11,6-14,7‰ (durchschnittlicher δ 18 O-Wert 13,2‰) bzw. 11,2-19,1‰ (durchschnittlicher δ 18 O-Wert 14,3‰) (Haack et al., 1982, Harris, 1995 & Jung et al., 1998a).

Harris (1995) und Trumbull et al. (2000) schlussfolgern daraus, dass es sich bei den Erongo-Granitoiden um überwiegend krustale Schmelzen handelt. Aufgrund der höheren δ^{18} O-Werte scheiden jedoch die metapelitischen Schiefer als alleiniges Quellengestein für die Granitoide des Erongo-Komplexes aus. Daher kommen als potentielle Magmenquellen entweder die Damara-Grundgebirgsgranite alleine oder gegebenenfalls mit einem untergeordneten Mengenanteil partieller Schmelzen aus metapelitischen Schiefern in Frage.

Fraktionierte Kristallisation: Haupt- und Spurenelementmodellierung. Die Hinweise, dass die sauren Magmatite des Erongo-Komplexes mit Ausnahme des Erongorus-Rhyodazits aus ein und derselben Magmenquelle stammen, lässt vermuten, dass ihre stoffliche Entwicklung durch Prozesse wie z.B. fraktionierte Kristallisation geprägt war. Die Korrelationen in den Variations- und Spiderelementdiagrammen deuten darauf hin, dass Minerale wie Quarz, Plagioklas, Kalifeldspat, Klinopyroxen, Biotit und Fe-Ti-Oxide daran beteiligt waren.

Die Modellierung der Hauptelementzusammensetzung beruht auf Massenbilanzierung auf Grundlage der kleinsten Fehlerquadrate (Le Maitre, 1981; Albarède, 1995). Der prozentuale Fraktionierungsgrad F (Menge Restschmelze x 100/ Menge Ausgangsschmelze), prozentualer Anteil der Mineralphasen am Kristallisat sowie berechnete Fehlerquadrate sind für exemplarische Schmelzzusammensetzungen in Tabelle 6.2.1 zusammengefasst. Die Güte der Bilanzierung lässt sich aus der Summe der Fehlerquadrate als Differenz zwischen errechnetem und vorgegebenem Ausgangsmagma abschätzen, wobei ein Wert $\Sigma R^2 < 1$ anzeigt, dass die modellierte Mischungszusammensetzung innerhalb des analytischen Fehlers reproduziert wird (Le Maitre, 1981). Als Repräsentant für eine Ausgangsschmelze wurde ein Ombu-Rhyodazit (451) verwendet, der aufgrund seiner Hauptund Spurenelementzusammensetzung als wenig differenziert anzusehen ist.

Die Auswahl der Minerale, die für die Modellierung verwendet wurden, erfolgte anhand von petrographischen Untersuchungen und der Auswertung von Variations- und Spiderdiagrammen (Abbildungen 4.1.2 & 4.2.14). Die Zusammensetzungen der einzelnen Mineralphasen des Ombu-Rhyodazits wurden mit Hilfe der Elektronenstrahlmikrosonde ermittelt und sind in der Tabelle A8 (Anhang) dargestellt. Die Hauptelementmodellierung wurde mit zwei verschiedenen Kombinationen von Mineralen durchgeführt, wobei für beide Ansätze Plagioklas, Kalifeldspat, Biotit und Quarz oder Klinopyroxen verwendet wurden. Aus beiden Modellen geht hervor, dass aus einem Ausgangsmagma mit rhyodazitischer Zusammensetzung durch die in den beiden Fraktionierungsmodellen verwendeten Mineralkombinationen das Erongo-Granitmagma gebildet werden kann. Niedrigere ΣR²-Werte liefert jedoch das Modell, in dem Quarz anstatt Klinopyroxen verwendet wurde. Somit kommt die auf dem Verfahren der kleinsten Fehlerquadrate beruhende Bilanzierung zu einem ähnlichen Ergebnis wie Emmermann (1979).

Für die Spurenelemente wurde ebenfalls eine Rayleigh-Fraktionierung mit den Elementen Ba, Rb und Sr durchgeführt. Ihre Gehalte in der Schmelze werden nahezu ausschließlich durch das Verhalten der gesteinsbildenden Hauptmineralphasen (Plagioklas, Kalifeldspat, Klinopyroxen, Biotit und Quarz) kontrolliert. Die Abbildung 6.2.1 stellt die Korrelation der Elemente Sr vs. Ba und Sr vs. Rb dar. Wie schon aus der Hauptelementbilanzierung hervorgeht, zeigt sich ein deutlicher Einfluss der Mineralphasen Plagioklas und Kalifeldspat auf die Fraktionierung. Der Hauptanteil der Erongo-Granite weist für die Spurenelemente einen Fraktionierungsgrad zwischen 40 und 50 % auf und zeigt somit, dass eher Quarz anstatt Klinopyroxen an der fraktionierten Kristallisation beteiligt war.

Tabelle 6.2.1: Ergebnisse der Bilanzierung der Hauptelementzusammensetzung nach dem Verfahren der kleinsten Fehlerquadrate (Le Maitre, 1981; Albarède, 1995)

MODELL 1							
AUSGANG	REST	F [%]	PLG [%]	KFS [%]	BIO [%]	CPX [%]	ΣR^2
451	ER 200	58	34	32	19	15	0,31
451	ER202	69	41	22	21	15	0,35
451	ER203	67	39	22	28	11	0,32
451	ER211	70	38	21	22	18	0,68
451	ER212	61	37	30	23	10	0,19
451	G140C	70	36	25	25	13	0,25
451	G140D	68	40	25	19	16	0,42
451	383	83	33	27	21	18	0,17
451	445	68	40	20	26	14	0,35
451	454	74	36	22	25	17	0,35
451	455	68	37	23	28	12	0,28

MODELL 2							
AUSGANG	REST	F [%]	PLG [%]	KFS [%]	BIO [%]	QTZ [%]	ΣR^2
451	ER 200	34	25	26	27	22	0,30
451	ER202	44	28	23	27	22	0,22
451	ER203	45	28	23	28	21	0,10
451	ER211	40	26	23	27	24	0,19
451	ER212	43	28	26	27	24	0,16
451	G140C	47	27	24	28	21	0,13
451	G140D	41	27	23	26	23	0,15
451	383	63	24	25	28	23	0,14
451	445	44	28	22	28	22	0,14
451	454	47	26	23	28	23	0,14
451	455	46	28	23	29	20	0,16

Bemerkungen: F [%]: prozentualer Fraktionierungsgrad F (Menge Restschmelze x 100 / Menge Ausgangsschmelze); PLG [%]: Anteil an Plagioklas in Prozent; KFS [%]: Anteil an Kalifeldspat in Prozent; BIO [%]: Anteil an Biotit in Prozent; CPX [%]: Anteil an Klinopyroxen in Prozent; QTZ [%]: Anteil an Quarz in Prozent; ΣR^2 : Summe der Fehlerquadrate.

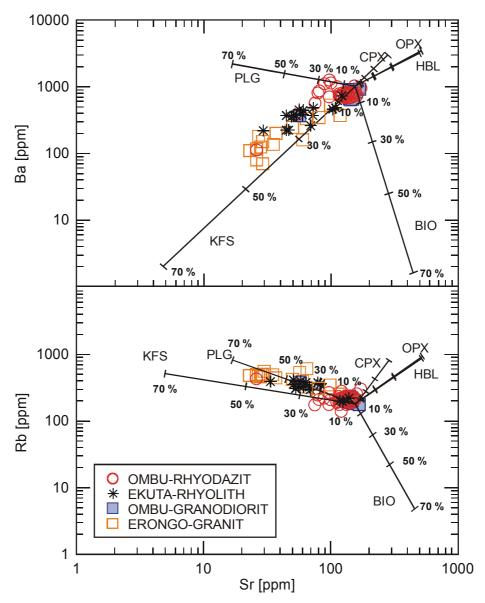


Abbildung 6.2.1: Sr vs. Ba- (oben) und Sr vs. Rb- (unten) Diagramme der sauren Magmatite des Erongo-Komplexes. Zeichenerklärung: KFS: Kalifeldspat, PLG: Plagioklas, CPX: Klinopyroxen, OPX: Orthopyroxen, HBL: Hornblende, BIO: Biotit. Für die Diagramme wurden ebenfalls Literaturdaten von Emmermann (1979) und Trumbull et al. (2000) verwendet.

Mischungsmodelle – Eine Erklärung für die Diversität der kretazischen Damaraland-Intrusiva unter besonderer Berücksichtigung der sauren Magmatite des Erongo-Komplexes. Nd-, O- und Sr-Isotopenverhältnisse der Magmatite der Damaraland-Komplexe liegen im Allgemeinen zwischen typischen Mantel- und Krustenwerten. Martinez et al. (1996), Harris et al. (1999) und Trumbull et al. (in press) deuten dies als Resultat einer variablen Kontamination mantelgenerierter Schmelzen durch kontinentale Kruste. Martinez et al. (1996) zeigten am Beispiel des Okenyenya-Komplexes, dass die Hybridisierung der mantel- und krustengenerierten Schmelzen entweder durch Magmenmischung oder durch Prozesse der Assimilation gekoppelt mit fraktionierter Kristallisation (AFC) mit einem hohen Verhältnis der Assimilationsraten zu Kristallisationsraten (r>1) erklärt werden kann. Ein hoher r-Wert setzt jedoch voraus, dass die kontinentale Kruste zum Zeitpunkt der

Assimilation nahe ihrer Solidus-Temperatur liegt. Während diese Möglichkeit bei normalen kontinentalen geothermischen Gradienten eher auszuschließen ist, kann für die untere Kruste in der Damaraland-Provinz im Bildungszeitraum der Damaraland-Komplexe eine thermische Anomalie angenommen werden, die der Intrusion großer Magmenvolumina der Paraná-Etendeka-Flutbasalte einhergegangen ist.

Ewart et al. (1998b) und Schmitt et al. (2000) geben für saure Magmatite der Etendeka-Provinz Bildungstemperaturen von 1000-1100°C (Awahab-Rhyodazite) bzw. 850-950°C (Brandberg) an. Eine Abschätzung der Mindestschmelztemperatur der sauren Magmen des Erongo-Komplexes lässt sich anhand der Zr-Konzentrationen treffen. Watson & Harrison (1983) kalibrierten das Sättigungsverhalten des Minerals Zirkon in intermediären bis granitischen Schmelzen als eine Funktion von Temperatur und Zusammensetzung der Schmelze. Unter Verwendung dieser Kalibration (Watson & Harrison, 1983) ergeben sich für die Erongorus- bzw. Ombu-Rhyodazite Magmentemperaturen im Bereich von 860-900°C bzw. 820-850°C. Der Ombu-Granodiorit weist mit 820-830°C ähnliche Temperaturen wie der Ombu-Rhyodazit auf. Wie sich aus den Untersuchungen mit der hochauflösenden Ionensonde Cameca IMS 1270 an den Zirkonen (siehe Kapitel 5.2) herausstellte, führt insbesondere der Ombu-Granodiorit zahlreiche ererbte Zirkone aus dem Grundgebirge. Dies bedeutet, dass die berechneten Zirkon-Sättigungstemperaturen für den Ombu-Granodiorit zu hoch eingeschätzt wurden. Der Erongo-Granit weist mit ~760°C die niedrigsten Bildungstemperaturen auf. Die thermometrischen Abschätzungen zeigen, dass es sich bei den sauren Schmelzen des Erongo-Komplexes um niedrigtemperierte anatektische Schmelzen gehandelt haben könnte.

Aus den vermuteten Bedingungen anatektischer Schmelzbildung in der unteren Kruste ergeben sich hohe r-Werte für den AFC-Prozess. Berechnete AFC- und Mischungskurven zeigen daher einen ähnlichen Verlauf. Aus diesem Grund wird hier und in Trumbull et al. (in press) ein Zweikomponenten-Mischungsmodell favoritisiert. Die Berechnung der Mischungskurven setzt die Kenntnis der Nd- und Sr-Konzentrationen der Quelle (Erdmantel) bzw. des Assimilanten (kontinentale Kruste) voraus. Die Untersuchungen basischer Gesteine der Damaraland-Komplexe (Milner & Le Roex, 1996; Le Roex & Lanyon, 1998 & Trumbull et al., 2003) belegen eine wichtige Rolle von Schmelzen des Tristan-Plumes in der Genese der Damaraland-Komplexe. Aus diesem Grund eignen sich wenig differenzierte Alkalibasalte der ozeanischen Inseln Tristan da Cunha und Gough (Le Roex, 1985; Le Roex et al., 1990), um die Nd- (40-60 ppm) und Sr-Konzentrationen (600-900 ppm) des Mantelendgliedes für die Mischungskalkulation (M) festzulegen. Da von den Gesteinen Tristan da Cunhas und Gough keine Sauerstoffisotopendaten vorliegen, wird wie bei Harris et al. (2000) und Eiler (2001) für die Modellierung der Wert von δ^{18} O-Wert von 5,7 (durchschnittlicher N-MORB) verwendet (Taylor, 1980).

Als Mischungsendglied der kontinentalen Kruste werden zwei Grundgebirgsgranittypen verwendet, die die Zusammensetzung der regionalen kontinentalen Kruste widerspiegeln. Stellvertretend für die untere kontinentale Kruste (z.B. Collins et al., 1982; Whalen et al., 1987, Jung et al., 2000) werden als Mischungsendglied C1 die metalumischen Damaraland A Typ-Granite (C₁) (Nd: 30 bis >100 ppm, Durchschnitt: 55ppm und Sr: 250-350 ppm) (Jung et al., 1998b; Jung et al., 2000) verwendet. Die durch partielle Aufschmelzung von Metasedimenten entstandenen peralumischen Damaraland S Typ-Granite (Nd: 0,8-59 ppm, Durchschnitt: 31 ppm und Sr: 52-164 ppm, Durchschnitt: 73 ppm) stellen das Mischungsendglied C₂ dar (Haack et al, 1982; McDermott & Hawkesworth, 1990 & Jung et al., 2000).

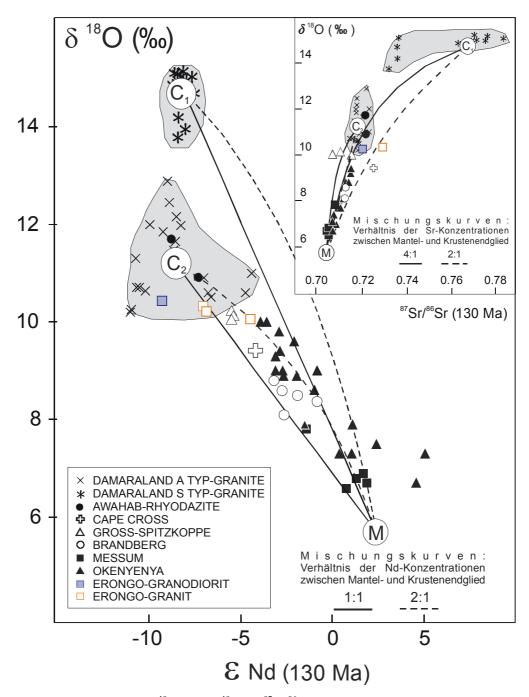


Abbildung 6.2.2 A & B: ε_{Nd} vs. $\delta^{18}O$ - bzw. $\delta^{18}O$ vs. $\delta^{18}O$ vs. $\delta^{18}O$ vs. $\delta^{18}O$ - bzw. $\delta^{18}O$ - bzw.

Die Abbildung 6.2.2 (ϵ_{Nd} vs. $\delta^{18}O$ und $^{87}Sr/^{86}Sr_{130~Ma}$ vs. $\delta^{18}O$) zeigt das Ergebnis der Mischungskalkulationen, wobei das Verhältnis der jeweiligen Nd- bzw. Sr-Konzentrationen zwischen Mantel- und Krustenendglied variiert wurde (Nd: 1:1 und 2:1; Sr: 2:1 und 4:1). Für die Endglieder C_1 und C_2 wurden gleiche Nd-Konzentrationen angenommen. Der ϵ_{Nd} vs. $\delta^{18}O$ -Trend der Damaraland-Komplexe schließt die peralumischen S Typ-Granite des Damaraland-Grundgebirges als krustales Endglied aus. Die Isotopenzusammensetzungen der Damaraland-Komplexe folgen der Mischungslinie, in der das Verhältnis der Nd-Konzentrationen zwischen Mantel- und Krustenkomponente 2:1 beträgt. Im Diagramm

⁸⁷Sr/⁸⁶Sr_{130 Ma} vs. δ¹⁸O folgen die Gesteine der Damaraland-Komplexe ebenfalls der 2:1-Mischungslinie zwischen M und C₁. Bezüglich der ⁸⁷Sr/⁸⁶Sr_{130 Ma}- und δ¹⁸O-Variationen ist jedoch nicht auszuschließen, dass die peralumischen S Typ-Granite ebenfalls ein Mischungsendglied darstellen (Mischungslinie 4:1). Allerdings resultiert aus der großen Variationsbreite der ⁸⁷Sr/⁸⁶Sr_{130 Ma} –Verhältnisse krustaler S Typ-Granite und der einzelnen Damaraland-Komplexe nur eine ungenaue Diskriminierung, die mittels der Nd-Isotopenverhältnisse eindeutiger erfolgen kann. Zusammenfassend zeigt sich jedoch, dass der Ombu-Granodiorit und der Erongo-Granit die größte Affinität innerhalb der Damaraland-Komplexe zur Krustenkomponente C₁ besitzen. Drei von vier Proben liegen im Feld der Damaraland A Typ-Granite.

Ebenfalls im Feld der Damaraland A Typ-Granite liegen die Awahab "low Ti"-Rhyodazite, deren Genese kontrovers diskutiert wird (siehe Kapitel 2.2). Auf der Grundlage des Mischungsmodells sind die Awahab "low Ti"-Rhyodazite zu fast 100% krustalen Ursprungs, was die Hypothese von Harris et al. (1990) bestärkt. Ewart et al. (1998b) interpretieren die Awahab "low Ti"-Rhyodazite als Mantelschmelzen, die eine Kontamination mit kontinentaler Kruste erfahren haben. Die Zusammensetzung des Krustenkontaminants entsprach bei Ewart et al. (1998b) weitestgehend der Zusammensetzung von C₂ (peralumische S Typ-Granite). Im ε_{Nd} vs. δ¹⁸O-Diagramm ist der Verlauf sowohl der 1:1- als auch der 2:1-Mischungslinie jenseits der isotopischen Zusammensetzung der Rhyodazite. Im ⁸⁷Sr/⁸⁶Sr_{130 Ma} vs. δ¹⁸O-Diagramm hingegen folgen die Awahab "low Ti"-Rhyodazite der 4:1-Mischungslinie, was in etwa einer 1:1 Mischung zwischen Mantel- und Krustenkomponente C2 entspricht. Die Damaraland A Typ-Granite (Jung et al., 1998a) wurden von Ewart et al. (1998b) nicht als mögliche krustale Quelle diskutiert. Jedoch bemerkten Ewart et al. (1998b), dass die Assimilation eines A Typ-Granits oder einer charnokitisch zusammengesetzten Unterkruste bestimmte Spurenelementcharakteristiken der Awahab "low Ti"-Rhyodazite erklären könnte. In Bezug auf die Erongorus-Rhyodazite als Vertreter der "low Ti"-Rhyodazite und die Ombu-Rhyodazite und Ekuta-Rhyolithe als Extrusiv-Äquivalente des Ombu-Granodiorits bzw. Erongo-Granits, wird somit ein krustaler Ursprung aus einem Reservoir mit einer Zusammensetzung ähnlich derjenigen der A Typ-Granitquelle gefordert.

Zusammenfassend kann man sagen, dass der Ombu-Rhyodazit, Ombu-Granodiorit, Ekuta-Rhyolith und Erongo-Granit aus einer gemeinsamen Magmenquelle, die die Zusammensetzung der regionalen kontinentalen Kruste hatte, stammen. Sowohl die Hauptelement- als auch Spurenelement-Modellierung zeigen, dass der Erongo-Granit durch fraktionierte Kristallisation unter Beteiligung der Minerale Plagioklas, Kalifeldspat, Biotit und Quarz aus einem Magma, das die Zusammensetzung eines wenig entwickelten Ombu-Rhyodazits hatte, gebildet werden kann. Bei den Erongorus-Rhyodaziten deuten die geochemischen und die geochronologischen Daten darauf hin, dass sie, wie von Harris et al. (1990) und Trumbull et al. (in press) beschrieben, als ehemalige Paraná-Etendeka-Rhyodazite durch partielle Aufschmelzung der kontinentalen Kruste gebildet wurden.

6.3 Entstehungsgeschichte des Erongo-Komplexes im Rahmen des Paraná-Etendeka-Ereignisses

Der Ursprung der stratigraphisch ältesten Gesteinseinheiten des Erongo-Komplexes steht wie bei anderen Damaraland-Komplexen (z. B. Schmitt et al., 2000; Ewart et al, 1998a; Ewart et al, 1998b) im Zusammenhang mit dem überregionalen Paraná-Etendeka-Ereignis. Neugewonnene geochronologische und geochemische Daten zeigen, dass Basisbasalte und Erongorus-Rhyodazite Reste der regional vorkommenden Paraná-Etendeka-Magmatite darstellen. Während sich aus einer U-Pb-Datierung für die Erongorus-Rhyodazite ein Alter von 131,8±1,0 Ma ergibt, welches mit den Altern der Paraná-Etendeka-Rhyodazite (Renne et al., 1996b) überlappt, ist das Bildungsalter der Basisbasalte unbekannt. Aufgrund der geochemischen Verwandtschaft der Basisbasalte zu den "low Ti"-Flutbasalten liegt der Zeitraum ihrer Bildung wahrscheinlich zwischen 135 und 131 Ma, wie ⁴⁰Ar/³⁹Ar-Alter von Stewart et al. (1996) belegen. Allerdings ist eine direkte Korrelation innerhalb der existierenden Paraná-Etendeka-Einheiten nicht möglich. Dies ist vermutlich auf das isolierte Vorkommen und die relativ große Entfernung des Erongo-Komplexes zum heutigen Hauptverbreitungsgebiet der Magmatite des Paraná-Etendeka-Ereignisses zurückzuführen.

älteste Erongo-spezifische magmatische Ereignis ist die Förderung der krustengenerierten Ombu-Rhyodazite und die Intrusion des chemisch äquivalent zusammengesetzten Ombu-Granodiorits im Zentrum des Erongo-Komplexes. Aus den U-Pbund ⁴⁰Ar/³⁹Ar-Altern (Tabelle 6.3.1) sowie der stratigraphischen Abfolge, lässt sich schlussfolgern, dass dieses magmatische Ereignis direkt im Anschluss an die Förderung der Erongorus-Rhyodazite erfolgte. Die mit der voluminösen Förderung der Ombu-Magmen einhergehende Calderenbildung (Emmermann, 1979) ist mit dem Verlauf von Ombu-Granodioritgängen außerhalb der eigentlichen Calderastruktur zu belegen (Vietor et al., 2002). Während einige dieser Gänge NE-streichenden Störungen folgen, kreuzen andere den regional auftretenden Störungsverlauf der Waterberg-Omaruru-Störungszone und zeigen einen konzentrischen Verlauf (Vietor et al., 2002). Ein prominentes Beispiel stellt ein 13.4 km langes Segment eines Ombu-Granodioritgangs im SW des Erongo-Komplexes (21° 32, 940' S; 15° 52, 457′ E) dar, das die Form der Caldera in diesem Bereich nachzeichnet. Während der Caldera-Bildung kam es zu einer Reaktivierung der Waterberg-Omaruru-Störungszone, was durch NE-streichende Störungen am NE-Rand der Caldera dokumentiert ist (Vietor et al., 2002).

Die explosive Förderung des Ekuta-Rhyoliths und die Intrusion des Erongo-Granits, beide nahezu zeitgleich mit dem Ombu-Ereignis (Tabelle 6.3.1), werden vor allem durch das NEstreichende Störungssystem kontrolliert (Vietor et al., 2002). Im NW des Erongo-Komplexes mündet eine NE-streichende Schar von Granitintrusionen an seinem SW-Ende in eine WSW-streichende silifizierte Störungszone. In gleicher Weise sind die Granitgänge und –Intrusionen am östlichen Rand der Caldera entlang NE-streichenden Störungen intrudiert, deren lineare Kontakte zu den Gesteinen des Damaragrundgebirges in diesem Bereich über mehrere Kilometer hinweg verfolgt werden können. Die Platznahme des Erongo-Granits im NE-Teil des Erongo-Komplexes wurde daher durch Störungen, die während der Intrusion des Ombu-Granodiorits aktiv waren, kontrolliert (Vietor et al, 2002).

Das Endstadium der magmatischen Aktivität des Erongo-Komplexes wird durch die Intrusion tholeiitischer und alkalibasaltischer Magmen geprägt. Reaktivierte präexistierende Schwächezonen und neuformierte Störungen dienten ebenfalls den Ringdike-Magmen als Aufstiegsbahnen. Aus der gleichen Mantelquelle wie die Rindike-Dolerite stammen ebenso die Magmen der Lagergänge, die im N und NW an der stratigraphischen Grenze zwischen Erongorus- und Ombu-Rhyodazit intrudierten.

Tabelle 6.3.1: Bildungsalter der wichtigsten Damaraland-Komplexe

Intrusivkomplexe	Gesteine	Alter	Literaturquellen
Granitische Komplexe			
Erongo	Ombu-Granodiorit	$132,6 \pm 1,0 \text{ Ma}^{\text{ a.)}}$	Wigand et al. (in press)
		$132,3 \pm 1,9 \text{ Ma}^{\text{ b.)}}$	Wigand et al. (in press)
	Erongo-Granit	$133,3 \pm 1,1 \text{ Ma}^{\text{ a.)}}$	Wigand et al. (in press)
		$133,1 \pm 1,1 \text{ Ma}^{\text{ a.)}}$	Wigand et al. (in press)
		$130,3 \pm 1,4 \text{ Ma}^{\text{b.}}$	Wigand et al. (in press)
	Erongorus-Rhyodazit	$131.8 \pm 1.0 \text{ Ma}^{\text{ b.)}}$	Wigand et al. (in press)
	Ombu-Rhyodazit	$135,0 \pm 1,6 \text{ Ma}^{\text{ b.)}}$	Pirajno et al. (2000)
	Ekuta-Rhyolith	$132,6 \pm 4,2 \text{ Ma}^{\text{ b.)}}$	Wigand et al. (in press)
	Foidit	$132,0 \pm 1,0 \text{ Ma}^{\text{ a.)}}$	Wigand et al. (in press)
		$130.8 \pm 1.0 \text{ Ma}^{\text{ a.)}}$	Wigand et al. (in press)
Brandberg	Biotit-Hornblende-Granit	$133.0 \pm 0.8 \text{ Ma}^{\text{ a.)}}$	Schmitt et al. (2000)
		$132,6 \pm 1,8 \text{ Ma}^{\text{ a.)}}$	Schmitt et al. (2000)
	Peralkalischer Granit	$130.9 \pm 0.7 \text{ Ma}^{\text{ a.)}}$	Schmitt et al. (2000)
		$132,0 \pm 0,7 \text{ Ma}^{\text{ a.)}}$	Schmitt et al. (2000)
Otjohorongo	Granit	$131,6 \pm 0,4 \text{ Ma}^{\text{ a.)}}$	Pirajno et al. (2000)
Basische Komplexe			
Messum	Quarzdiorit	$131,7 \pm 0,7 \text{ Ma}^{\text{ a.)}}$	Renne et al. (1996b)
	Gabbro	$132,1 \pm 0,7 \text{ Ma}^{\text{ a.)}}$	Renne et al. (1996b)
	Anorthosit	$132,1 \pm 1,2 \text{ Ma}^{\text{ a.)}}$	Renne et al. (1996b)
	Nephelin-Syenit	129.3 ± 0.4 Ma ^{a.)}	Renne et al. (1996b)
Cape Cross	Nephelin-Syenit	$135,0 \pm 0,7 \text{ Ma}^{\text{ a.)}}$	Milner et al. (1995b)
Okenyenya	Gabbro	$129 \pm 2 \text{ Ma}^{\text{ c.)}}$	Milner et al. (1993)
	Nephelin-Syenit	$124 \pm 2 \text{ Ma}^{\text{ c.)}}$	Milner et al. (1993)
Peralkalische und karbona Komplexe	titische		
Paresis	Comendit	$137.0 \pm 0.7 \text{ Ma}^{\text{ a.)}}$	Milner et al. (1995b)
	Rhyolith	$134,3 \pm 1,7 \text{ Ma}^{\text{ b.)}}$	Pirajno et al. (2000)
Okorusu	Nephelin-Syenit	$126.9 \pm 0.6 \text{ Ma}^{\text{ a.)}}$	Milner et al. (1995b)

Index: ^{a.)}: Ar-Ar-Alter; ^{b.)}: U-Pb-Alter; ^{c.)}: Rb-Sr-Alter

Während die Stratigraphie keine eindeutigen Hinweise auf eine Altersbeziehung zwischen den tholeitischen Gangdoleriten und Ekuta-Rhyolithen bzw. Erongo-Granit liefert, zeigen sie

sich hingegen bei den Alkalibasalten aufgrund der Intrusionskontakte. Die Intrusion der Alkalibasalte erfolgte im Zeitraum von 132,0±1,0 Ma und 130,8±1,0 Ma in die Rhyodazite und in den Erongo-Granit (Abbildung 6.3.1).

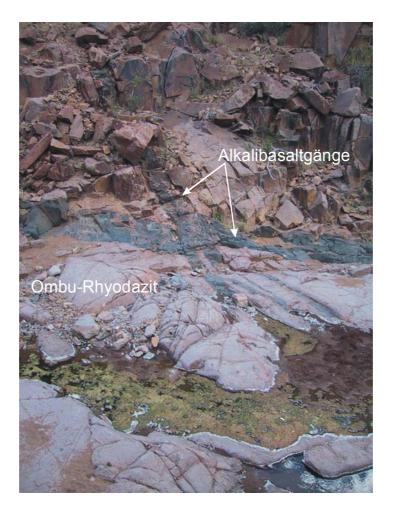


Abbildung 6.3.1: Intrusionskontakt zwischen Ombu-Rhyodazit und Alkalibasaltgängen im nördlichen Teil des Erongo-Komplexes.

Die Kombination geochemischer, geochronologischer, strukturgeologischer und geophysikalischer Untersuchungsmethoden erlaubt somit eine Rekonstruktion der Entstehungsgeschichte des Erongo-Komplexes. So überlappen alle Bildungsalter der Magmatite des Erongo-Komplexes innerhalb des 2σ-Fehlers und zeigen somit, dass der Erongo-Komplex zeitgleich zu dem Paraná-Etendeka-Ereignis über einen Zeitraum von maximal ~5 Ma aktiv war (siehe Tabelle 6.3.1). Der Zeitraum, in dem Krustenschmelzen gefördert wurden, betrug wahrscheinlich weniger als 2 Ma und zeigt somit, dass die Höhepunkte und Zeitspannen der sauren magmatischen Aktivität innerhalb der Damaraland-Komplexe und des regionalen Flutbasaltvulkanismus eng miteinander verknüpft sind (Abbildung 6.3.2). Bezüglich der hier angenommenen Alterstellung des regionalen Flutbasaltvulkanismus gilt allerdings die Einschränkung, dass K/Ar-Alter aus der älteren Literatur (Siedner & Mitchell, 1976) unberücksichtigt bleiben. Dieser Ansatz begründet sich in der z.B. von Milner et al. (1995b) diskutierten Problematik von K/Ar Altern in plutonischen und vulkanischen Gesteinen der Paraná-Etendeka Provinz.

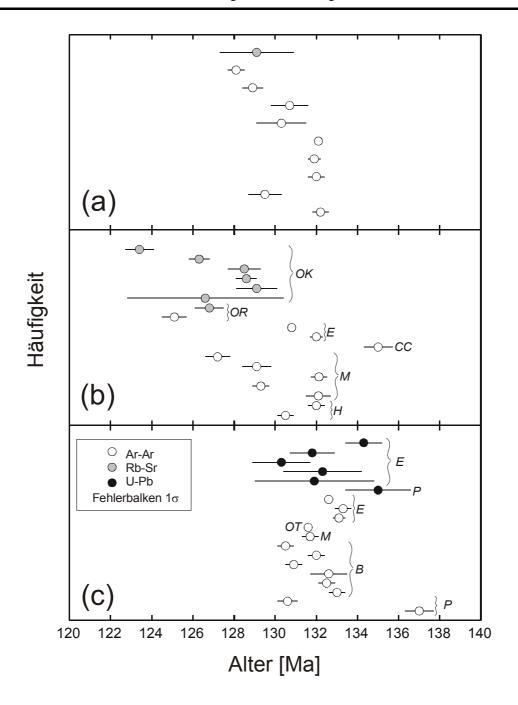


Abbildung 6.3.2: Bildungsalter mantel- und krustengenerierter Magmatite der Etendeka-Provinz. (a) Basische & saure Magmatite des Paraná-Etendeka-Flutbasaltereignisses; (b) Basische Magmatite der Damaraland-Komplexe; (c) Saure Magmatite der Damaraland-Komplexe. Datenquellen: Milner et al., 1995b, Renne et al., 1996b, Kirstein et al., 2001; Abkürzungen und Datenquellen der Damaraland-Komplexe: B: Brandberg (Schmitt et al., 2000); CC: Cape Cross (Milner et al., 1995b); E: Erongo (Pirajno et al., 2000); H: Huab sills (Milner et al., 1993); M: Messum (Renne et al., 1996b); OK: Okenyenya (Milner et al., 1993); OR: Okurusu (Milner et al., 1995b); OT: Otjohorongo (Pirajno et al., 2000); P: Paresis (Milner et al., 1995b; Pirajno et al., 2000). Bemerkungen: Im Paresis-Komplex weist der stratigraphisch ältere Quarz-Feldspat-Porphyr mit 131 Ma (Pirajno et al., 2000) ein jüngeres Alter als der 137 Ma alte Comendit (Milner et al., 1995b) auf.

Im Einzelnen konnten Milner et al. (1995b) zeigen, dass ⁴⁰Ar/³⁹Ar Bestimmungen für die Ringkomplexe der Damaraland-Provinz in eine kürzere Zeitspanne (137-124 Ma) fallen als zuvor aufgrund von K/Ar Bestimmungen angenommen wurde (149-124 Ma). Ebenso sind stratigraphisch inkonsistente K/Ar-Alter der Brandberg-Granite, die von Watkins et al. (1994) mit 125 Ma angegeben wurden, wahrscheinlich durch postmagmatischen Verlust von Ar bedingt (Schmitt et al., 2000). Allsopp et al. (1984) führen weiterhin Exzess-Argon als vermutete Ursache für das höhere ⁴⁰Ar/³⁹Ar-Biotit-Alter eines Messum Gabbros (149±1 Ma) an (Fitch & Miller, 1984). Rb/Sr-Gesamtgesteinsalter werden zwar in der Abbildung 6.3.2 aufgeführt, finden bei der Interpretation der Alterdaten aber keine Berücksichtigung, da Magmatite einzelner Damaraland-Komplexe (z.B. Okenyenya) heterogene initiale ⁸⁷Sr/⁸⁶Sr-Verhältnisse zeigen (z.B. Milner et al., 1993).

Im Gegensatz zu den sauren Granitplutonen scheinen die differenzierten basischen sowie die alkalibasaltischen und karbonatitischen Damaraland-Komplexe über einen längeren Zeitraum von ca. 130 bis 123 Ma magmatisch aktiv gewesen zu sein (Milner et al., 1993). Aus diesem Sachverhalt könnte man schließen, dass der von mantelgenerierten Gesteinen geprägte Magmatismus innerhalb der Damaraland-Komplexe zeitversetzt zum Magmatismus, der von krustengenerierten Gesteinen dominiert wurde, stattfand. Jedoch findet man innerhalb der Damaraland-Komplexe Erongo, Messum und Huab Alter für mantelgenerierte Gesteine, die mit den Altern der sauren Gesteine des Erongo-, Brandberg- und Paresis-Komplexes übereinstimmen. Die ca. 131 Ma Alter der Foidite des Erongo-Komplexes zeigen, dass ein alkalibasaltischer Magmatismus schon während oder unmittelbar nach der Hauptförderphase des Paraná-Etendeka-Flutbasaltvulkanismus stattfand. Dagegen zeugen die Nephelin-Syenite des Okurusu- und Okenyenya-Komplexes von einem jüngeren alkalischen Magmatismus (Tabelle 6.3.1).

Aus den übereinstimmenden Bildungsaltern für saure Gesteine der Intrusivkomplexe Paresis, Otjohorongo, Brandberg und Erongo kann geschlussfolgert werden, dass eine Aufschmelzung der kontinentalen Kruste zeitgleich entlang eines ca. 150 km umfassenden Lineaments stattfand. Aus den radiometrischen Altern der Etendeka-Flutbasalte und der diese intrudierenden Intrusivkomplexe ergibt sich eine Obergrenze für die intrakrustale Schmelzbildung von ~133 Ma. Das Vorkommen alkalischer Magmatite dagegen kann ein Indikator für das Ende dieser intrakrustalen Schmelzbildung sein, weil eine teilgeschmolzene kontinentale Kruste aufgrund ihrer geringeren Dichte eine Barriere für mantelgenerierte Schmelzen darstellt (Trumbull et al., 2003). Im Fall des Erongo-Komplexes zeigt das Vorkommen alkalibasaltischer Intrusionen das Ende der krustalen Schmelzbildung bereits zu einem Zeitpunkt von ~131 Ma an. Auch für andere überwiegend saure Damaraland-Komplexe kann aufgrund der radiometrischen Altersbestimmungen vermutet werden, dass der Magmatismus infolge von partieller Aufschmelzung kontinentaler Kruste im Bereich der Etendeka-Provinz bereits um ~130 Ma endete (z.B. Schmitt et al., 2000, Pirajno et al., 2000). In der Paraná-Region (Süd-Uruguay) dagegen ist die Bildung krustengenerierter Gesteine bis ca. 127 Ma aktiv (Kirstein et al., 2001). Bedingt wird diese fortgesetzte Bildung von Krustenschmelzen in Süd-Uruguay vermutlich durch die geringere Mächtigkeit der kontinentalen Lithosphäre und den zusätzlichen Wärmeeintrag durch Schmelzprozesse innerhalb des Erdmantels am Kontinentrand (Kirstein et al., 2001).

Literaturverzeichnis

- Adam, J., Green, T. H. & Sie, S. H. (1993): Proton microprobe determined partitioning of Rb, Sr, Ba, Y, Zr, Nb, and Ta between experimentally produced amphiboles and silicate melts with variable F content. *Chemical Geology* **109**: 29-49.
- Agee, C.B. (1990): A new look at differentiation of the Earth from melting experiments on the Allende meteorite. *Nature* **346**: 834-837.
- Albarède, F. (1992): How deep do common basaltic magmas form and differentiate? *Journal of Geophysical Research* **97**: 10,997-11,009.
- Albarède, F. (1995): Introduction to geochemical modeling. Cambridge University Press.
- Aldrich, S. (1986): Progress report on a gravity and magnetic investigation of the Messum and Erongo igneous complexes. *Communications of the Geological Survey of South West Africa / Namibia* **2**: 47-52.
- Allsopp, H. L., Bristow, J. W., Logan, C. T., Eales, H. V. & Erlank, A. J. (1984): Rb-Sr geochronology of three Karoo-related intrusive complexes. In: Erlank, A J. (ed.): Special Publications of the Geological Society of South Africa 13: 281-287.
- Amaral, G., Bushee, J., Cordani, U. G., Kawashita, K. & Reynolds, J. H. (1967): Potassium-argon ages of alkaline rocks from southern Brazil. *Geochimica et Cosmochimica Acta* 31: 117-142.
- Araujo, A. L. N., Carlson, R. W., Gaspar, J. C. & Bizzi, L. A. (2001): Petrology of kamafugites and kimberlites from the Alto Paranaíba Alkaline Province, Minas Gerais, *Contributions to Mineralogy and Petrology* **142**: 163-177.
- Arth, J. G. (1976): Behaviour of trace elements during magmatic processes a summary of theoretical models and their applications. *Journal of Research of the U. S. Geological Survey* **4**: 41-47.
- Austin, J. A. & Uchupi, E. (1982): Continental-oceanic crustal transition of southwest Africa. *AAPG Bulletin* **66**: 1328-1347.
- Bauer, K., Neben, S., Schreckenberger, B., Emmermann, R., Hinz, K., Fechern, N., Gohl, K., Schulze, A., Trumbull, R. B. & Weber, K. (2000): Deep structure of the Namibia continental margin as derived from integrated geophysical studies-the MAMBA experiment. *Journal of Geophysical Research* **105**: 25,829-25,853.
- Basei, M. A. S. (1985): O cinturão Dom Feliciano em Santa Caterina. *Ph.D. Thesis, University of São Paulo*.
- Bates, R. L. & Jackson, J. A. (1987): Glossary of Geology. *American Geological Institute*. *Alexandria, Virginia*.
- Beattie, P. (1993): The effect of partial melting of spinel peridotite on uranium series disequilibria: constraints from partitioning studies. *Earth and Planetary Science Letters* **177**: 379-391.
- Bellieni, G., Comin-Chiaramonti, P., Marques, L. S., Melfi, A. J., Piccirillo, E. M., Nardy, A. J. R. & Roisenberg, A. (1984): High- and low-Ti flood basalts from the Paraná plateau (Brazil): petrology and geochemical aspects bearing on their mantle origin. *Neues Jahrbuch für Mineralogie Abhandlungen* **150**: 272-306.

- Bellieni, G., Comin-Chiaramonti, P., Marques, L. S., Melfi, A. J., Nardy, A. J. R., Papatrechas, C., Piccirillo, E. M., Roisenberg, A. & Stolfa, D. (1986): Petrogenetic aspects of acid and basaltic lavas from the Paraná plateau (Brazil): mineralogical and petrochemical aspects. *Journal of Petrology* 27: 915-944.
- Birck, J.-L., Roy-Barman, M. & Copmas, F. (1997): Re-Os isotopic measurements at the femtomole level in nature samples. *Geostandards Newsletters* **20**: 19-27.
- Bizzi, L. A. (1993): Mesozoic alkaline volcanism and mantle evolution of the southwestern São Francisco Craton, Brazil. *Ph.D. Thesis, University of Cape Town*.
- Brauns, C. M. (2001): A rapid, low-blank technique for the extraction of osmium from geological samples. *Chemical Geology* **176**: 379-384.
- Brümmer, O., Berg, U., Cobet, U., Däbritz, S., Dworzak, G., Küchler, L., Röder, A., Siegel, U. & Wendt, M. (1977): Mikroanalyse mit Elektronen- und Ionensonden. *VEB Verlag für Grundstoffindustrie, Leipzig*.
- Bühn, B., Okrusch, M., Woermann, E., Lehnert, K. & Hoernes, S. (1995): Metamorphic evolution of the Neoproterozoic manganese formations and their country rocks at Otjosondu, Namibia. *Journal of Petrology* **36**: 463-496.
- Carlson, R. W. (1984): Isotopic constraints on Columbia River flood basalt genesis and the nature of the subcontinental mantle. *Geochimica et Cosmochimica Acta* **48**: 2357-2372.
- Carlson, R. W. & Irving, A. J. (1994): Depletion and enrichment history of subcontinental lithospheric mantle: an Os, Sr, Nd and Pb isotopic study of ultramafic xenoliths from the northwestern Wyoming Craton. *Earth and Planetary Sciences Letters* **126**: 457-472.
- Carlson, R. W., Esperanca, S. & Svisero, D. P. (1996): Chemical and Os isotopic study of Cretaceous potassic rocks from Southern Brazil. *Contributions to Mineralogy and Petrology* **125**: 393-405.
- Cerrai, E. & Testa, C. (1963): Separation of rare earths by means of small columns of Kel–F supporting Di (2–ethylhexyl) orthophosphoric acid. *Journal of Inorganic and Nuclear Chemistry* **25**: 1045-1050.
- Cloos (1911): Geologische Beobachtungen in Südafrika II. Geologie des Erongo im Hererolande. *Beiträge zur geologischen Erforschung der deutschen Schutzgebiete* **3**: 84 pp.
- Cloos, H. (1919): Der Erongo: Ein vulkanisches Massiv im Tafelgebirge des Hererolandes und seine Bedeutung für die Raumfrage plutonischer Massen. Beiträge zur geologischen Erforschung der deutschen Schutzgebiete 17.
- Collins, W. J., Beams, S. D., White, A. J. R. & Chappell, B. W. (1982): Nature and origin of A-type granites with particular reference to southeast Australia. *Contributions to Mineralogy and Petrology* **80**: 189-200.
- Compston, W., Williams, I. S. & Meyer, C. (1984): U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. *Journal of Geophysical Research Suppl.* **89**: B525-B534.
- Cordani, U. G., & Vandoros, P. (1967): Basaltic rocks of the Paraná basin. In: Bigarella, J. J., Becker, R. D. & Pinto, J. D. (eds.): *Problems in Brazilian Gondwana Geology*: 207-231.
- Cordani, U. G., Civetta, L., Mantovani, M. S. M., Petrini, R., Kawashita, K., Hawkesworth, C. J., Taylor, P. N., Longinelli, A., Cavazini, G. & Piccirillo, E. M. (1988): Isotope

- geochemistry of flood volcanics from the Paraná basin (Brazil). In: Piccirillo, E. M. & Melfi, A. J. (eds.): *The Mesozoic Flood Volcanism of the Paraná Basin: Petrogenetic and Geophysical Aspects, IAG-USP, São Paulo*: 157-178.
- Cox, K. G. (1988): The Karoo Province. In: McDougall, J. D. (ed.): Continental Flood Basalts. Kluwer: 239-271.
- Cross, W., Iddings, J. P., Pirsson, L. V. & Washington, H. S. (1903): Quantitative classification of igneous rocks. *University Chicago Press*.
- Courtillot, V., Féraud, G., Maluski, H., Vandamme, D., Moreau, M. G. & Besse, J. (1988): Deccan flood basalts and the Cretaceous/Tertiary boundary. *Nature* **333**:843-846.
- Dalrymple, G. B. & Lanphere, M. A. (1974): ⁴⁰Ar/³⁹Ar age spectra of some undisturbed terrestrial samples. *Geochimica et Cosmochimica Acta* **38**: 715-738.
- Debon, F. & Le Fort, P. (1982): A chemical-mineralogical classification of common plutonic rocks and associations. *Transactions of the Royal Society of Edinburgh, Earth Sciences* **73**: 135-149.
- DePaolo, D. J. & Wasserburg, G. J. (1976): Nd isotopic variations and petrogenetic models. *Geophysical Research Letters* **4**: 465-468.
- DePaolo, D. J. (1981): Trace element and isotopic effects of combined wallrock assimilation and fractional crystallization. *Earth and Planetary Sciences Letters* **53**: 189-202.
- DePaolo, D. J. (1988): Neodymium isotope geochemistry: An introduction. *Springer Verlag, New York.*
- Dickson, J. E. & Hess, P. C. (1982): Zircon saturation in lunar basalts and granites. *Earth and Planetary Sciences Letters* **57**: 336-344.
- Diehl, M. (1990): Geology, mineralogy, geochemistry and hydrothermal alteration of the Brandberg alkaline complex, Namibia. *Geological Survey of Namibia, Memoir* 10: 1-55.
- Droop, G. T. R. (1987): A general equation for estimating Fe³⁺ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. *Mineralogical Magazine* **51**: 431-435.
- Dulski, P. (2001): Reference Materials for Geochemical Studies: New Analytical Data by ICP-MS and Critical Discussion of Reference Values. *Geostandards Newsletters* **25**: 87-125.
- Duncan, R. A. & Pyle, D. G. (1988): Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary. *Nature* **333**: 841-843.
- Duncan, A. R., Newton, S. R., Van den Berg, C. & Reid, D. L. (1989): Geochemistry and petrology of dolerite sills in the Huab River valley, Damaraland, north western Namibia. *Communications of the Geological Survey of Namibia* **5**: 5-18.
- Duncan, A. R., Armstrong, R. A., Erlank, A. J., Marsh, J. S. & Watkins, R. T. (1990): MORB-related dolerites associated with the final phase of Karoo flood basalt volcanism in southern Africa. In: Parker, A. J., Rickwood, P. C. & Tucker, D. H. (eds.): *Mafic dykes and emplacement mechanisms. A. A. Balkema, Rotterdam*: 119-129.
- Duncan, R.A., Hooper, P. R., Rehacek, J., Marsh, J. S. & Duncan, A. R. (1997): The timing and duration of the Karoo igneous event, southern Gondwana. *Journal of Geophysical Research* **102**: 18,127-18,138.

- Dunn, T. (1987): Partitioning of Hf, Lu, Ti and Mn between olivine, clinopyroxene and basaltic liquid. *Contributions to Mineralogy and Petrology* **96**: 476-484.
- Dunn, T. & Sen, C. (1994): Mineral / matrix partition coefficients for orthopyroxene, plagioclase, and olivine in basaltic to andesitic systems: a combined analytical and experimental study. *Geochimica et Cosmochimica Acta* **58**: 717-733.
- Eiler, J. M. (2001): Oxygen isotope variations of basaltic lavas and upper mantle rocks. In: Valley, J. W. & Cole, D. R. (eds.): *Stable Isotope Geochemistry, Mineralogical Society of America Reviews in Mineralogy and Geochemistry* **43**: 319-364.
- Ellam, R. M. (1992): Lithospheric thickness as a control on basalt geochemistry. *Geology* **20**: 153-156.
- Elliot, D. H. (1992): Jurassic magmatism and tectonism associated with Gondwanaland break-up: an Antarctic perspective. In: Storey, B. C., Alabaster, T. and Pankhurst, R. J. (eds.): *Magmatism and the Causes of Continental break-up. Special Publication-Geological Society of London* **68**: 165-184.
- Emmermann, R. (1979): Aufbau und Entstehung des Erongo-Komplexes. In: Blümel, W. D., Emmermann, R. & Hüser, K. (eds.): *Der Erongo. Geowissenschaftliche Beschreibung und Deutung eines südwestafrikanischen Vulkankomplexes. Windhoek: Southwest African Scientific Society* 16: 16-53.
- Erlank, A. J., Marsh, J. S., Duncan, A. R., Miller, R. M., Hawkesworth, C. J., Betton, P. J. & Rex, D. C. (1984): Geochemistry and petrogenesis of Etendeka volcanic rocks from SWA/Namibia. In: Erlank, A. J. (ed).: *Petrogenesis of volcanic rocks of the Karoo Province. Special Publication-Geological Society of South Africa* 13: 195-247.
- Esser, B. K., Turekian, K. K. (1993): The osmium isotopic composition of the continental crust. *Geochimica et Cosmochimica Acta* **57**: 3093-3104.
- Ewart, A., Milner, S. C., Armstrong, R. A. & Duncan, A. R. (1998a): Etendeka volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part 1 Geochemical evidence of Early Cretaceous Tristan plume melts and the role of crustal contamination in the Paraná-Etendeka CFB. *Journal of Petrology* **39**: 191-225.
- Ewart, A., Milner, S. C., Armstrong, R. A. & Duncan, A. R. (1998b): Etendeka Volcanism of the Goboboseb Mountains and Messum Igneous Complex, Namibia. Part II: Voluminous Quartz Latite Volcanism of the Awahab Magma System. *Journal of Petrology* **39**: 227-253.
- Falloon, T. J., Green, D. H., Hatton, C. J. & Harris, K. L. (1988): Anhydrous partial melting of a fertile and depleted peridotite from 2 to 30 kb and application to basalt petrogenesis. *Journal of Petrology* **29**: 1257-1282.Faure, G. (1986): Principles of isotope geology. *John Wiley & Sons, Inc., New York*.
- Fitch, F. J. & Miller, J. A. (1984): Dating Karoo igneous rocks by conventional K-Ar and ⁴⁰Ar/³⁹Ar age spectrum methods. In: Erlank, A J. (ed.): *Petrogenesis of volcanic rocks of the Karoo Province. Special Publication-Geological Society of South Africa* **13**: 247-266.
- Fodor, R. V., Corwin, C., Sial, A. N. (1985): Crustal signatures in the Serra Geral flood basalt province, southern Brazil: O- and Sr-isotope evidence. *Geology* **13**: 763-765.
- Frindt, S., Trumbull, R. B. & Romer, R. L. (in press): Petrogenesis of the Gross Spitzkoppe topaz granite, central western Namibia: a geochemical and Nd–Sr–Pb isotope study. *Chemical Geology*.

- Gallagher, K. & Hawkesworth, C. J. (1992): Dehydration melting and the generation of continental flood basalts. *Nature* **358**: 57-59.
- Gallagher, K., Hawkesworth, C. J. & Mantovani, M. S. M. (1994): The denudation history of the onshore continental margin of SE Brazil inferred from apatite fission track data. *Journal of Geophysical Research* **99**:18,117-18,145.
- Garland, F., Hawkesworth, C. J. & Mantovani, M. S. M. (1995): Discription and petrogenesis of the Paraná rzhyolites (sic), southern Brazil. *Journal of Petrology* **36**: 1193-1227.
- Garland, F., Turner, S. & Hawkesworth, C. (1996): Shifts in the source of the Paraná basalts through time. *Lithos* **37**: 223-243.
- Gibson, S. A., Thompson, R. N., Leonardos, O. H., Dickin, A. P. & Mitchell, J. G. (1995): The late Cretaceous impact of the Trinidade mantle plume: evidence from large-volume, mafic, potassic magmatism in SE Brazil. *Journal of Petrology* **36**: 189-229.
- Gibson, S. A., Thompson, R. N., Dickin, A. P. & Leonardos, O. H. (1996): High-Ti and low-Ti mafic potassic magmas: Key to plume-lithosphere interactions and continental flood basalt genesis. *Earth and Planetary Sciences Letters* **141**: 325-341.
- Gibson, S. A., Thompson, R. N., Leonardos, O. H., Dickin, A. P. & Mitchell, J. G. (1999): The limited extent of plume-lithosphere interactions during continental flood-basalt genesis: geochemical evidence from Cretaceous magmatism in southern Brazil. *Contributions to Mineralogy and Petrology* **137**: 147-169.
- Gibson, S. A., Thompson, R. N. & Dickin, A. P. (2000): Ferropicrites: geochemical evidence for Fe-rich streaks in upwelling mantle plumes. *Earth and Planetary Sciences Letters* **174**: 355-374.
- Gladczenko, T. P., Hinz, K., Eldholm, O., Meyer, H., Neben, S. & Skojseid, J. (1997): South Atlantic volcanic margins. *Journal of the Geological Society (London)* **154/3**: 465-470.
- Govindaraju, K. (1994): 1994 compilation of working values and sample description for 383 geostandards. *Geostandards Newsletters* **18**: 158 pp.
- Govindaraju, K. (1995): 1995 working values with confidence limits for twenty-six CRPG, ANRT and IWG-GIT geostandards. *Geostandards Newletters* **19**: 32 pp.
- Haack, U., Hoefs, J. & Gohn, E. (1982): Constraints on the origin of Damaran granites by Rb/Sr and & O data. *Contributions to Mineralogy and Petrology* **79**: 279-289.
- Haase, K. M. (1996): The relationship between the age of the lithosphere and the composition of oceanic magmas: constraints on partial melting, mantle sources and the thermal structure of the plates. *Earth and Planetary Sciences Letters* **144**: 75-92.
- Hahne, K., Vietor, T., Trumbull, R. and Kaufmann, H. (2001): Remote sensing studies of dike distribution in the Cretaceous Henties Bay–Outjo Dike swarm, NW Namibia. *International Dike Conference 4, Itala Game Reserve, South Africa, June 26.- 29 2001*.
- Halliday, A. N., Lee, D., Tommasini, S., Davies, G. R., Paslick, C. R., Fitton, J. G. & James, D. E. (1995): Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. *Earth and Planetary Science Letters* **133**: 379-395.
- Harris, C., Smith, H. S., Milner, S. C., Erlank, A. J., Duncan, A. R., Marsh, J. S. & Ikin, N. P. (1989): Oxygen isotope geochemistry of the Mesozoic volcanics of the Etendeka Formation, Namibia. *Contributions to Mineralogy and Petrology* **102**: 454-461.

- Harris, C., Whittingham, A. M., Milner, S. C. & Armstrong, R. A. (1990): Oxygen isotope geochemistry of the silicia volcanic rocks of the Etendeka-Paraná province: source constraints. *Geology* **18**: 1119-1121.
- Harris, C. (1995): Oxygen isotope geochemistry of the Mesozoic anorogenic complexes of Damaraland, northwest Namibia: evidence for crustal contamination and its effect on silica saturation. *Contributions to Mineralogy and Petrology* **122**: 308-321.
- Harris, C., Marsh, J. S. & Milner, S. C. (1999): Petrology of the alkaline core of the Messum igneous complex, Namibia: evidence for the progressively decreasing effect of crustal contamination. *Journal of Petrology* **40**: 1377-1397.
- Harris, C., Smith, H. S. & Le Roex, A. P. (2000): Oxygen isotope composition of phenocrysts from Tristan da Cunha and Gough Island lavas: Variation with fractional crystallization and evidence for assimilation. *Contributions to Mineralogy and Petrology* **138**: 164-175.
- Hart, S. R., Hauri, E. H., Oschmann, L. A. & Whitehead, J. A. (1992): Mantle plumes and entrainment: isotopic evidence. *Science* **256**: 517-520.
- Hart, S. R. & Dunn, T. (1993): Experimental cpx / melt partitioning of 24 trace elements. *Contributions to Mineralogy and Petrology* **113**: 1-8.
- Hartmann, O., Hoffer, E. & Haack, U. (1983): Regional metamorphism in the Damara orogen: interaction of crustal motion and heat transfer. *Special Publication-Geological Society of South Africa* 11: 233-241.
- Hawkesworth, C. J. & Vollmer, R. (1979): Crustal contamination versus enriched mantle: ¹⁴³Nd/¹⁴⁴Nd and ⁸⁷Sr/⁸⁶Sr evidence from italian volcanics. *Contributions to Mineralogy and Petrology* **69**: 151-169.
- Hawkesworth, C. J., Erlank, A. J., Marsh, J. S., Menzies, A. and Van Calsteren, P. W. C. (1983): Evolution of the continental lithosphere: evidence from volcanics and xenoliths in Southern Africa. In: Hawkesworth, C. J. and Norry, M. J. (eds.): *Continental basalts and mantle xenoliths. Nantwich, Shiva*: 111-138.
- Hawkesworth, C. J., Rogers, N. W., Van Calsteren, P. W. C. and Menzies, M. A. (1984): Mantle enrichment processes. *Nature* **311**: 331-335.
- Hawkesworth, C. J., Mantovani. M. S. M. & Peate, D. W. (1988): Lithosphere remobilisation during Paraná CFB magmatism. In: Menzies, M. A. & Cox, K. (eds.): *Oceanic and Continental Lithosphere; Similarities and Differences, Journal of Petrology, Oxford*: 205-223.
- Hawkesworth, C. J., Kempton, P. D., Rogers, N. W., Ellam, R. M. & Van Calsteren, P. W. C. (1990): Continental mantle lithosphere, and shallow enrichment processes in the Earth's mantle. *Earth and Planetary Sciences Letters* **96**: 265-268.
- Hawkesworth, C. J., Gallagher, K., Kelley, S., Mantovani, M. S. M., Peate, D. W., Regelous, M. & Rogers, N. W. (1992): Parana magmatism and the opening of the South Atlantic.
 In: Storey; B. C., Alabaster, T & Pankhurst, R. J. (eds.): Magmatism and the Causes of Continental Break-up. Geological Society Special Publications 68: 221-240.
- Hawkesworth, C. J., Gallagher, K., Kirstein, L., Mantovani, M. S. M., Peate, D. W. & Turner, S. P. (2000): Tectonic controls on magmatism associated with continental break-up: an example from the Paraná-Etendeka Province. *Earth and Planetary Sciences Letters* **179**: 335-349.

- Hegenberger, W. (1988): Karoo sediments of the Erongo Mountains, their environmental setting and correlation. *Communications of the Geological Survey of South West Africa/Namibia* **4**: 51-57.
- Hergt, J. M., Peate, D. W. & Hawkesworth, C. J. (1991): The petrogenesis of Mesozoic Gondwana low-Ti flood basalts. *Earth and Planetary Sciences Letters* **105**: 134-148.
- Hoffbauer, R., Sichler, M. & Hoernes, S. (1990): Die Sauerstoff- und Kohlenstoff-Isotopie von Karbonatparagenesen im Damara Orogen (Namibia). *European Journal of Mineralogy* 2: 105.
- Hofmann, A. W. (1997): Mantle geochemistry: the message from oceanic volcanism. *Nature* **385**: 219-229.
- Hoffmann, K. H. (1983): Lithostratigraphy and facies of the Swakop Group of the Southern Damara Belt, SWA/Namibia. *Special Publication-Geological Society of South Africa*, **11**: 43-63.
- Horsthemke, E., Ledendecker, S. & Porada, H. (1990): Depositional Environments and Stratigraphic Correlation of the Karoo Sequence in northwestern Damaraland. *Communications of the Geological Survey of Namibia* **6**: 63-73.
- Irvine, T. N. & Baragar, W. R. A. (1971): A guide to the chemical classification of the common rocks. *Canadian Journal of Earth Sciences* **8**: 523-548.
- Jaques, A.L. & Green, D.H. (1980): Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeitic basalts. *Contributions to Mineralogy and Petrology* **73**: 287-310.
- Jung, S., Mezger, K., Masberg, P., Hoffer, E. & Hoernes, S. (1998a): Petrology of an intrusion-related high-grade migmatite-implications for partial melting of metasedimentary rocks and leucosome-forming processes. *Journal of Metamorphic Geology* **16**: 425-445.
- Jung, S., Mezger, K. & Hoernes, S. (1998b): Petrology and geochemistry of syn- to post-collisional metaluminous A-type granites-a major and trace element and Nd-Sr-Pb-O-isotope study from the Proterozoic Damara Belt, Namibia. *Lithos* **45**:147-175.
- Jung, S., Hoernes, S., Mezger, K. (2000): Geochronology and petrology of migmatites from the Proterozoic Damara Belt-importance of the episodic fluid-persent disequilibrium melting and consequences for granite petrology. *Lithos* **51**: 153-179.
- Kelemen, P. B., Shimizu, N. & Dunn, T. (1993): Relative depletion of niobium in some arc magmas and the continental crust; partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. *Earth and Planetary Science Letters* **120**: 111-134.
- Kennedy, A. K., Lofgren, G. E. & Wasserburg, G. J. (1993): An experimental study of trace element partitioning between olivine, orthopyroxene and melt in chondrules: equilibrium values and kinetic effects. *Earth and Planetary Science Letters* **115**: 177-195.
- Kinzler, R. J. & Grove, T. L. (1992): Primary magmas of mid-ocean ridge basalts 1. Experiments and methods. *Journal of Geophysical Research* **97**: 6885-6905.
- Kirstein, L. A., Kelley, S., Hawkesworth, C., Turner, S., Mantovani, M., Wijbrans, J. (2001): Protracted felsic magmatic activity associated with the opening of the South Atlantic. *Journal of the Geological Society (London)* **158**: 583-592.

- Klein, E. M. & Langmuir, C. H. (1987): Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. *Journal of Geophysical Research* **92**: 8089-8115.
- Korn, H. & Martin, H. (1954): The Messum Igneous Complex in South West Africa. *Transactions Geological Society South Africa* **57**: 83-124.
- Kramers, J. D., Roddick, J. C. M. & Dawson, J. B. (1983): Trace element and isotope studies on veined, metasomatic and "MARID" xenoliths from Bultfontein, South Africa. *Earth and Planetary Science Letters* **65**: 90-106.
- Kravuchuk, I. K., Chernysheva, I. & Urosov, S. (1981): Element distribution between plagioclase and groundmass as an indicator for crystallization conditions of the basalts in the southern vent of Tolbachik. *Geochemistry International* 17: 18-24.
- Kuenher, S. M., Laughlin, J. R., Grossman, L., Johnson, M. L. & Burnett, D. S. (1989): Determination of trace element mineral/liquid partition coefficients in melitite and diopside by ion and electron microprobe techniques. *Geochimica et Cosmochimica Acta* 53: 3115-3130.
- Kushiro, I. (1968): Composition of magmas formed by partial zone melting of the Earth's mantle. *Journal of Geophysical Research* **73**: 619-634.
- Kushiro, I. (1990): Partial melting of a mantle wedge and evolution of island arc crust. *Journal of Geophysical Research* **95**: 15,929-15,939.
- Kushiro, I. (1996): Partial melting of a fertile mantle peridotite at high pressure: an experimental study using aggregates of diamond: In: Basu, A. and Hart, S. (eds.): *Earth Processes: Reading the Isotopic Clock, American Geophysical Union Geophysical Monograph* **95**: 109-122.
- Lanphere, M. A. & Dalrymple, G. B. (1971): A test of the ⁴⁰Ar/³⁹Ar age spectrum technique on some terrestrial materials. *Earth and Planetary Sciences Letters* **12**: 359-372.
- Lee, D. C., Halliday, A. N., Davies, G. R., Essene, E. J., Fitton, J. G. & Temdjim, R. (1996): Melt enrichment of shallow depleted mantle: a detailed petrological, trace element and isotopic study of mantle derived xenoliths and megacrysts from the Cameroon line. *Journal of Petrology* 37: 415-441.
- Le Maitre (1981): GENMIX; a generalized petrological mixing model program. *Computers and Geosciences* 7: 229-247.
- Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Wooley, A. R. & Zanettin, B. (1989): A classification of igneous rocks and glossary of terms. *Blackwell, Oxford*.
- Le Roex, A. P. (1985): Geochemistry, mineralogy and magmatic evolution of the basaltic and trachytic lavas from Gough Island, South Atlantic. *Journal of Petrology* **26**: 149-186.
- Le Roex, A. P., Cliff, R. A. & Adair, B. J. I. (1990): Tristan da Cunha, South Atlantic: Geochemistry and petrogenesis of a basanite-phonolite lava series. *Journal of Petrology* **31**: 779-812.
- Le Roex, A. P. & Lanyon, R. (1998): Isotope and Trace Element Geochemistry of Cretaceous Damaraland Lamprophyres and Carbonatites, Northwestern Namibia: Evidence for Plume-Lithosphere Interactions. *Journal of Petrology* **39**: 1117-1146.
- Mahoney, J. J. (1988): Deccan traps. In: MacDougall, J. D. (ed.): *Continental Flood Basalts. Kluwer. Dordrecht*: 151-194.

- Mantovani, M. S. M., Marques, L. S., De Sousa, M. A., Civetta, L., Atalla, L. & Innocenti, F. (1985): Trace element and strontium isotope constraints on the origin and evolution of Paraná continental flood basalts of Santa Catarina state, southern Brazil. *Journal of Petrology* **26**: 187-209.
- Marsh, J. S., Ewart, A., Milner, S. C. & Miller, R. McG. (2001): The Etendeka Igneous Province: magma types and their stratigraphic distribution with implications for the Paraná-Etendeka flood basalt province. *Bulletin of Volcanology* **62**: 464-486.
- Martin, H., Mathias, M. & Simpson, E. S. W. (1960): The Damaraland sub-volcanic ring complexes in South West Africa. *Report of the International Geological Congress XXI Session* **13**: 156-174.
- Martinez, I. A., Harris, C., Le Roex, A. P., Milner, S. C. (1996): Oxygen isotope evidene for extensive crustal contamination in the Okenyenya complex, Namibia. *Geochimica et Cosmochimica Acta* **60**: 4497-4508.
- Masberg, H. P., Hoffer, E. & Hoernes, S. (1992): Microfabrics indicating granulite-facies metamorphism in the low-pressure central Damara Orogen, Namibia. *Precambrian Research* **55**: 243-257.
- May, S. E. (1990): Pan-African magmatism and regional tectonics of South Brazil. *Ph. D. Thesis, The Open University, Milton Keynes, UK*.
- McDermott, F. & Hawkesworth, C. J. (1990): Intracrustal recycling and upper-crustal evolution: A case study from the Pan-African Damara mobile belt, central Namibia. *Chemical Geology* **83**: 263-280.
- McDermott, F., Harris, N. B. W. & Hawkesworth, C. J. (1996): Geochemical constraints on crustal anatexis: a case study from the Pan-African granitoids of Namibia. *Contributions to Mineralogy and Petrology* **123**: 406-423.
- McKenzie, D. & O'Nions, R. K. (1991): Partial melt distributions from inversion of rare Earth element concentrations. *Journal of Petrology* **32**: 1021-1091.
- McNeill, G. W. (1989): A geochemical study of three Namibian igneous complexes. *BSc. Hons. project (unpublished), University St. Andrews*: 57pp.
- Miller, R. McG. (1983): The pan-African Damaran orogen of the South West Africa/Namibia. In: Miller, R. McG. (ed.): *Special Publications of the Geological Society of South Africa* 11: 431-515.
- Milner, S. C., Le Roex, A. P. & Watkins, R. T. (1993): Rb-Sr- age determinations of rocks from the Okenyenya igneous complex, northwestern Namibia. *Geological Magazine* **130**: 335-343.
- Milner, S. C., Duncan, A. R., Whittingham, A. M. & Ewart, A. (1995a): Trans-Atlantic correlation of eruptive sequences and individual silicic units within the Paraná-Etendeka igneous province. *Journal of Volcanology and Geothermal Research* **69**: 137-157.
- Milner, S. C., Le Roex, A. P. & O'Connor, J. M. (1995b): Age of Mesozoic igneous rocks in northwestern Namibia, and their relationship to continental breakup. *Journal of the Geological Society (London)* **152**: 97-104.
- Milner, S. C. & Le Roex, A. P. (1996): Isotope characteristics of the Okenyenya igneous complex, Northwestern Namibia: constraints on the composition of the early Tristan

- plume and the origin of the EM1 mantle component. *Earth and Planetary Sciences Letters* **141**: 277-291.
- Milner, S. C. (ed.), (1997): Geological map of Namibia (1:250,000). Sheet 2114-Omaruru. *Geological Survey of Namibia*.
- Mingram, B., Trumbull, R. B., Littmann, S. & Gerstenberger, H. (2000): A petrogenetic study of anorogenic felsic magmatism in the Cretaceous Paresis ring complex, Namibia: evidence for crust-mantle hybridization. *Lithos* **54**: 1-22.
- Molzahn, M., Reisberg, L. & Wörner, G. (1996): Os, Sr, Nd, Pb, O isotope and trace element data from the Ferrar flood basalts, Anarctica: evidence for an enriched subcontinental lithospheric source. *Earth and Planetary Sciences Letters* **144**: 529-546.
- Morgan, W. J. (1981): Hotspot tracks and the opening of the Atlantic and Indian Ocean. In: Emiliani, C. (ed.): *The Sea. Wiley, New York* 7: 443-487.
- Morgan, J. W., Horan, M. F., Walker, R. J. & Grossmann, J. N. (1995): Rhenium-osmium concentration and isotope systematics in group IIAB iron meteorites. *Geochimica et Cosmochimica Acta* **59**: 2331-2344.
- O'Connor, J. M. & Le Roex, A. P. (1992): South Atlantic hot spot-plume systems: 1. Distribution of volcanism in time and space. *Earth and Planetary Sciences Letters* **113**: 343-364.
- Paces, J. B. & Miller, J. D. (1993): Precise U-Pb ages of the Duluth Complex and related mafic intrusions, northeastern Minnesota; geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagnetic processes associated with the 1.1 Ga Midcontinent Rift System. *Journal of Geophysical Research* 98: 13997-14013.
- Paster, T. P, Schauwecher, D. S. & Haskin, L. A. (1974): The behaviour of some trace elements during solidification of the Skaergaard layered series. *Geochimica et Cosmochimica Acta* **38**: 1549-1577.
- Patel, S. (1988): The Petrology of the Alkali Intrusive Rocks from the Erongo Volcanic Complex. BSc. Hons. project (unpublished), Rhodes University, Grahamstown, South Africa.
- Pearson, D. G., Carlson, R. W., Shirey, S. B., Boyd, F. R. & Nixon, P. H. (1995a): Stabilisation of Archean lithospheric mantle: A Re-Os isotope study of peridotite xenoliths from the Kaapvaal craton. *Earth and Planetary Sciences Letters* **134**: 341-357
- Pearson, D. G., Meyer, H. A. O., Boyd, F. R., Shirey, S. B. & Carlson, R.W. (1995b): Re-Os evidence for later Archean stabilization of a thick lithospheric mantle keel beneath the Kirkland Lake area, Superior Province, Canada. Further evidence for long-term crust-mantle coupling. *Kimberlite Conference Novosibirsk*, 6th: 427-429.
- Pearson, D. G., Shirey, S. B., Carlson, R. W., Boyd, F. R. & Pokhilenko, N. P. (1995c): Re-Os, Sm-Nd, and Rb-Sr isotope evidence for thick Archean lithospheric mantle beneath the Siberian craton modified by multistage metasomatism. *Geochimica et Cosmochimica Acta* **59**: 959-977.
- Peate, D. W. (1990): Stratigraphy and petrogenesis of the Paraná continental flood basalts, southern Brazil. *Ph.D. thesis, The Open University, Milton Keynes*.

- Peate, D. W., Hawkesworth, C. J. & Mantovani, M. S. M. (1992): Chemical stratigraphy of the Paraná lavas (South America): classification of the magma types and their spatial distribution. *Bulletin of Volcanology* **55**: 119-139.
- Peate, D. W. & Hawkesworth, C. J. (1996): Lithospheric to astenospheric transition in Low-Ti flood basalts from southern Paraná, Brazil. *Chemical Geology* **127**: 1-24.
- Peate, D. W. (1997): The Paraná-Etendeka Province. In: Mahoney, J. J. & Coffin, M. F. (eds.): Large igneous provinces: continental, oceanic, and planetary flood volcanism. Geophysical Monograph 100: 217-245.
- Peate, D. W., Hawkesworth, C. J., Mantovani, M. M. S., Rogers, N. W. & Turner, S. P. (1999): Petrogenesis and Stratigraphy of the High-Ti/Y Urubici Magma Type in the Paraná Flood Basalt Province and Implications for the Nature of 'Dupal'-Type Mantle in the South Atlantic Region. *Journal of Petrology* **40**: 451-473.
- Peng, Z. X. & Mahoney, J. J. (1995): Drillhole lavas from the northwestern Deccan Traps, and the evolution of Réunion hotspot. *Earth and Planetary Sciences Letters* **134**: 169-185.
- Petrini, R., Civetta, L., Piccirillo, E. M., Bellieni, G., Comin-Chiaramonti, P., Marques, L. S. and Melfi, A. J. (1987): Mantle heterogeneity and crustal contamination in the genesis of low-Ti continental flood basalts from the Paraná Plateau (Brazil): Sr-Nd isotope and geochemical evidence. *Journal of Petrology* **28**: 701-726.
- Piccirillo, E. M., Melfi, A. J., Comin-Chiaramonti, P., Bellieni, G., Ernesto, M., Marques, L. S., Nardy, A. J. R., Pacca, I. G., Roisenberg, A. & Stolfa, D. (1988): Continental flood volcanism from the Paraná basin (Brazil). In: McDougall, J. D. (ed.): *Continental Flood Basalts, Kluwer*: 195-238.
- Pirajno, F. & Schlögl, H. U. (1987): The alteration-mineralization of the Krantzberg tungsten deposit, South West Africa/Namibia. *South African Journal of Geology* **90**: 499-508.
- Pirajno, F. (1990): Geology, geochemistry and mineralisation of the Erongo Volcanic complex, Namibia. *South African Journal of Geology* **93**: 485-504.
- Pirajno, F., Phillips, D. & Armstrong, A. (2000): Volcanology and eruptive histories of the Erongo volcanic complex and the Paresis igneous complex, Namibia: Implications for mineral deposit styles. *Communications of the Geological Survey of Namibia* 12: 301-312.
- Plessen, H. G., Rothe, H., Zimmer, M. & Erzinger, J. (1994): In: Govindaraju, K., Potts, P. J., Webb, P. C. & Watson, J. S. (eds.): Report on Whin Sill Dolerite WS-E from England and Pitscurrie Microgabbro PM-S from Scotland: assessment by one hundred and four international laboratories. *Geostandard Newsletters* **18**: 211-300.
- Porada, H., Ahrendt, H., Behr, H. J. & Weber, K. (1983): The join of the coastal and intracontinental branches of the Damara Orogen, Namibia, South West Africa. In: Martin, H. & Eder, F. W. (eds.): *Intracontinental fold belts. Springer-Verlag*: 901-912.
- Pouchou, J. L. & Pichoir, F. (1987): Basic expressions of 'PAP' computations for quantitative EPMA. In: Brown, J. D. & Packwood, R. M. (eds.): *Proceedings of the 11th ICXOM*: 249-253.
- Puhan, D. (1983): Temperature and pressure of metamorphism in the Central Damara orogen. *Special Publication-Geological Society of South Africa* **11**: 219-223.

- Ramo, O. T. (1991): Petrogenesis of the Proterozoic rapakivi granites and related basic rocks of southeastern Fennoscandia: Nd and Pb isotopic and general constraints: *Bulletin-Geological Survey of Finland* **355**: 161pp.
- Renne, P. R., Ernesto, M., Pacca, I.G., Coe, R. S., Glen, J. M., Prévot, M. & Perrin, M. (1992): The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. *Science* **258**: 975-979.
- Renne, P. R., Deckart, K., Ernesto, M., Féraud, G. & Piccirillo, E. M. (1996a): Age of the Ponta Grossa dike swarm (Brazil), and implications to Paraná flood volcanism. *Earth and Planetary Sciences Letters* **144**: 199-212.
- Renne, P. R., Glen, J. M., Milner, S. C. & Duncan, A. R. (1996b): Age of the Etendeka flood volcanism and associated intrusions in southwestern Africa. *Geology* **24**: 659-662.
- Renne, P. R., Swisher, C. C., Deino, A. L., Karner, D. B., Owens, T. L. & DePaolo, D. J. (1998): Intercalibration of standards, absolute ages and uncertainties in ⁴⁰Ar/³⁹Ar dating. *Chemical Geology* **145**:117-152.
- Richards, M. A., Duncan, R. A. & Courtillot, V. (1989): Flood basalts and hotspot tracks: plume head and tails. *Science* **246**: 103-107.
- Richardson, S. H., Erlank, A. J., Duncan, A. R. & Reid, D. L. (1982): Correlated Nd, Sr and Pb isotope variation in Walvis Ridge basalts and implications for the evolution of their mantle source. *Earth and Planetary Sciences Letters* **59**: 327-342.
- Roeder, P. L. & Emslie, R. F. (1970): Olivin-liquid equilibrium. *Contributions to Mineralogy and Petrology* **29**: 275-289.
- Romer, R. L., Förster, H.-J. & Breitkreuz, Chr. (2001): Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). *Contributions to Mineralogy and Petrology* **141**: 201-221.
- Roy-Barman, M. & Allègre, C. J. (1995): ¹⁸⁷Os/¹⁸⁶Os in oceanic island basalts: tracing oceanic crust recycling in the mantle. *Earth and Planetary Sciences Letters* **129**: 145-161.
- Samson, S. D., Alexander, E. C. Jr. (1987): Calibration of the interlaboratory ⁴⁰Ar/³⁹Ar dating standard, MMhb-1. *Chemical Geology* **66**: 27-34.
- Sanudo-Wilhelmy, S. A. & Flegal, A. R. (1994): Temporal variations in lead concentrations and isotopic composition in the Southern California Bight. *Geochimica et Cosmochimica Acta* **58**: 3315-3320.
- Scarrow, J. H. & Cox, K. G. (1995): Basalts generated by decompressive adiabatic melting of a mantle plume: a case study from the Isle of Skye, NW Scotland. *Journal of Petrology* **36**: 3-22.
- Schmitt, A. K., Emmermann, R., Trumbull, R. B., Bühn, B., Henjes-Kunst, F. (2000): Petrogenesis and ⁴⁰Ar/³⁹Ar geochronology of the Brandberg Complex, Namibia: evidence for a major mantle contribution in metaluminous and peralkaline granites. *Journal of Petrology* **41**: 1207-1239.
- Schmitt, A. K., Lindsay, J. M., De Silva, S. & Trumbull, R. B. (2002): U-Pb zircon chronostratigraphy of early-Pliocene ignimbrites from La Pacana, north Chile: implications for the formation of stratified magma chambers. *Journal of Volcanology and Geothermal Research* **120**: 43-53.

- Shen, J. J., Papanastassiou, D. A. & Wasserburg, G. J. (1996): Precise Re-Os determinations and systematics of iron meteorites. *Geochimica et Cosmochimica Acta* **60**: 2887-2900.
- Shimizu, N. & Kushiro, I. (1975): The partitioning of rare Earth elements between garnet and liquid at high pressures: preliminary experiments. *Geophysical Research Letters* **2**: 413-416.
- Shirey, S. B. & Walker, R. J. (1995): Carius tube digestion for low blank rhenium-osmium analysis. *Analytical Chemistry* **67**: 2136-2141.
- Shirey, S. B. & Walker, R. J. (1998): The Re-Os isotope system in cosmochemistry and high-temperature geochemistry. *Annual Review of Earth and Planetary Sciences* **26**: 423-500.
- Siedner, G. & Mitchell, J. G. (1976): Episodic mesozoic volcanism in Namibia and Brazil: A K-Ar-isochron study bearing on the opening of the south Atlantic. *Earth and Planetary Sciences Letters* **30**: 292-302.
- Sisson, T.W. (1991): Pyroxene-high silica rhyolite trace element partition coefficients measured by ion microprobe. *Geochimica et Cosmochimica Acta* **55**: 1575-1585.
- Smoliar, M. I., Walker, R. J., Morgan, J. W. (1996): Re-Os ages of Group IIA, IIIA, IVA, and IVB iron meteorites. *Science* **271**: 1099-1102.
- Sonoki, I. K. & Garda, G. M. (1988): K-Ar ages of alkaline rocks from Brazil and Paraguay: compilation and adaptation to the new decay constants (in Portuguese). *Boletim IG Universidade de Sao Paulo, Instituto de Geociencias* **19**: 63-85.
- Stewart, K., Turner, S., Kelley, S., Hawkesworth, C., Kirsten, L. & Mantovani, M. (1996): 3 D, ⁴⁰Ar-³⁹Ar- geochronology in the Paraná continental flood basalt province. *Earth and Planetary Sciences Letters* **143**: 95-109.
- Sun, S.-s. & McDonough, W. F. (1989): Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A. D. & Norry, M. J. (eds.): Magmatism in the Ocean Basins. *Geological Society Special Publication* **42**: 313-345.
- Sweeney, R. J. & Watkeys, M. K. (1990): A possible link between Mesozoic lithospheric architecture and Gondwana flood basalts. *Journal of African Earth Sciences* **10**: 707-716.
- Takahashi, E. & Kushiro, I. (1983): Melting of a dry peridotite at high pressures and basalt magma genesis. *American Mineralogist* **68**: 859-879.
- Taylor, H. P. (1980): The effects of assimilation of country rocks by magmas on ¹⁸O/¹⁶O and ⁸⁷Sr/⁸⁶Sr systematics in igneous rocks. *Earth and Planetary Sciences Letters* **47**: 243-254.
- Taylor, S. R. & McLennan, S. M. (1985): The Continental Crust: Its Composition and Evolution. *Blackwell, Cambridge, Massachusetts*: 312 pp.
- Thompson, R. N., Morrison, M. A., Hendry, G. L. & Parry, S. J. (1984): An assessment of the relative roles of the crust and mantle in magma genesis: an elemental approach. *Philosophical Transactions of the Royal Society of London A* **310**: 549-590.
- Trumbull, R. B., Emmermann, R., Bühn, B., Gerstenberger, H., Mingram, B., Schmitt, A. & Volker, F. (2000): Insights on the genesis of the Cretaceous Damaraland igneous complexes in Namibia from a Nd- and Sr- isotopic perspective. *Communications of the Geological Survey of Namibia* 12: 313-324.

- Trumbull, R. B., Bühn, B., Romer, R. L. Volker, F. (2003): The petrology of the Basanite-Tephrite Intrusions in the Erongo Complex and Implications for a Plume Origin of the Cretaceous Alkaline Complexes in Namibia. *Journal of Petrology* **44**: 93-111.
- Trumbull, R. B., Harris, C., Frindt, S. & Wigand, M. (in press): Oxygen and neodymium isotope evidence for source diversity in Cretaceous anorogenic granites from Namibia and implications for A-type granite genesis. *Lithos*.
- Turner, S. P. & Hawkesworth, C. J. (1995): The nature of the sub-continental mantle: constraints from the major-element composition of the continental flood basalts. *Chemical Geology* **120**: 295-314.
- Turner, S. P., Hawkesworth, C. J., Gallagher, K., Stewart, K., Peate, D. & Mantovani, M. S. M. (1996): Mantle plumes, flood basalts, and thermal models for melt generation beneath continents: Assessment of a conductive heating model and application to the Paraná. *Journal of Geophysical Research* 101: 11,503-11,518.
- Turner, S. P., Peate, D. W., Hawkesworth, C. J. Mantovani, M. S. M. (1999): Chemical stratigraphy of the Paraná basalt succession in western Uruguay: further evidence for the diachronous nature of the Paraná magma types. *Journal of Geodynamics* **28**: 459-469
- Venkatesan; T. R., Pande, K. & Gopalan, K. (1993): Did Deccan volcanism predate the Cretaceous/Tertiary transition? *Earth and Planetary Sciences Letters* **119**: 181-189.
- Villa; I. M., Ruggieri, G. & Puxeddu, M. (1997): Petrological and geochronological discrimination of two white-mica generations in a granite cored from the Larderello-Travale geothermal field (Italy). *European Journal of Mineralogy* **9**: 563-568.
- Villa, I. M., Hermann, J., Müntener, O. & Tromsdorff, V. (2000): ³⁹Ar-⁴⁰Ar dating of multiply zoned amphibole generations (Malenco, Italian Alps). *Contributions to Mineralogy and Petrology* **140**: 363-381.
- Vietor, T., Ameglio, L., Wigand, M., Trumbull, R., Wetzel, H. U. (2002): Constraints on the emplacement mechanisms and 3D structure of the Erongo Magmatic Complex: new geophysical, geochemical and remote sensing data. *Geocongress* 2002, 22-26. *July*, 2002, Windhoek, Abstract CD unpaginated.
- Walker, R. J., Morgan, J. W., Horan, M. F., Czamanske, G. F., Krogstad, E. J., Fedorrenko, V. & Kunilov, V. E. (1994): Re-Os isotopic evidence for an enriched-mantle source for the Noril'sk-type ore bearing intrusion, Siberia. *Geochimica et Cosmochimica Acta* 58: 4179-4197.
- Watkins, R. T., McDougall, I. & Le Roex, A. P. (1994): K-Ar ages of the Brandberg and the Okenyenya igneous complexes, north-western Namibia. *Geologische Rundschau* **83**: 348-356.
- Watson, E. B. (1979): Zircon saturation in felsic liquids: experimental data and applications to trace element geochemistry. *Contributions to Mineralogy and Petrology* **70**: 407-419.
- Watson, E. B. & Harrison, T. M. (1983): Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. *Earth and Planetary Sciences Letters* **64**: 295-304.
- Watson, E. B., Ben Othman, D., Luck, J. M. & Hofmann, A. W. (1987): Partitioning of U, Pb, Cs, Yb, Hf, Re and Os between chromian diopsidic pyroxene and haplobasaltic liquid. *Chemical Geology* **62**: 191-208.

- Weaver, B. L. (1991): Trace element evidence for the origin of ocean-island basalts. *Geology* **19**: 123-126.
- Whalen, J. B., Currie, K. L., Chappell, B. W. (1987): A-type granites: geochemical characteristics, discrimination and petrogenesis. *Contributions to Mineralogy and Petrology* **95**: 407-419.
- White, R. S. & McKenzie, D. P. (1989): Magmatism at rift zones. The generation of volcanic continental margins and flood basalts. *Journal of Geophysical Research* **94**: 7685-7729.
- White, R. S. & McKenzie, D. P. (1995): Mantle plumes and flood basalts. *Journal of Geophysical Research* **100**: 17,543-17,585.
- Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., von Quadt, A., Roddick, J. C. & Spiegel, W. (1995): Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. *Geostandards Newsletters* **91**: 1-23.
- Wigand, M., Schmitt, A. K., Trumbull, R. B., Villa, I. M. & Emmermann, R. (in press): Short-lived magmatic activity in an anorogenic subvolcanic complex: ⁴⁰Ar/³⁹Ar and ion microprobe U-Pb zircon dating of the Erongo, Damaraland, Namibia. *Journal of Volcanology and Geothermal Research*.
- Wilson, M. (1989): Igneous petrogenesis. Academic Division of Unwin Hyman Ltd, London.
- Wilson, M. (1992): Magmatism and continental rifting during the opening of the South Atlantic Ocean: a consequence of Lower Cretaceous super-plume activity? In: Storey, B. C., Alabaster, T & Pankhurst, R. J. (eds.): *Magmatism and the Causes of Continental Break-up. Geological Society Special Publications* **68**: 241-255.
- Wyllie, P. J. (1975): The Earth's Mantle. In: Decker, R. & Decker B. (eds.): *Volcanoes and the Earth's Interior. Scientific American Inc.*: 86-97.
- Yuen, D. A. & Fleitout, L. (1985): Thinning of lithosphere by smallscale convective destabilisation. *Nature* **313**: 125-128.
- Zindler, A. & Hart, S. R. (1986): Chemical geodynamics. *Annual Review of Earth and Planetary Sciences* **14**: 493-571.
- Zindler, A. & Jagoutz, E. (1988): Mantle cryptology. *Geochimica et Cosmochimica* **52**: 319-333.

Abbildungsverzeichnis

Abbildung 2.1.1	Modifizierte schematische Darstellung (nach Peate, 1997) der Paraná-Etendeka-Flutbasalt-Provinz in Verbindung mit dem Paraná-Sedimentbecken4
Abbildung 2.2.1	Spiderdiagramm der Paraná-Etendeka-Flutbasalte (MgO > 4,5 Gew%) normiert auf die Werte des primitiven Mantels (Sun & Mc Donough, 1989)9
Abbildung 2.2.2	87 Sr/ 86 Sr _i versus $\varepsilon_{Nd(i)}$ -Diagramm der "low Ti"- und "high Ti"-Basalte und Rhyodazite der Paraná-Etendeka-Provinz
Abbildung 2.2.3	Spiderdiagramm der Paraná-Etendeka-Rhyodazite
Abbildung 2.3.1	Ausschnitt einer schematisierten geologischen Karte von Namibia (modifiziert nach Diehl, 1990)14
Abbildung 3.1	Vereinfachte geologische Karte des Erongo-Komplexes17
Abbildung 3.2	Schematisches Profil des Erongo-Komplexes (modifiziert nach Milner, 1997)18
Abbildung 3.3	Aeromagnetische Karte des Erongo-Komplexes (Quelle: Geological Survey of Namibia)
Abbildung 4.1.1	TAS-Diagramm (Le Maitre et al., 1989) der Magmatite des Erongo-Komplexes22
Abbildung 4.1.2	Variationsdiagramme der Vulkanite und Plutonite des Erongo-Komplexes23
Abbildung 4.2.1	Normatives (CIPW) Diopsid (Di)-Olivin (Ol)-Hypersthen (Hy)-Nephelin (Ne)-Quarz (Q)-Diagramm der Basisbasalte, Gangdolerite und Alkalibasalte des Erongo-Komplexes24
Abbildung 4.2.2	Variationsdiagramme der Basisbasalte, in denen verschiedene Hauptelemente gegen MgO aufgetragen sind25
Abbildung 4.2.3	Korrelation der Spurenelementverhältnisse der Basisbasalte im Vergleich mit den "low Ti"- und "high Ti"-Flutbasalten der Paraná-Etendeka-Provinz26
Abbildung 4.2.4	Spiderdiagramm wenig differenzierter (MgO: 6-8 Gew%) Basisbasalte im Vergleich mit "low Ti"- und "high Ti"-Flutbasalten der Paraná-Etendeka-Provinz27
Abbildung 4.2.5	SEE-Diagramm der Basisbasalte im Vergleich mit "low Ti"- und "high Ti"-Flutbasalten der Paraná-Etendeka-Provinz27
Abbildung 4.2.6	Variationsdiagramme der Gangdolerite im Vergleich mit den Basisbasalten, in denen verschiedene Hauptelemente gegen MgO aufgetragen sind28
Abbildung 4.2.7	Spurenelementvariationen der Gangdolerite im Vergleich mit den Basisbasalten mit MgO als Variationsindex
Abbildung 4.2.8	SEE-Diagramm wenig differenzierter Gangdolerite (MgO-Gehalte: 6-8 Gew%)30
Abbildung 4.2.9	Spiderdiagramm wenig differenzierter Gangdolerite im Vergleich mit Basisbasalten des gleichen Differentiationsgrades (MgO-Gehalte zwischen 6 und 8 Gew%)
Abbildung 4.2.10	Variationsdiagramme der Alkalibasalte des Erongokomplexes31
Abbildung 4.2.11 A & B	Spiderdiagramme der alkalibasaltischen Gangintrusiva des Erongo- Komplexes33
Abbildung 4.2.12 A & B	SEE-Diagramme der Basanite und Tephrite der alkalibasaltischen Gänge des Erongo- Komplexes34
Abbildung 4.2.13	B versus A-Diagramm der sauren Magmatite des Erongo-Komplexes nach Debon & Le Fort (1982)35
Abbildung 4.2.14	Spiderdiagramme der sauren Magmatite des Erongo-Komplexes36
Abbildung 4.2.15	SEE-Diagramme der sauren Magmatite des Erongo-Komplexes37
Abbildung 4.3.1	87 Sr/ 86 Sr _{130 Ma} vs. ε_{Nd} (130 Ma)-Diagramm der Magmatite des Erongo-Komplexes39

Abbildungsverzeichnis

Abbildung 4.3.2 A & B	²⁰⁶ Pb/ ²⁰⁴ Pb vs. ²⁰⁷ Pb/ ²⁰⁴ Pb _{130 Ma} - und ²⁰⁶ Pb/ ²⁰⁴ Pb vs. ²⁰⁸ Pb/ ²⁰⁴ Pb _{130 Ma} -Diagramm der Magmatite des Erongo-Komplexes
Abbildung 4.5.1 A & B	Ti/Zr vs. Ti/Y- & Ti/Zr vs. Zr/Y-Diagramm. Vergleich der Basisbasalte und Gangdolerite mit den Paraná-Etendeka-Flutbasalten44
Abbildung 4.5.2	Vergleich der Erongorus-Rhyodazite mit den "low Ti"- und "high Ti"-Rhyodaziten anhand inkompatibler Spurenelemente und deren Verhältnisse46
Abbildung 5.1.1 A-F	Altersspektren und ³⁹ Ar/ ⁴⁰ Ar vs. ³⁶ Ar/ ⁴⁰ Ar-Diagramme der Biotite (391) und Phlogopite (432 & 435) des Ombu-Granodiorits und der Alkalimagmatite des Erongo-Komplexes
Abbildung 5.1.2 A-F	Altersspektren und ³⁹ Ar/ ⁴⁰ Ar vs. ³⁶ Ar/ ⁴⁰ Ar-Diagramme der Biotite (212 & 454) des Erongo-Granits
Abbildung 5.2.1	Konkordia-Diagramm (²⁰⁷ Pb/ ²³⁵ U versus ²⁰⁶ Pb/ ²³⁸ U) des Erongorus-Rhyodazits (Probe 467) und des Ekuta-Rhyoliths (Probe 469) und des Ombu-Granodiorits (Probe 460) und des Erongo-Granits (Probe 454)53
Abbildung 5.2.2 A-J	Kathodolumineszenz- (D, E, H, I) und Sekundärelektronen-Aufnahmen (A, B, C, F, G, J) von Zirkonen des Erongorus-Rhyodazits, Ekuta-Rhyoliths, Ombu-Granodiorits und Erongo-Granits54
Abbildung 6.1.1	Mg-# vs. ⁸⁷ Sr/ ⁸⁶ Sr _{130 Ma} -Diagramm der basaltischen Magmatite des Erongo- Komplexes
Abbildung 6.1.2	La/Nb vs. ⁸⁷ Sr/ ⁸⁶ Sr _{130 Ma} -Diagramm der Magmatite des Erongo-Komplexes58
Abbildung 6.1.3 A & B	(A): Mg -# (Gesamtgestein) vs. % Forsterit (Olivin) von Basisbasalten mit MgO -Gehalten >10 Gew% und der Etendeka-Ferropikrite (Gibson et al., 2000). Mg -# = $100 * Mg / (Mg + Fe^{2+})$.(B): Zusammensetzung der Pyroxene der Basisbasalte und Etendeka-Ferropikrite (Gibson et al., 2000)60
Abbildung 6.1.4 A & B	AFC- (6.1.4 A) und Mischungsmodelle (6.1.4 B) zur Charakterisierung der krustalen Kontamination der Basisbasalte des Erongo-Komplexes62
Abbildung 6.1.5 A & B	AFC- (6.1.5 A) und Mischungsmodelle (6.1.5 B) zur Charakterisierung der krustalen Kontamination der Gangdolerite des Erongo-Komplexes63
Abbildung 6.1.6 A & B	Variations diagramme $Si_{8,0}$ vs. $Fe^*_{8,0}$ und $Fe^*_{8,0}$ vs. $Na_{8,0}$
Abbildung 6.1.7 A & B	Variationsdiagramme ²⁰⁶ Pb/ ²⁰⁴ Pb (130 Ma) vs. ¹⁴³ Nd/ ¹⁴⁴ Nd (130 Ma) und ²⁰⁶ Pb/ ²⁰⁴ Pb (130 Ma) vs. ⁸⁷ Sr/ ⁸⁶ Sr (130 Ma)67
Abbildung 6.2.1	Sr vs. Ba- (oben) und Sr vs. Rb- (unten) Diagramme der sauren Magmatite des Erongo-Komplexes
Abbildung 6.2.2 A & B	ε_{Nd} vs. $\delta^{l8}O$ - bzw. $\delta^{l8}O$ vs. $^{87}Sr/^{86}Sr_{130\ Ma}$ -Mischungsdiagramm der Magmatite der Damaraland-Intrusivkomplexe und der Awahab-Rhyodazite
Abbildung 6.3.1	Intrusionskontakt zwischen Ombu-Rhyodazit und den Alkalibasaltgängen im nördlichen Teil des Erongo-Komplexes79
Abbildung 6.3.2	Bildungsalter mantel- und krustengenerierter Magmatite der Etendeka-

Tabellenverzeichnis

Tabellenverzeichnis

Tabelle 2.2.1	Geochemische Merkmale der Paraná-Etendeka-Flutbasalte nach Peate et al. (1992), Erlandet al. (1984) & Marsh et al. (2001)
Tabelle 2.2.2	Geochemische Korrelationen zwischen den Paraná- und Etendeka-Rhyodaziten (modifizier nach Marsh et al. (2001))
Tabelle 2.2.3	Haupt- und Spurenelementeigenschaften der "low Ti"- und "high Ti"-Paraná-Etendeka Rhyodazite12
Tabelle 2.3.1	Zusammensetzung der wichtigsten Damaraland-Komplexe15
Tabelle 4.1.1	Gesteinsbezeichnung der Magmatite des Erongo-Komplexes21
Tabelle 4.2.1	SEE-Daten der Alkalibasalte des Erongo-Komplexes32
Tabelle 4.2.2	Spurenelementverhältnisse der sauren Magmatite des Erongo-Komplexes36
Tabelle 4.4.1	Durchschnittliche Zusammensetzung der Fe-Ti-Oxide der basaltischen Gesteine de. Erongo-Komplexes43
Tabelle 5.2.1	U- & Th-Gehalte [ppm], U/Th-Verhältnisse und ²⁰⁶ Pb/ ²³⁸ U-, ²⁰⁷ Pb/ ²³⁵ U- & ²⁰⁷ Pb/ ²⁰⁶ Pb-Alterdes Erongorus-Rhyodazits und des Ekuta-Rhyoliths55
Tabelle 5.2.2	U- & Th-Gehalte [ppm], U/Th-Verhältnisse und ²⁰⁶ Pb/ ²³⁸ U-, ²⁰⁷ Pb/ ²³⁵ U- & ²⁰⁷ Pb/ ²⁰⁶ Pb-Alter des Ombu-Granodiorits und des Erongo-Granits50
Tabelle 6.1.1	$^{187}Os/^{188}Os$ und γ_{Os} verschiedener Mantel- und Krustenreservoire68
Tabelle 6.2.1	Ergebnisse der Bilanzierung der Hauptelementzusammensetzung nach dem Verfahren der kleinsten Fehlerquadrate (Le Maitre, 1981; Albarède, 1995)72
Tabelle 6.3.1	Bildungsalter der wichtigsten Damaraland-Komplexe78

A 1 Untersuchungsmethoden und analytische Grundlagen

Probencharakteristik

Probennahme. Im Sommer 1999 und 2000 wurden im Laufe von zwei Geländeaufenthalten insgesamt 305 Gesteinsproben genommen. Die Geländearbeiten erstreckten sich über einen Zeitraum von ca. 3 Monaten. Alle kartierbaren Einheiten, die sowohl basische als auch saure Magmatite umfassten, wurden beprobt. Als Grundlage diente die geologische Karte SHEET 2114-OMARURU (Milner, 1997). Der Schwerpunkt der Beprobung lag auf den basischen Gesteinen des Erongo-Komplexes. Von den zu datierenden Gesteinen wurden Großproben (ca. 25 kg) genommen, die als Grundlage für die Datierung dieser Gesteinseinheiten mittels radiogener Isotope dienten.

Dünn- und Anschliffe. Für die petrographische Begutachtung wurden insgesamt 141 Dünnschliffe angefertigt. Der Alterationsgrad der einzelnen Proben wurde mittels mikroskopischen Untersuchungen abgeschätzt. Proben mit geringer Alteration wurden daraufhin zur Mineralseparation und geochemischen Analysen ausgewählt. Polierte Dünnund Anschliffe bildeten weiterhin die Grundlage zur Bestimmung der Zusammensetzung der Mineralphasen mittels Elektronenstrahlmikrosonde.

Probenaufbereitung. Die Aufbereitung der Gesteinsproben begann mit der Entfernung der Alterationskruste mittels Hammer oder Diamantsäge. Hiernach erfolgte die Vorzerkleinerung in einem Backenbrecher (FRITSCH Pulverisette 1) auf Splittkorngrößen kleiner 1 cm. Für Gesamtgesteinsanalysen wurde mittels der Methode des Probenviertelns eine repräsentative Probenmenge von etwa 90 g separiert, die anschließend in einer Planetenmühle (RETSCH PM 400) nahezu analysenfein aufgemahlen wurde. Abschließend wurde das so erhaltene Probenpulver durch ein Gazesieb (Maschenweite 62 μm) gesiebt.

Zur Mineralseparation wurde das < 1 cm gebrochene Material in einer Walzenmühle (670-01-506, KHD HUMBOLDT WEDAG AG) aufgemahlen. Diese Mahltechnik lieferte einen hohen Aufschlussgrad und einen geringen Feinkornanteil. Der Mahlvorgang wurde insgesamt fünf- bis zehnmal unter ständiger Verringerung der Spaltbreite wiederholt. Nach jedem Mahlvorgang wurde mit einem Labor-Vibrationssieb (FRITSCH Analysette 3) die Feinkornfraktion >200 μ m abgesiebt.

Die gesiebte Korngrößenfraktion von 125-200 µm wurde mit Magnetscheider (FRANTZ MAGNETIC BARRIER SEPARATOR MODEL LB-1) von anderen Mineralen (z.B. Feldspat) getrennt. Das in der magnetischen Fraktion gewonnene Glimmerkonzentrat (Reinheitsgrad > 90 %) wurde anschließend unter dem Stereomikroskop nochmals gereinigt, indem Glimmerblättchen mit erkennbar chloritisierten Bereichen entfernt wurden. Die abschließende Behandlung der Glimmerpräparate mit Äthanol im Ultraschallbad diente dazu, anhaftende Staubpartikel zu entfernen.

Zirkon wurde aus der Kornfraktion kleiner 500 µm gewonnen. Eine Voranreicherung der Schwerminerale erfolgte auf einem Wilfley-Nassschütteltisch (672-14-001, KHD HUMBOLDT WEDAG AG-Schnellstoßherd). An die Nassschütteltisch-Trennung schlossen sich wiederholte Feinaufbereitungen im Magnetscheider (FRANTZ MAGNETIC BARRIER SEPARATOR MODEL LB-1) an. Das abschließende manuelle Auslesen der Zirkone erfolgte aus der unmagnetischen Fraktion unter dem Stereomikroskop (ZEISS STEMI SV11).

i

Zur Gewinnung der Fe-Ti-Oxid-Separate für die Re/Os-Analytik wurde das Probenmaterial zunächst in einer Achatscheibenschwingmühle (FRITSCH PULVERISETTE 9 Typ I/II) analysenfein (<62 μ m) gemahlen. Zum Abtrennen der Fe-Ti-Oxidkristalle wurde aus ca. 30 g des Probenpulvers und ca. ½ 1 entionisiertem Wasser (Millipore, 18 M Ω Widerstand) in einem dünnwandigen Polyethylengefäß, das mit Magnetfolie umkleidet war, eine Suspension hergestellt. Nach ca. 5 Minuten Verweildauer der Suspension im Polyethylengefäß wurde der nicht magnetische Teil dekantiert. Mit dem magnetischen Teil der Suspension wurde diese Prozedur solange wiederholt, bis keine unmagnetischen Anteile mehr beobachtet werden konnten.

Bestimmung der Haupt- und Spurenelemente

Röntgenfluoreszenzanalyse (RFA). Die Bestimmung der Haupt- und Spurenelemente vollautomatischen computergesteuerten wellenlängendispersiven erfolgte Röntgenfluoreszenz-Spektrometern der Firmen Siemens (Typ SR 303 AS) und Philips (Typ PW 2400). Hierbei wurden zwei Messprogramme verwendet, in denen die Bestimmung der Elementkonzentrationen an Kalibrierkurven erfolgte. Diese Kalibrierkurven wurden jeweils durch Messung von über 40 internationalen Referenzgesteinen aufgestellt (Govindaraju, 1994). Als Quelle für die polychromatische Röntgenstrahlung diente an beiden Geräten eine Rh-Röntgenröhre. Die Messung erfolgte an Schmelztabletten. Zur Herstellung der Schmelztabletten wurde 1 g analysenfeines (< 62 µm) Probenpulver mit 6 g Spectromelt A12 der Firma Merck in einem Platintiegel bei ca. 1200 °C 10 min erhitzt. Die H2O- und CO2-Gehalte wurden mit einem vollautomatischen Infrarot-Spektrometer LECO RC-412 bestimmt. Die Haupt- und Spurenelemente wurden mehrmals in unabhängig voneinander durchgeführten Messreihen bestimmt. Die relative Standardabweichung war bei den Hauptelementen kleiner als 2 % und bei den Spurenelementen kleiner als 10 %.

Massenspektrometer mit induktiv gekoppeltem Plasma (ICP-MS). Spurenelementanalysen stand ein sequentielles Massenspektrometer mit induktiv gekoppeltem Plasma (ICP-MS) (VG Plasma Quad PQ²⁺ & Perkin Elmer ELAN 5000A) zur Berücksichtigung Verfügung. Unter der mikroskopischen röntgenfluoreszenzspektrometrischen Ergebnisse sind von allen Gesteinstypen repräsentative Proben für die ICP-MS Analyse ausgewählt worden. 250 mg des analysenfeinen Probenpulvers wurden mittels eines HF-Königswasser-HClO₄-Aufschluss in Lösung gebracht. Das Säuregemisch für den ersten Aufschlussschritt bestand aus 4 ml HF (37 % Baker ULTREX II) und 4 ml Königswasser (3 Teile 37 %ige HCl (Baker ULTREX II) und 1 Teil 63 %ige HNO3 (Baker ULTREX II)). Nach 14 stündiger Dauer wurde 1 ml HClO4 (70 % Baker ULTREX II) hinzugefügt und die Lösung fast bis zur Trockne bei 180 °C eingedampft. Der Eindampfschritt wurde mit 1 ml HNO3 und 2 ml deionisiertem Wasser wiederholt und 1 ml HNO₃ und 5 ml deionisiertes Wasser hinzugefügt. Diese Lösung wurde anschließend bei 100 °C 14 Stunden lang erhitzt und nach dem Abkühlen auf 50 ml in einem Messkolben aufgefüllt. Jede Probe wurde mit einer Gesamtverdünnung von 1:2000 unabhängig voneinander vier mal auf folgende Elemente hin analysiert: Selten-Erdelemente (SEE), Hf, Sc, Ta, U, Nb, Pb, Th, U, Li, Cs und Sn.

Aus diesen Wiederholungsmessungen der einzelnen Elemente wurde der Mittelwert gebildet. Die Teilnahme an einer Ringanalyse unbekannter Proben (Plessen et al., 1994) bestätigt die Richtigkeit und Genauigkeit der Methode, die ständig mit internationalen Standards überprüft wird. Der Fehler der Methode ist in der Regel kleiner als 10 %.

Tabelle A1: Relative Standardabweichung (%) der gemessenen Spurenelemente zu den Referenzwerten der Standards BE-N (3) (Govindaraju, 1995) und BCR-1 (5) (Govindaraju, 1994) (Tabelle nach Dulski, 2001).

	В	E-N (3) (Govindaraju,	1995)	BCR-1 (5) (Govindaraju, 1994)			
	Messwert	Relative Standard- abweichung (%)	Referenzwert	Messwert	Relative Standard- abweichung (%)	Referenzwert	
Rb	49,3	0,9	47	47	2,3	47,2	
Sr	1387	5,9	1370	330	0,7	330	
Y	28,6	0,7	30	33,8	1,0	38	
Zr	295	3,3	260	194	3,0	190	
Cs	0,73	2,2	0,8	0,93	1,4	0,96	
Ba	1025	4,1	1025	675	3,8	681	
La	82	2,0	82	24,9	0,9	24,9	
Ce	151	3,3	152	52,6	1,0	53,7	
Pr	17,9	1,9	17,5	7,0	1,8	6,8	
Nd	66	2,4	67	28,1	1,4	28,8	
Sm	11,9	1,2	12,2	6,4	1,5	6,59	
Eu	3,75	1,9	3,6	1,97	1,8	1,95	
Gd	10,5	2,6	9,7	6,86	0,9	6,68	
Tb	1,31	2,0	1,3	1,05	1,9	1,05	
Dy	6,54	1,2	6,4	6,3	1,8	6,34	
Но	1,082	0,6	1,1	1,28	1,9	1,26	
Er	2,60	2,3	2,5	3,63	0,7	3,63	
Tm	0,32	1,3	0,34	0,517	1,8	0,56	
Yb	1,83	3,2	1,8	3,43	2,1	3,38	
Lu	0,264	2,3	0,24	0,502	1,8	0,51	
Hf	6,3	5,8	5,6	5,2	2,1	4,95	
Pb	4,0	2,5	4	13,3	3,8	13,6	
Th	10,6	1,2	10,4	5,96	0,6	5,98	
U	2,49	2,2	2,4	1,65	1,9	1,75	

Zur Ermittlung der SEE-Konzentrationen diente ein HF/HClO₄-Druckaufschlussverfahren. Hierfür wurden ca. 100 mg des analysenfeinen Probenpulvers in einem 1:1-Gemisch aus 3 ml HF (23 Mol 1⁻¹) und 3 ml HClO₄ (12 Mol 1⁻¹) in einem Zeitraum von ca. 16 Stunden bei 180 °C aufgeschlossen. Danach wurde das Säuregemisch bei 170 °C bis fast zur Trockne abgeraucht, der verbleibende Rückstand mit 5 ml HCl (10 Mol 1⁻¹) aufgenommen und anschließend bei 160 °C erneut bis fast zur Trockne eingedampft. Dann wurden wiederum 5 ml HCl (10 Mol 1⁻¹) hinzugefügt und diese Lösung anschließend bei 130 °C 12 Stunden erhitzt. Nach diesem Schritt erfolgte wiederum ein Eindampfen der Lösung bis fast zur Trockne bei 160 °C. Danach wurde der Rückstand mit 2 ml HCl (10 Mol 1⁻¹) und 10 ml milli-Q H₂O versetzt und die Lösung in einen 50 ml Messkolben quantitativ überführt. Zum Schluss wurde die Lösung auf ein Gesamtvolumen von 50 ml mit 0,5 M HCl aufgefüllt.

Als Grundlage für die Präzision der Messungen dienten mehrere Einzelmessungen an internationalen Standards (BE-N & BCR-1). Die relative Standardabweichung von den Werten von Govindaraju (1994) und Govindaraju (1995) ist in Tabelle A1 dargestellt.

Mikrosondenanalytik. Die Mikrosondenuntersuchungen wurden an einer CAMECA SX 100 mit vier wellenlängendispersiven Spektrometern am GeoForschungsZentrum Potsdam durchgeführt. Die quantitative Analyse der Mineralphasen erfolgte mit einem fokussierten Elektronenstrahl von ca. 2-20 μm Durchmesser bei einer Beschleunigungsspannung von 15 kV. Die gemessenen Intensitätsverhältnisse wurden nach dem PAP-Korrekturverfahren (Pouchou & Pichoir, 1987) vollautomatisch computergestützt korrigiert. Die Kalibration erfolgte mittels Mineralstandards von bekannter Zusammensetzung. Die Gleichungen von Brümmer et al. (1977) bildeten die Grundlage für die Berechnung des analytischen Fehlers. Für die Hauptelemente ist der analytische Fehler < 3%. Für Spurenelemente liegt der analytische Fehler im Bereich zwischen 3 und 10%. Die Fe₂O₃- und FeO-Gehalte wurden aus den gemessenen FeO_{tot}-Gehalten rechnerisch nach den Gleichungen von Droop (1987) ermittelt.

Analytik zur Bestimmung der Bildungsalter

⁴⁰Ar/³⁹Ar-Datierung. Die Alter der alkalibasaltischen Stöcke und des Ombu-Granodiorits wurden mit der ⁴⁰Ar/³⁹Ar-Methode ermittelt. Dieses Verfahren hat gegenüber der konventionellen K/Ar-Analyse den Vorteil, dass das ⁴⁰Ar/⁴⁰K-Verhältnis über das ⁴⁰Ar/³⁹Ar-Verhältnis an ein und derselben Teilmenge der Proben aliquot bestimmt wird. Zur Erzeugung von ³⁹Ar (aus ³⁹K) ist eine Bestrahlung im Kernreaktor erforderlich. Die nachfolgenden Gleichungen beschreiben den Zusammenhang zwischen dem aus der Kernreaktion gebildeten ³⁹Ar und dem ³⁹K (nach Faure, 1986).

1.) Gleichung für die Anzahl der Ar-Atome, die bei der Neutronenbestrahlung entstehen:

$$^{39}Ar = ^{39}K\Delta t \int \varphi(\varepsilon)\sigma(\varepsilon)d\varepsilon$$

Zeichenerklärung: ∆t: Dauer der Bestrahlung

 $\varphi(\varepsilon)$: Neutronenflussdichte bei der Energie ε

 $\sigma(\varepsilon)$: Einfangquerschnitt von ³⁹K für Neutronen mit der Energie ε

2.) Gleichung für die Anzahl radiogener ⁴⁰Ar-Atome in Bezug auf den Zerfall von ⁴⁰K:

$$^{40}Ar = \frac{\lambda_e}{\lambda} {}^{40}K(e^{\lambda t} - 1)$$

Zeichenerklärung: λ_e :Zerfallskonstante von ^{40}K für den Elektroneneinfang λ :Zerfallskonstante von ^{40}K

3.) Gleichung für das ⁴⁰Ar/³⁹Ar-Verhältnis nach der Neutronenbestrahlung:

$$\frac{^{40}Ar^*}{^{39}Ar} = \frac{\lambda_e}{\lambda} \frac{^{40}K}{^{39}K} \frac{1}{\Delta t} \frac{e^{\lambda t} - 1}{\int \varphi(\varepsilon)\sigma(\varepsilon)d\varepsilon}$$

Die Gleichung für das ⁴⁰Ar/³⁹Ar-Verhältnis nach der Neutronenbestrahlung enthält Parameter wie z.B. die Neutronenflussdichte und den Neutroneneinfangquerschnitt, die über ein Referenzmaterial (Fluxmonitor) mit bekanntem ⁴⁰Ar*/K ermittelt werden. Dabei ist der J-Wert:

$$J = \frac{\lambda}{\lambda_e} \frac{^{39}K}{^{40}K} \Delta t \int \varphi(\varepsilon) \sigma(\varepsilon) d\varepsilon$$

Experimentell wird der J-Wert durch Bestrahlung des Fluxmonitors unter gleichen Bedingungen wie die zu datierenden Proben bestimmt. Aus dem gemessenen ⁴⁰Ar*/³⁹Ar-Verhältnis des Fluxmonitors kann der J-Wert wie folgt ermittelt werden:

$$J = \frac{e^{\lambda t_m} - 1}{\frac{40}{39} Ar}$$

Zeichenerklärung:

 t_m : $^{40}Ar*/^{39}Ar$:

Alter des Fluxmonitors Gemessenes Isotopenverhältnis des Fluxmonitors

Tabelle A 2: J-Werte

Probenbezeichnung	J-Werte
Phlogopit 432	0,0005311
Kaersutit 435	0,0005291
Biotit 391	0,0005272
Biotit 212	0,0005267
Biotit 454	0,0005256

Die Mineralpräparate wurden zusammen mit einem Fluxmonitor (MMhb-1: "McClure Mountain"-Hornblende; Samson & Alexander, 1987) mit schnellen Neutronen in dem McMasters University Research Reactor (Kanada) über einen Zeitraum von 2 Stunden bestrahlt und danach einige Wochen gelagert, damit kurzlebige Radionuklide zerfallen konnten. Die ermittelten J-Werte für die einzelnen Mineralseparate sind in Tabelle A 2 dargestellt. Die Ar-Extraktion erfolgte nach dem "stepwise heating"-Verfahren. In einem Ta-Tiegel wurde die Probe in insgesamt 9 oder 10 Temperaturstufen in einem elektrischen Widerstandsofen im Temperaturbereich zwischen 500 und 1550°C stufenweise aufgeheizt. Das während der jeweiligen Aufheizungsschritte freigesetzte Ar wurde in einem Reinigungsteil an Zirkon-Aluminiumgettern (SAES-Getter) von reaktiven Gasen befreit. Die Messung der Isotopen mit den Massen 36, 37, 38, 39 und 40 erfolgte an Faraday-Kollektoren eines Edelgasmassenspektrometers (MAPTM 215-50B) an der Universität Bern. Die Korrekturen für Blindwert, Isotopenzerfall, Luftargon, Massendiskriminierung und Interferenzen erfolgten wie in Villa et al. (2000) beschrieben. Die Interferenzfaktoren sind in der nachfolgenden Tabelle A 3 dargestellt.

Tabelle A 3: Interferenzfaktoren (nach Villa et al., 2000)

	Interferenzfaktoren	
$(^{39}Ar/^{37}Ar)_{Ca}$	0,00067	
$(^{38}Ar)^{37}Ar)_{Ca}$	0,00023	
$(^{36}Ar/^{37}Ar)_{Ca}$	0,000255	
$(^{40}Ar/^{39}Ar)_{K}$	0,011	
$(^{38}Ar)^{39}Ar)_{K}$	0,0118	

Berechnung des Plateau-Alters. In der vorliegenden Arbeit wurden die Plateau-Alter aus dem gemittelten ⁴⁰Ar/³⁹Ar-Verhältnis des Plateaubereichs (⁴⁰Ar/³⁹Ar)_P bestimmt.

$$\left(\frac{{}^{40}Ar}{{}^{39}Ar}\right)_{P} = \frac{\sum_{i=1}^{n} W_{i} \times \left(\frac{{}^{40}Ar}{{}^{39}Ar}\right)_{i}}{\sum_{i=1}^{n} W_{i}}$$

$$W_i = \frac{1}{\sigma}$$

Bei den zusätzlich angegebenen Plateau-Altersfehlern (σ_P) handelt es sich um die mittleren quadratischen Fehler des Mittels.

$$\sigma_P = \sqrt{\frac{\sum_{i=1}^{n} \left| \left(\frac{40 Ar}{39 Ar} \right)_i - \left(\frac{40 Ar}{39 Ar} \right)_P \right|^2}{n-1}}$$

Für den Bestrahlungsmonitor MMhb-1 existieren in der Literatur zwei unterschiedliche Alterangaben. Samson & Alexander (1987) zum Beispiel geben für den MMhb-1 ein Alter von 520,4 Ma an, während Renné et al. (1998) die "McClure Mountain"-Hornblende auf 523,1 Ma datierten. Um die ⁴⁰Ar/³⁹Ar-Alter der Magmatite des Erongo-Komplexes mit den bisher beschriebenen ⁴⁰Ar/³⁹Ar-Altern der Paraná-Etendeka-Provinz vergleichen zu können, erfolgte die Berechnung der ⁴⁰Ar/³⁹Ar-Alter einheitlich mit dem Wert von Samson & Alexander (1987) (520,4 Ma).

U-Pb Datierung. Neben den ⁴⁰Ar/³⁹Ar-Datierungen wurden ebenfalls U-Pb-Datierungen an Zirkonen des EAFTs, RHEORs, Erongogranits und Ombu-Granodiorits mit einer hoch auflösenden Ionensonde (CAMECA IMS 1270) in Kooperation mit Dr. A. K. Schmitt (UCLA) durchgeführt. Die Zirkon-Kristalle wurden zuerst auf ihre interne Zonierung und das Vorhandensein von Einschlüssen mittels Kathodolumineszenz (CL) untersucht. Dies erfolgte mittels eines Rasterelektronenmikroskops (Leo 1430 VP) an der UCLA. Dazu wurden polierte Oberflächen der Proben mit ca. 10 nm Au beschichtet. Die Ionisierung erfolgte mit einem massengefilterten 10 nA ¹⁶O-Strahl, der auf einen Durchmesser von 20-25 µm fokussiert wurde. Die Probenkammer der CAMECA IMS 1270 wurde mit O₂ (Druck: ca. 4 x 10⁻³ Pa) geflutet um die Ausbeute an Pb⁺-Ionen um etwa das Doppelte zu erhöhen. Sekundär-Ionen wurden bei 10 kV mit einem Energiespektrum von 35 eV extrahiert. Eine Massenauflösung von ca. 5000 erlaubte es molekulare Interferenzen im betreffenden Massenbereich ($^{94}\mathrm{Zr_2O^+}$, $^{204}\mathrm{Pb^+}$, $^{206}\mathrm{Pb^+}$, $^{207}\mathrm{Pb^+}$, $^{208}\mathrm{Pb^+}$, $^{238}\mathrm{U^+}$, $^{232}\mathrm{Th^{16}O}$, $^{238}\mathrm{U^{16}O}$) aufzulösen. Die relative Empfindlichkeit für Pb und U wurde am Standard-Zirkon AS-3 (1099,1 Ma; Paces & Miller, 1993) nach dem Verfahren von Compston et al. (1984) bestimmt, die Th- und U-Gehalte über die ²³²Th¹⁶O⁺/⁹⁴Zr₂O⁺- und ²³⁸U¹⁶O⁺/⁹⁴Zr₂O⁺-Verhältnisse ermittelt. Als Standard diente der Zirkon 91.500 (Wiedenbeck et al., 1995). Eine Vorlaufzeit von 4 Minuten vor jeder Messung diente dazu, die Au-Bedampfung und oberflächliche Kontamination abzutragen. Nichtradiogenes Pb wurde über die gemessene ²⁰⁴Pb-Intensität korrigiert. Da der überwiegende Teil des nicht-radiogenen Pb auf Oberflächenkontamination zurückzuführen ist, wurden zur Korrektur die anthropogenen ²⁰⁶Pb/²⁰⁴Pb- (18,8) und ²⁰⁷Pb/²⁰⁴Pb-Verhältnisse (15,4) von Sanudo-Wilhelmy und Flegal (1994) verwendet. Weitere Details zum Messverfahren werden in Schmitt et al. (2002) und Wigand et al. (in press) beschrieben.

Isotopenanalytik

Re/Os-Analytik. Die Gehalte an Rhenium und Osmium wurden mittels Isotopenverdünnung am IGL der Justus Liebig Universität Gießen von Dr. M. Brauns bestimmt. Dazu wurde eine homogene Mischung aus Spike und Probe hergestellt. Osmium zeigt die Neigung mit oxidierenden Säuren das flüchtige Osmiumtetroxid zu bilden. Daher wurde die Homogenisierung von Spike und Probe nach dem von Shirey & Walker (1995) vorgeschlagenen "carius tube" Verfahren durchgeführt. Dazu werden bis zu 2 g Probensubstanz mit sog. inversem Königswasser (in dieser Arbeit 1 Teil HCl + 4 Teile HNO₃) in einer Ampulle ("carius tube") aus Pyrexglas eingeschmolzen. Anschließend wird die "carius tube" 2 Tage lang einer Temperatur von 240°C ausgesetzt. Dadurch wird gewährleistet, dass das gesamte Os zum flüchtigen OsO4 oxidiert und eine möglichst homogene Mischung von Spike und Probe hergestellt wird.

Nach Abschluss der Wärmebehandlung in der "carius tube" wird das Os nach dem von Brauns (2001) beschriebenen Verfahren direkt aus der "carius tube" bei ca. 65 °C abdestilliert und in einer Kühlfalle an tiefgekühlter (-60°C) konzentrierter Schwefelsäure kondensiert. Die Kühlfalle wird nach Abschluss der Destillation mit 1 ml 8 N HBr ausgespült. Die so erhaltene Fraktion wird bis zur Trockne eingedampft und abschließend mittels der von Birck et al. (1997) entwickelten Mikrodestillation nachgereinigt.

Re wurde durch Ionenchromatographie (Dovex AG 1X8 / HNO₃-Milieu) abgetrennt und angereichert. Eine Blindwertkorrektur wurde nicht durchgeführt, weil der durchschnittliche Blindwert für Os bei 50 fg und für Re bei 1 pg und somit < 1,5% der jeweiligen Messwerte

lag. Das von Walker et al. (1994) und Morgan et al. (1995) beschriebene Messverfahren diente als Grundlage für die durchgeführten Messungen. Die Isotopenverhältnisse wurden nach diesen Methoden mit N-TIMS (Finnigan MAT 261) gemessen. Zur Bestimmung der Re-Konzentrationen wurden Faraday-Detektoren und für die Os-Konzentrationsbestimmung Ionenzähler im "Peak-jump"-Verfahren verwendet. Die 2σ -"in-run"-Messfehler waren für Re < 0,1 % und für Os < 0,2 %. Die externe Reproduzierbarkeit für Wiederholungsmessungen mit vergleichbaren Gehalten an Re (5 ng) und Os (100 pg) in den jeweiligen Standards liegt bei \pm 0,05 % und \pm 0,2 %. Die 2σ -Gesamtfehler werden für 187 Re/ 188 Os mit \pm 1,3 %, für 187 Os/ 188 Os mit \pm 0,32 %, für Re mit \pm 0,2 % und für Os mit \pm 0,5 % abgeschätzt.

⁸⁷Rb/⁸⁷Sr-Analytik. Die quantitative Bestimmung der Rb- und Sr-Konzentrationen erfolgte mittels eines sequentiellen Massenspektrometers mit induktiv gekoppeltem Plasma (ICP-MS) (VG Plasma Quad PQ²⁺ & Perkin Elmer ELAN 5000A). Zur Bestimmung der Isotopenverhältnisse wurden die Proben in 120 ml Teflongefäßen unter Reinraumbedingungen bei ca. 100°C in einem Gemisch aus HF und HNO₃ (etwa 5:1) aufgeschlossen und anschließend zur Trockne eingedampft.

Tabelle A 4: Isotopenverhältnisse der für die Bestimmung der ⁸⁷Sr/⁸⁶Sr- bzw. ¹⁴³Nd/¹⁴⁴Nd-Verhältnisse verwendeten Standards.

ver wenacien sia	Isotopenverhältnis
NBS SRM 987	87 Sr/ 86 Sr: 0,710267±0,000025 (2 σ -Standardabweichung, Anzahl der Messungen: n = 24)
La Jolla	143 Nd/ 144 Nd: 0,511849±0,000009 (2 σ -Standardabweichung, Anzahl der Messungen: n = 22)

Die Rb- und Sr-Abtrennung erfolgte über ca. 3 cm³ Kationenaustauscherharz (Biorad, AG50Wx8, 200-400 mesh) in Quarzglaskolonnen. Die eingedampfte Aufschlusslösung wurde mit 2 ml 2,5 n HCl aufgenommen, auf die Ionenaustauscherkolonne gegeben und mit 2,5 n HCl eluiert. Alle Proben wurden nach der Einengung in Teflonbechern mit ca. 1 ml 2,5 n HCl aufgenommen und über eine zweite Ionenaustauschertrennung nachgereinigt.

¹⁴⁷Sm/¹⁴⁴Nd-Analytik. Die Probeneinwaage wurde so gewählt, dass etwa eine Menge von 1 μg Nd bei der Säulentrennung zu erwarten war. Als Orientierung für die Einwaage dienten die Sm- und Nd-Konzentrationen der ICP-MS Analysen. Der Säureaufschluss (HF-HNO₃ Mischung 5:1) erfolgte über 3-5 h in geschlossenen 120 ml Teflonbechern auf einer Heizplatte bei ca. 100 °C unter Reinraumbedingungen. Die zur Trockne eingedampften Probenlösungen wurden mit wenigen Tropfen 2,5 n HCl aufgenommen und zentrifugiert, um eventuell entstandene Ausfällungen zu entfernen. Die überstehende Lösung wurde zunächst wie bei der Sr-Trennung auf eine Kolonne mit Kationenaustauscherharz Biorad AG50Wx8-Kolonne (200-400 mesh) gegeben. Die SEE wurden mit 6,2 n HCl eluiert, nachdem zuvor die Alkali- und Erdalkalielemente mit 2,5 n HCl abgetrennt worden waren. Das Eluat wurde eingedampft und zur völligen Entfernung der Harzreste mit wenigen Tropfen HNO₃ Säulentrennungsgang (SUPRAPUR) abgeraucht. Für den zweiten Ionenaustauschersäulen verwendet, die mit HDEHP Di-(2) Ethyl-hexyl-phosphorsäure überzogenem Teflonpulver gefüllt waren (Cerrai & Testa, 1963). Das Teflonpulver wurde durch jeweils 5 mm Dowex-Anionenaustauscherharz eingegrenzt. Als Eluationslösung diente 0,18 n HCl. Bei der Eluierung wurde nur das Nd abgegriffen. Nach dem Eindampfen und Abrauchen mit HNO₃ suprapur waren die Nd-Fraktionen fertig zur massenspektrometrischen Analyse.

Pb-Abtrennung. Zur Pb-Abtrennung wurden 250 mg des analysenfeinen Probenpulvers (< 62 μ m) mittels eines Druckaufschlusses vollständig in Lösung gebracht. Der Aufschluss wurde mit konz. HF in 120 ml Teflonbechern über einen Zeitraum von 48 Stunden bei ca. 100 °C unter Reinraumbedingungen durchgeführt. Nach dem Eindampfen der Probenlösung wurde nach einer Zugabe von ca. 30 ml 6 N HCl die Aufschlussprozedur über einen Zeitraum von ca. 6 Stunden bei ca. 100 °C fortgesetzt. Die Probenlösung wurde danach eingedampft und mit 1 ml 2 N HCl aufgenommen. Anschließend erfolgte die ionenchromatographische Eluierung, wie in Romer et al. (2001) beschrieben, mittels der HCl-HBr-Methode in 0,5 ml Teflon-Kolonnen, die mit dem Ionenaustauscherharz Biorad AG1x8 gefüllt waren.

Massenspektrometrie

Die Bestimmung der isotopischen Zusammensetzung von Nd und Pb erfolgte mit einem (Thermionen)-Feststoffmassenspektrometer MAT 262 der Firma FINNIGAN. Die Messung der Sr-Isotopenverhältnisse erfolgte an einem (Thermionen)-Feststoffmassenspektrometer VG SECTOR 54-30. Für die Messungen wurden etwa 0,5-1 μg Sr auf ein Ta-Heizbändchen und 0,2-0,5 μg Nd auf einem Re-Heizbändchen mit verschiedenen Trägersubstanzen (Sr: 1 m H₃PO₄; Nd: 0,1 m H₃PO₄) aufgetragen. Das als Nitrat vorliegende Sr wurde bei 2,5 A bis zur Rotglut erhitzt und in die Oxidform überführt. Nd wurden bei 2 A schwach geglüht. Für die Bestimmung der Pb-Isotopenverhältnisse wurde die Probensubstanz mit 1 μl H₃PO₄ und 7 μl Silicagel versetzt und auf ein Re-Bändchen aufgetragen. Die Probe wurde danach erst bei 1,5 A kurze Zeit erhitzt und dann bei Stromstärken > 2 A bis zur leichten Rotglut geglüht.

Thermisch generierte Ionen wurden in einem Spannungsfeld mit etwa 10 kV beschleunigt und in einem Sektormagnetfeld analysiert. Der Ionenstrom wurde mittels Faraday-Bechern im Multikollektormodus statisch (Pb) bzw. dynamisch (Nd & Sr) gemessen. Die Ionenerzeugung erfolgte in einer Ionenquelle durch thermische Oberflächenionisation. Für die Messung der Nd-Isotopenverhältnisse wurde eine Zweibandanordnung (zwei gegenüberliegende Re-Heizbändchen) verwendet.

Für die Sr-Messung wurden die Isotope der Massen 88, 87, 86 und 84 dynamisch gemessen. Bei Nd wurden die Isotope 148, 146, 145, 144 und 143 dynamisch erfasst. Um Massenfraktionierungen zu eliminieren, wurden alle gemessenen Nd-Isotopenverhältnisse auf das nicht radiogene ¹⁴⁶Nd/¹⁴⁴Nd-Verhältnis von 0,7219 normiert. Es wurden zehn Messblöcke zu je zehn Einzelmessungen bei stabilen Pilotmassen-Intensitäten (⁸⁸Sr, ¹⁴⁴Nd) durchgeführt. Der Probenstrom für ⁸⁸Sr und ¹⁴⁴Nd lag bei 1 bzw. 7 V.

Die Präzision der Messungen wurde mit mehreren Einzelmessungen an internationalen Referenzsubstanzen NBS SRM 987 (87 Sr/86 Sr), La Jolla (143 Nd/144 Nd) und NBS 981 (Pb-Isotope) überprüft. NBS SRM 987 Sr-Standard lieferte für 24 getrennte Messungen im Zeitraum von Januar 1999 bis Mai 2001 ein mittleres 87 Sr/86 Sr-Verhältnis von 0,710267±0,000025 (2σ-Standardabweichung der Einzelbestimmungen) (Tabelle A4). Für den La Jolla Nd-Standard ergab sich für 22 Einzelmessungen im Zeitraum von Januar 1999 bis Mai 2001 ein mittleres 143 Nd/144 Nd-Verhältnis von 0,511849 ± 0,000009 (2σ-Standardabweichung der Einzelbestimmungen) (Tabelle A4). Die Pb-Isotopenverhältnisse wurden aufgrund der instrumentell vorliegenden Massenfraktionierung mit einem Faktor von 0,11 % amu korrigiert. Der Korrekturfaktor basiert auf Wiederholungsmessungen des NBS 981. Der 2σ-Messfehler der Pb-Isotopenverhältnisse ist < 0,1%.

Sauerstoffisotope

Die Bestimmung der Sauerstoffisotopenverhältnisse von sauren Magmatiten des Erongo-Komplexes erfolgte in Kooperation mit Dr. C. Harris (Universität Kapstadt). Sowohl die Mineralseparation als auch die Analytik und Messung wurde von Dr. C. Harris durchgeführt. Die angewendeten Methoden und die verwendeten analytischen Geräte sind in Harris et al. (2000) beschrieben. Die Sauerstoffisotopendaten wurden in Trumbull et al. (in press) veröffentlicht.

Methoden zur Berechnung und Präsentation der Daten

 $\gamma_{Os(t)}$. Der $\gamma_{Os(t)}$ -Wert bezeichnet das prozentuale Verhältnis zwischen dem $^{187}Os/^{188}Os$ -Verhältnis der Probe zur Zeit t und dem durchschnittlichen chondritischen $^{187}Os/^{188}Os$ -Verhältnis zur Zeit t (Shirey & Walker, 1998). Reservoire mit von Null abweichenden $\gamma_{Os(t)}$ -Werten werden als verarmt (γ_{Os} <0) bzw. angereichert (γ_{Os} >0) bezeichnet und implizieren ein gegenüber dem chondritischen Reservoir erniedrigtes bzw. erhöhtes $^{187}Re/^{188}Os$ -Verhältnis.

$$\gamma_{OS(t)} = \left\{ \begin{bmatrix} \left(\frac{187_{OS}}{188_{OS}}\right)_{\text{Pr obe}(t)} \\ \frac{187_{OS}}{188_{OS}} \\ Chondrit(t) \end{bmatrix} - 1 \right\} x 100$$

 T_{MA} . Das T_{MA} Modellalter beschreibt den Zeitpunkt, an dem sich eine Schmelze vom Mantelreservoir separierte. Als Bezugsgrößen für die Berechnung von T_{MA} dienen die $^{187}\text{Os}/^{188}\text{Os}$ - und $^{187}\text{Re}/^{188}\text{Os}$ -Verhältnisse des chondritisch zusammengesetzten Erdmantels (Shirey & Walker, 1998). Die Zerfallskonstante λ des ^{187}Re beträgt 1,666 x 10^{-11} a⁻¹ (Shen et al., 1996; Smoliar et al., 1996).

$$T_{MA} = \frac{1}{\lambda} \times \ln \left\{ \begin{bmatrix} \frac{187 Os}{188 Os} - \frac{187 Os}{188 Os} \\ \frac{187 Re}{188 Os} - \frac{187 Re}{188 Os} \\ \frac{188 Os}{188 Os} - \frac{187 Re}{188 Os} \end{bmatrix} + 1 \right\}$$

Berechnung der Magmentemperaturen über die Zirkonkonzentration der Gesamtgesteinsanalyse (Watson & Harrison, 1983). Die Löslichkeit von Zirkon in silikatischen Schmelzen ist eine Funktion der Temperatur und der Zusammensetzung der Schmelze. Die experimentell ermittelte Löslichkeit von Zr ist bei gleicher Temperatur in basischen Schmelzen größer als in Schmelzen mit saurem Charakter (Watson, 1979; Dickson & Hess, 1982) und ist dabei insbesondere vom (Na+K)/Al-Verhältnis der Schmelze abhängig (Watson, 1979; Watson & Harrison, 1983). Die Zirkonsättigung ist experimentell in einem Temperaturbereich von 750-1020°C kalibriert. Die folgende Gleichung beschreibt die Verteilung des Spurenelements Zr zwischen Zirkon und Schmelze in Abhängigkeit von der Temperatur und dem Zusammensetzungsparameter M. Mittels dieser Gleichung kann die Bildungstemperatur von Schmelzen, die durch Anatexis von kontinentaler Kruste gebildet worden sind, berechnet werden.

$$\ln D_{Zr}^{\frac{Zirkon}{Schmelze}} = \frac{\left\{-3,80 - \left[0,85*(M-1)\right]\right\} + 12900}{T}$$

Zeichenerklärung:

 $\ln D_{Zr}^{\frac{Ztrkon}{Schmelze}}$: Verhältnis der Zr-Konzentration in einem stöchiometrisch zusammengesetzten Zirkon zu der Zr-Konzentration in der Schmelze

$$M = \frac{(Na + K + 2*Ca)}{Al*Si}$$

Die Konzentrationsangabe der Elemente Na, K, Ca, Al und Si erfolgt in Atom-%.

T: absolute Temperatur[K]

Berechnung der Bildungstiefe über die Na_{8,0}- und Fe_{8,0}-Konzentrationen der Gesamtgesteinsanalyse nach den Gleichungen von Kinzler & Grove (1992). Die Zusammensetzung von primären Mantelschmelzen, die durch partielle Aufschmelzung von Mantelperidotiten gebildet wurden, ist druckabhängig (z.B. Kushiro, 1968; Kushiro, 1996; Jaques & Green, 1980). Kinzler & Grove (1992) kalibrierten experimentell die Druckabhängigkeit von Fe und Na innerhalb mantelgenerierter Schmelzen auf einen MgO-Gehalt von 8 Gew.-%, der einem Schmelz-Restit-Gleichgewicht für peridotitische Zusammensetzungen entspricht. Da spätere Fraktionierungsvorgänge die Fe- und Na-Gehalte beeinflussen und somit die Ergebnisse der Druckabschätzung verfälschen, bedarf es einer rechnerischen Korrektur.

Faktor für den Schmelzanteil:

$$F_m = -8,746 + 0,205 * Fe_{8,0}^2 + 0,405 * Na_{8,0}^2$$

Gleichung zur Berechnung des Bildungsdruckes:

$$P_m = 3.18 + 0.630 * F_m$$

Gleichung zur Berechnung der Bildungstemperatur:

$$T_i = 1113 + 20.15 * F_m$$

Klein & Langmuir (1987) entwickelten ein Korrekturverfahren für Fraktionierungsprozesse ozeanischer Basalte. Auf der Basis des Verfahrens der kleinsten Fehlerquadrate werden die Hauptbestandteile fraktionierter Basalte auf einen Wert zurückgerechnet, der dem eines unfraktionierten Basalts mit 8 Gew.-% MgO entspricht. Die so ermittelten Werte dienen weiterhin zur Berechnung der Bildungstemperaturen und Bildungsdrücke nach Kinzler & Grove (1992) (siehe oben).

Gleichungen für die Berechnung der für die $X_{8,0}$ -Konzentrationen der Basisbasalte nach Klein & Langmuir (1987):

$$Si_{8,0} = 0.17316 * 8 + SiO_2 - 0.17316 * MgO$$

 $Fe_{8,0}^* = -0.28839 * 8 + Fe_2O_3^* + 0.28839 * MgO$
 $Na_{8,0} = -0.10283 * 8 + Na_2O + 0.10283 * MgO$

Gleichungen für die Berechnung der für die $X_{8,0}$ -Konzentrationen der Gangdolerite nach Klein & Langmuir (1987):

$$Si_{8,0} = -0.33251*8 + SiO_2 + 0.33251*MgO$$

 $Fe_{8,0}^* = 0.64394*8 + Fe_2O_3^* - 0.64394*MgO$
 $Na_{8,0} = -0.0277*8 + Na_2O + 0.0277*MgO$

Berechnung der Bildungstiefe über die SiO₂- und MgO-Konzentrationen der Gesamtgesteinsanalyse nach den Gleichungen von Albarède (1992), Scarrow & Cox (1995) und Haase (1996). Grundlage der Gleichungen von Albarède (1992), Scarrow & Cox (1995) und Haase (1996) zur Abschätzung der Bildungstiefe ist die Abhängigkeit des SiO₂-Gehalts peridotitischer Schmelzen von Druck und Temperatur, ermittelt in Schmelzexperimenten von z.B. Kushiro (1968), Kushiro (1996) und Jaques & Green (1980).

Gleichungen von Albarède (1992):

$$T \begin{bmatrix} {}^{o}C \end{bmatrix} = 2000 * \left(\frac{MgO}{SiO_2 + MgO} \right) + 969$$

$$\ln p[kbar] = 0,00252 * T \begin{bmatrix} {}^{o}C \end{bmatrix} - 0,12 * SiO_2 + 5,027$$

Gleichung von Scarrow & Cox (1995):

$$p[kbar] = 213,6 - 4,05 * SiO_2$$

Gleichung von Haase (1996):

$$p[GPa] = 23,217 - 0,4381 * SiO_2$$

Assimilation kombiniert mit fraktionierter Kristallisation (AFC). DePaolo (1981) beschreibt in seinen Gleichungen das geochemische Verhalten von Schmelzen in Magmenkammern, die während sie den Prozess der fraktionierten Kristallisation durchlaufen, eine Assimilation des die Magmenkammer umgebenden Gesteins erfahren. Für Spurenelemente gilt für r≠1 die folgende Gleichung:

$$\frac{C_m}{C_m^0} = F^{-z} + \left(\frac{r}{r-1}\right) \frac{C_a}{zC_m^0} \left(1 - F^{-z}\right)$$

$$z = \frac{r+D-1}{r-1}$$

$$F = \frac{M_m}{M_m^0}$$

Zeichenerklärung:

 C_m : Spurenelementkonzentration im kontaminierten Magma

 C_m^0 : Spurenelementkonzentration im Ausgangsmagma

M_m: Magmenmenge nach dem AFC-Prozess

 M_m^0 : Menge des ursprünglich vorhandenen Magmas

r: Assimilationsrate/Rate der fraktionierten Kristallisation C_a : Spurenelementkonzentration in der assimilierten Schmelze

D: Gesamtverteilungskoeffizient

Für Isotopenverhältnisse wird von DePaolo (1981) die folgende Gleichung vorgeschlagen:

$$\varepsilon_{m} = \frac{\frac{r}{r-1} \frac{C_{a}}{z} \left(1 - F^{-z}\right) \varepsilon_{a} + C_{m}^{0} F^{-z} \varepsilon_{m}^{0}}{\frac{r}{r-1} \frac{C_{a}}{z} \left(1 - F^{-z}\right) + C_{m}^{0} F^{-z}}$$

<u>Zeichenerklärung:</u> \mathcal{E}_a : Isotopenverhältnis der assimilierten Schmelze

Für die AFC-Modellierung wurden die in den Tabellen A5 und A6 dargestellten Parameter verwendet.

Tabelle A5: Geochemische Daten der für die AFC-Modellierung verwendeten Endglieder

	312	G152	Kuiseb-Schiefer*	Damaraland A Typ- Granit*	Damaraland S Typ- Granit*
Nd [ppm]	29	17,9	30	75	50
Sr [ppm]	382	294	120	281	35
$^{87}{\rm Sr}/^{86}{\rm Sr}_{130~{\rm Ma}}$	0,70600	0,70787	0,73514	0,71820	0,76780
ε _{Nd (130 Ma)}	-0,4	0,0	-6,4	-8,7	-8,1

^{*:} Die Spurenelementkonzentrationen und Isotopenverhältnisse der Krustenendglieder wurden aus den in der Literatur zur Verfügung stehenden Daten (Jung et al., 1998a; Jung et al., 1998b; McDermott & Hawkesworth, 1990) gemittelt.

TT 1 11 1/	T7 , •1	1 60	C 1	1 1	α,
Lahollo Ah.	V ortoiliinas	Vacttizionton	tur hasa	mecho.	Suctomo
Tubelle Ab.	renennes	koeffizienten	jui ousui	ilische i	Jysieme

	Olivin	Referenz	CPX	Referenz	OPX	Referenz	Magnetit	Referenz	Plagioklas	Referenz
Rb	0,0003	1	0,00045	5	0,0002	1,11,13	-	-	0,1	
Ba	0,000005	2	0,0003	2	0,000006	2	0,028	15	0,68	17
Th	0,000007	2	0,0021	2	0,00002	2	0,1	16	0,05	18
K	0,00002	1	0,001	5	0,0001	1,11,13	0,045	15	0,3	17
U	0,000009	2	0,001	2	0,00004	2	0,11	16	0,11	17
Nb	0,00005	3	0,0089	6,7	0,003	12	-	-	0,01	17
La	0,0002	3	0,054	7	0,0031	3	0,015	14	0,27	17
Ce	0,00007	3	0,086	7	0,0021	3	0,016	14	0,02	17
Pb	0,0003	2	0,0075	2,8	0,0014	11,13	-	-	0,36	17
Pr	0,0003	4	0,15	5	0,0026	3	-	-	0,17	17
Sr	0,00004	1,2	0,091	2,7	0,0007	2	-	-	2	17
Nd	0,0003	3	0,19	7	0,0023	3	0,026	14	0,14	17
Sm	0,0009	3	0,27	7	0,0037	3	0,024	14	0,11	17
Zr	0,001	3	0,26	6,7,9	0,012	3	0,71	16	-	-
Hf	0,0029	3	0,33	7,8,10	0,019	3	0,14	15	-	-
Eu	0,0005	3	0,43	5	0,009	3	0,025	14	0,73	17
Ti	0,015	3,4	0,4	7,10	0,086	3	16,5	15	0,04	17
Gd	0,0011	3	0,44	5	0,0065	3	0,018	14	0,066	17
Dy	0,0027	3	0,44	7	0,011	3	-	-	0,055	17
Y	0,0082	3	0,47	7	0,015	3	-	-	_	-
Но	0,01	5	0,4	5	0,016	3	0,017	14	0,048	17
Er	0,0109	3	0,39	7	0,021	3	-	-	0,041	17
Yb	0,024	3	0,43	7	0,038	3	0,018	14	0,031	17

Referenzen: ¹ Zindler & Jagoutz (1988); ² Beattie, P. (1993); ³ Kennedy et al. (1993); ⁴ Dunn & Sen (1994); ⁵ Halliday et al. (1995); ⁶ Adam et al. (1993); ⁷ Hart & Dunn (1993); ⁸ Watson et al. (1987); ⁹ Kuehner et al. (1989); ¹⁰ Dunn (1987); ¹¹ Lee et al. (1996); ¹² Kelemen et al. (1993); ¹³ Kramers et al. (1983); ¹⁴ Agee (1990); ¹⁵ Sisson (1991); ¹⁶ Shimizu & Kushiro (1975); ¹⁷ McKenzie & O'Nions (1991); ¹⁸ Paster et al. (1974); ¹⁹ Kravuchuk et al. (1981).

Tabelle A7: Verteilungskoeffizienten für saure Systeme nach Arth (1976)

	Plagioklas	Kalifeldspat	Biotit
Sr	2,84	3,87	0,12
Rb	0,048	0,34	3,26
Ba	0,36	6,12	6,36

Grundlagen zur Modellierung der Hauptelement- und Spurenelemententwicklung innerhalb der basischen und sauren Magmatite des Erongo-Komplexes. Die Modellierung der Hauptelementzusammensetzung beruht auf einer Massenbilanzierung auf Grundlage der kleinsten Fehlerquadrate (Le Maitre, 1981; Albarède, 1995). Aus den einzelnen Gleichungen, die sich auf den Mengenanteil X der Komponente m in der n-ten Phase beziehen, ergibt sich für das Gesamtsystem der folgende Zusammenhang:

$$\begin{split} X_1 &= a_1 x_{11} + a_2 x_{21} + ... + a_n x_{1n} \\ X_2 &= a_2 x_{21} + a_2 x_{22} + ... + a_n x_{2n} \\ & \cdot \\ & \cdot \\ X_m &= a_n x_{m1} + a_n x_{m2} + ... + a_n x_{mn} \end{split}$$

Zeichenerklärung:

X: Mengenanteil der Komponente m in der Ausgangszusammensetzung

m: Anzahl der Komponenten

x: Mengenanteil der Komponente m in der Phase n

n: Anzahl der Phasen

Zur Lösung des Gleichungssystem werden die partiellen Ableitungen nach a_n gleich Null gesetzt und somit die Summe der Fehlerquadrate S minimiert.

$$S = \sum_{i=1}^{m} (X_i - a_1 x_{1i} - \dots a_n x_{ni})^2$$

Bei Mischungsprozessen kommt die Vorgehensweise nach LeMaitre (1981) zur Anwendung, indem man die Summe der Phasenanteile gleich 1 setzt.

$$S = \sum_{i=1}^{m} (X_i - a_1 x_{1i} - \dots - a_{n-1} x_{n-1} - (1 - a_1 - \dots - a_{n-1}) x_{ni})^2$$

Nach Albarède (1995) ergibt sich aus der Komponentenmatrix $A_{m\,x\,n}$ der Mischphasen und der Komponentenmatrix $\hat{y}_{m\,x\,1}$ der Ausgangszusammensetzung die folgende Lösungsmatrix:

$$\hat{x} = \left(A^T A\right)^{-1} A^T \hat{y}$$

Die für die Modellierung der Hauptelementzusammensetzung verwendeten Mineralzusammensetzungen beruhen auf Messungen an Ombu-Rhyodaziten mittels einer Elektronenstrahlmikrosonde CAMECA SX 100 am GeoForschungsZentrum Potsdam. Aus den gemessenen Gehalten wurden jeweils die Mittelwerte gebildet. Lediglich die Zusammensetzung des Quarzes wurde für die Hauptelementmodellierung mit 100 Gew.-% SiO₂ angenommen. Die durchschnittlichen Zusammensetzungen der verwendeten Minerale sind in Tabelle A8 dargestellt.

Tabelle A8: Durchschnittliche Zusammensetzung von Plagioklas, Kalifeldspat, Biotit, Klinopyroxen und Quarz für die Modellierung einer fraktionierten Kristallisation anhand von Hauptelementen.

		Ombu-	Rhyodazit		
	Plagioklas	Kalifeldspat	Biotit	Klinopyroxen	Quarz
	N=56	N=32	N=65	N=28	-
SiO_2	58,3	65,9	38,0	47,8	100
TiO_2	0,03	-	3,52	0,26	-
Al_2O_3	26,7	18,7	13,4	1,99	-
FeO tot	0,13	0,12	23,0	39,1	-
MnO	0,01	-	0,08	0,75	-
MgO	0,01	-	11,4	9,85	-
CaO	8,73	0,18	0,03	0,18	-
Na ₂ O	6,73	11,2	0,13	-	-
K_2O	0,31	3,77	9,80	-	-
Cr ₂ O ₃	-	-	-	0,01	
BaO	-	-	0,02		-
F	-	-	7,30		-
Cl	-	-	0,04		_
O=F	-	-	-3,08		-
O=Cl	-	-	-0,01		-
Summe	100,95	99,88	99,38	99,94	100,00

^{-:} nicht gemessen oder unterhalb der Nachweisgrenze. N: Anzahl der zur Verfügung stehenden Analysen. Die Zusammensetzung des Quarzes wurde mit 100 Gew.-% SiO₂ angenommen.

Die Modellierung der Spurenelemententwicklung in Kapitel 6.2 erfolgte mittels Raleigh-Fraktionierung. Die verwendeten Verteilungskoeffizienten sind in Tabelle A7 aufgeführt.

	300	308A	312	315	372	373	374	375A	375B
SiO_2	48,5	49,4	49,0	48,9	47,7	51,2	49,4	49,4	49,5
TiO ₂	1,48	1,14	1,06	1,02	0,69	1,16	1,08	1,08	1,07
Al_2O_3	14,5	13,3	13,5	13,4	12,7	15,1	13,7	13,7	13,7
Fe_2O_3	2,09	2,76	1,21	1,75	1,57	2,63	2,75	3,04	2,85
FeO	9,87	7,84	8,76	8,16	7,91	7,18	7,22	7,02	7,08
Fe ₂ O _{3 total}	13,1	11,5	10,9	10,8	10,4	10,6	10,8	10,8	10,7
MnO	0,16	0,17	0,16	0,16	0,16	0,17	0,17	0,17	0,17
	· ·			ŕ					
MgO	7,05	10,9	11,0	11,0	14,2	6,86	10,3	10,1	10,3
CaO	10,6	8,67	9,98	9,83	9,91	9,72	9,90	9,90	9,95
Na ₂ O	1,97	1,85	2,20	1,99	1,51	2,48	1,94	1,89	1,87
K_2O	0,99	0,91	1,01	1,00	0,61	1,05	0,96	1,04	0,96
P_2O_5	0,15	0,13	0,38	0,23	0,09	0,13	0,14	0,14	0,14
CO_2	0,19	0,08	0,11	0,07	1,66	0,08	0,63	0,58	0,41
H_2O	1,71	2,37	0,76	1,56	0,64	1,48	1,31	1,62	1,58
Summe	100,36	100,39	100,22	99,97	100,22	100,02	100,31	100,45	100,44
Q	7,9	8,9	_	2,2	_	6,3	7,7	4,2	7,7
or	-	-	6,2	6,4	-	6,3	-	6,3	-
ab	10,0	9,9	18,7	9,8	9,7	19,3	9,8	9,6	9,8
an	37,4	34,2	24,5	30,5	30,4	31,1	33,8	30,0	33,8
lc	-	-	-	-	-	-	-	-	-
ne	-	-	-	-	-	-	-	-	-
kal	-	-	-	-	-	-	-	-	-
C	-	-	-	-	-	-	-	-	-
di	14,1	7,7	17,6	14,5	14,1	13,4	11,9	14,2	11,9
hy	26,7	35,5	21,4	34,0	41,9	19,7	33,0	31,4	33,0
wo ol	<u>-</u>	-	9,1	-	2,7	<u>-</u> _	-	- -	_
ac	_	_	-	_	-	_	_	_	_
mt	2,3	2,3	1,1	1,1	1,1	2,2	2,3	2,8	2,3
il	1,5	1,5	1,5	1,5	, -	1,5	1,5	1,5	1,5
hem	- -	- -	-	- -	-	- -	- -	- -	- -
ti	-	-	-	-	-	-	-	-	-
ap	-	-	-	-	-	-	-	-	-
cc	-	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-	-
ru	-	-	-	-	-	-	-	-	-

Bemerkungen: Die CIPW-Norm wurde nach den Regeln von Cross et al. (1903) berechnet. Verwendete Abkürzungen: Q: Quarz, or: Orthoklas, ab: Albite, an: Anorthit, lc: Leucit, ne: Nephelin, kal: Kalsilit, C: Korund, di: Diopsid, hy: Hypersthen, wo: Wollastonit, ol: Olivin, ac: Akmit, mt: Magnetit, il: Ilmenit, hem: Hämatit, ti: Titanit, ap: Apatit, cc: Calcit, pero: Perowskit, ru: Rutil. -: Die Werte wurden nicht ermittelt, ergaben den Wert Null oder lagen unterhalb der Nachweisgrenze.

	376	377	378A	378C	381	382	384A	384B	384C
SiO_2	47,6	47,7	49,6	49,5	49,4	49,0	50,9	50,9	50,5
TiO ₂	0,92	0,68	1,18	1,05	1,17	1,07	1,23	1,07	1,02
Al_2O_3	12,8	13,0	13,6	13,1	13,4	13,1	13,9	14,0	14,2
Fe_2O_3	3,40	2,68	1,49	1,14	2,01	3,24	1,06	4,29	4,64
FeO	6,72	6,92	9,16	9,29	8,89	7,70	9,33	6,05	5,47
Fe ₂ O _{3 total}	10,9	10,4	11,7	11,5	11,9	11,8	11,4	11,0	10,7
MnO	0,17	0,17	0,18	0,17	0,18	0,18	0,17	0,17	0,17
MgO	13,1	13,8	10,3	12,0	10,7	11,7	9,94	10,5	10,5
CaO	9,60	10,6	10,0	9,33	9,73	9,46	9,08	8,58	8,63
Na ₂ O	1,63	1,42	1,96	1,88	1,92	1,77	2,10	2,01	2,16
K ₂ O	0,74	0,52	0,64	0,72	0,70	0,59	0,85	1,04	1,11
P_2O_5	0,12	0,09	0,15	0,15	0,15	0,12	0,14	0,12	0,13
CO_2	0,82	0,21	0,10	0,07	0,06	0,08	0,08	0,08	0,07
H_2O	2,11	1,73	0,65	0,74	0,78	1,30	0,40	0,52	0,47
Summe	100,48	100,30	100,09	100,19	100,07	100,18	100,15	99,99	99,69
Q	0,5	_	4,4	2,5	6,8	4,9	3,1	0,9	1,7
or	-	-	-	-	-	-	-	6,1	6,2
ab	9,8	9,6	9,6	9,4	9,7	9,7	19,1	18,7	18,8
an	30,7	33,2	33,2	32,5	33,5	33,4	28,2	27,3	27,5
c	-	-	-	-	-	-	-	-	-
ne	-	-	-	-	-	-	-	-	-
cal	-	-	-	-	-	-	-	-	-
C 1:	- 14.2	160	15.0	- 11.5	- 110	- 110	15.5	-	- 11.0
di ny	14,3 43,1	16,0 38,3	15,9 34,2	11,5 41,5	11,8 34,4	11,8 35,9	15,5 31,4	11,2 31,7	11,2 30,3
wo	43,1 -	-	J4,2 -	41,3	J4,4 -	33,9	51,4	51,7	30,3
ol	_	1,3	<u>-</u>	_	_	_	_	<u>-</u>	_
ac	-	-	_	-	-	_	_	_	_
nt	1,7	1,7	1,1	1,1	2,3	2,8	1,1	2,7	2,7
1	-	-	1,5	1,5	1,5	1,5	1,5	1,4	1,5
nem	-	-	-	-	-	-	-	-	-
i	-	-	-	-	-	-	-	-	-
ap	-	-	-	-	-	-	-	-	-
cc	-	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-	-

	384D	385	386A	386B	386C	393A	399A	401A	402B
SiO_2	50,8	48,5	47,5	48,3	51,1	49,1	49,6	49,6	49,7
TiO ₂	1,26	1,61	1,64	1,60	2,31	1,18	2,33	1,09	1,13
Al_2O_3	14,5	15,2	15,3	15,3	14,0	13,1	13,5	14,3	14,1
Fe_2O_3	2,06	5,64	6,02	3,27	5,07	4,43	10,1	2,48	2,28
FeO	8,05	6,00	5,66	8,09	7,74	6,29	3,60	7,16	7,42
Fe ₂ O _{3 total}	11,0	12,3	12,3	12,3	13,7	11,4	14,1	10,4	10,5
MnO									
	0,16	0,18	0,22	0,18	0,19	0,21	0,19	0,16	0,18
MgO	7,91	6,75	6,85	6,89	4,37	8,93	3,79	7,15	7,52
CaO	10,5	9,42	9,16	9,34	8,25	8,82	7,49	11,7	10,1
Na ₂ O	2,34	2,81	2,59	2,94	2,24	2,61	2,13	1,64	2,05
K_2O	0,87	0,78	0,72	0,76	1,30	1,19	1,89	1,07	0,69
P_2O_5	0,17	0,19	0,20	0,20	0,33	0,13	0,33	0,15	0,15
CO_2	0,08	0,33	1,15	0,25	0,22	0,43	2,39	0,60	1,86
H_2O	0,45	2,04	2,71	2,57	2,32	3,51	2,69	2,44	2,84
Summe	99,99	100,10	100,36	100,54	100,33	100,58	100,44	100,30	100,82
Q	5,7	5,8	4,9	5,6	11,4	3,6	12,8	6,2	5,6
or	-	-	-	-	6,5	6,5	6,9	6,4	-
ab	19,3	19,9	20,1	19,8	19,7	19,6	20,9	9,8	19,7
an	31,4	35,3	35,7	35,3	28,9	25,7	27,3	33,5	32,0
lc	-	-	-	-	-	-	-	-	-
ne 11	-	-	-	-	-	-	-	-	-
kal C	-	_	-	-	-	-	-	-	-
di	17,5	11,2	11,4	11,2	11,8	14,1	10,4	20,8	- 17,9
hy	22,3	23,4	23,4	23,7	14,7	26,1	14,3	19,5	21,0
wo	,-	-	-		-			-	,-
ol	-	-	-	-	-	-	-	-	-
ac	-	-	-	-	-	-	-	-	-
mt	2,2	2,9	2,9	2,9	4,0	2,9	4,2	2,3	2,3
il	1,5	1,5	1,6	1,5	3,1	1,5	3,2	1,5	1,5
hem	-	-	-	-	-	-	-	-	-
ti	-	-	-	-	-	-	-	-	-
ap	-	-	-	-	-	-	-	-	-
cc	-	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-	-

	402C	403	407A	407D	429	G149a	G152	G152a	G181
SiO_2	48,6	50,8	47,6	47,9	48,5	50,6	48,3	48,7	50,7
TiO ₂	1,23	1,41	1,35	1,38	1,59	2,23	1,62	1,63	2,42
Al_2O_3	13,7	14,8	12,9	13,1	15,3	14,0	14,2	14,5	13,7
Fe_2O_3	2,10	4,13	3,38	3,39	5,14	9,47	6,25	6,04	6,34
FeO	7,55	5,78	7,70	7,72	6,39	4,22	5,98	5,95	7,16
Fe ₂ O _{3 total}	10,5	10,6	11,9	12,0	12,2	14,2	12,9	12,7	14,3
MnO	0,16	0,18	0,19	0,19	0,18	0,18	0,19	0,18	0,20
MgO	7,47	6,47	11,5	10,9	7,06	4,30	5,89	6,00	3,87
CaO	10,3	10,2	10,4	10,4	9,65	6,83	10,9	11,0	7,27
Na ₂ O	2,31	2,55	1,86	1,79	2,74	2,75	2,43	2,38	2,71
K_2O	0,49	0,87	1,13	0,82	0,83	2,13	0,83	0,71	2,17
P_2O_5	0,17	0,14	0,15	0,15	0,19	0,31	0,16	0,17	0,35
CO_2	2,81	0,13	0,08	0,06	0,09	0,23	0,09	0,10	0,21
$\rm H_2O$	3,33	2,57	1,67	1,58	1,74	2,68	2,26	1,97	2,27
Summe	101,02	100,65	100,79	100,10	100,11	100,40	99,80	99,99	100,1
	,	,	,	,	,	,	,	,	,-
Q	5,3	9,0	0,2	4,4	4,2	8,9	7,0	4,3	9,8
or	- -	-	6,4	-	-	13,2	-	-	13,3
ab	20,1	19,8	9,7	9,8	19,6	20,0	20,2	19,7	20,3
an	29,7	32,2	27,2	33,9	34,8	26,0	32,9	32,0	23,3
lc	-	-	-	-	-	-	-	-	-
ne	-	-	-	-	-	-	-	-	-
kal	-	-	-	-	-	-	-	-	-
C .:	-	-	20.0	16.2	- 11.1	-	10.2	-	12.0
di hy	20,7 20,3	18,0 16,7	20,9 31,3	16,3 31,2	11,1 26,0	5,7 19,0	18,3 17,0	22,2 17,4	12,8 13,2
wo	-	10,7	J1,J -	31,2	20,0	19,0	17,0	-	13,2
ol .	_	_	_	_	_	_	_	_	_
ac	_	_	_	-	-	-	-	-	_
mt	2,3	2,9	2,8	2,9	2,8	4,1	2,9	2,9	4,1
il	1,6	1,5	1,5	1,5	1,5	3,1	1,6	1,5	3,1
hem	-	-	-	-	-	-	-	-	-
ti	-	-	-	-	-	-	-	-	-
ap	-	-	-	-	-	-	-	-	-
cc	-	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-	-
ru	-	-	-	_	_	-	-	-	-

	G184a	G185	G186	G191	G194	G195	G196	G197
SiO_2	50,3	46,9	48,5	49,8	51,8	48,7	50,4	48,3
TiO_2	1,07	1,10	1,21	2,14	1,02	1,06	1,27	1,37
Al_2O_3	14,0	11,9	13,1	13,8	11,7	13,4	13,8	16,3
Fe_2O_3	3,23	4,15	2,89	6,47	3,95	2,93	2,64	2,73
FeO	7,00	7,49	8,26	6,59	5,39	7,36	7,62	7,64
Fe ₂ O _{3 total}	11,0	12,5	12,1	13,8	9,94	11,1	11,1	11,2
MnO	0,17	0,18	0,17	0,18	0,16	0,16	0,16	0,15
MgO	9,66	13,6	11,5	4,41	8,05	9,92	8,82	7,25
_								
CaO	8,62	8,83	9,64	7,35	7,30	10,1	9,02	11,6
Na ₂ O	1,75	1,45	2,00	2,22	2,64	1,92	2,36	1,76
K_2O	1,01	0,55	0,59	2,57	0,74	0,91	1,21	0,51
P_2O_5	0,11	0,12	0,12	0,29	0,11	0,34	0,36	0,15
CO_2	0,09	0,10	0,10	0,87	2,77	0,11	0,13	0,13
H_2O	2,30	2,80	1,34	3,00	4,04	2,21	1,64	1,67
Summe	100,09	100,01	100,32	100,42	100,27	99,91	100,28	100,39
Q	7,1	1,5	-	8,1	13,3	7,2	3,5	7,2
or	6,3	-	-	13,4	-	-	6,4	-
ab	9,6	9,8	19,0	20,4	20,5	9,9	19,4	9,8
an	33,0	28,0	28,0	23,3	24,0	34,3	25,4	42,7
lc	-	-	-	-	-	-	-	-
ne	-	-	-	-	=	-	-	-
kal	-	-	-	-	-	-	-	=
C di	- 7,7	- 12,4	15,3	12,8	- 12,5	- 16,5	18,2	13,4
hy	31,9	43,9	32,3	14,7	25,1	28,2	23,4	23,1
wo	-	-	-	-	-	-	-	-
ol	-	-	1,7	_	-	-	_	-
ac	=	-	-	-	=	-	-	-
mt	2,8	2,9	2,2	4,1	3,0	2,3	2,3	2,3
il	1,5	1,5	1,5	3,2	1,6	1,5	1,5	1,5
hem	-	-	-	-	-	-	-	-
ti	-	-	-	-	-	-	-	-
ap	-	-	-	-	=	-	-	-
cc	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-

xxi

	G149a	G152a	G152	G197	399A	401A	402B	402C	429	G181	385	386A
Cr	28	130	95	372	16	534	519	477	83	21	74	73
Ni	10	53	52	205	10	21	28	19	73	10	72	71
Zn	146	113	110	116	122	88	72	70	83	118	104	131
Rb	70	23	29	12	58	26	20	10	27	69	26	46
Sr	279	345	272	221	311	266	282	255	285	270	301	261
Y	40	26	27	34	41	24	25	23	26	43	25	24
Zr	196	115	114	152	201	111	115	113	130	212	136	138
Nb	9	9	5	11	-	-	-	9	10	8	-	-
Ba	488	194	195	336	627	400	204	223	301	544	355	280
Cs	2,24	0,41	0,69	0,83	2,86	2,27	-	-	-	4,2	4,83	6,48
V	-	-	-	-	248	288	294	273	320		319	334
Sc	29	39	39	28	28	-	-	-	-	28	27	25
Co	-	44	-	47	36	-	-			38	50	46
Cu	-	106	-	97	18	-	-			30	39	73
Ga	-	-	-	=	24	-	-	-	-	25	21	20
La	31,0	13,3	14,0	21,0	31,2	14,0	-	-	-	36,0	16,0	16,0
Ce	67,0	29,9	31,0	42,0	66,8	30,0	-			73,0	36,4	36,2
Pr	8,80	4,12	4,30	5,20	8,48	3,97	-	-	-	9,50	4,94	4,84
Nd	35,0	18,3	19,0	22,0	34,9	17,1	-	-	-	38,0	21,5	21,3
Sm	8,00	4,72	4,80	5,20	7,80	4,08	-			8,70	5,03	4,86
Eu	2,10	1,62	1,70	1,70	2,02	1,23	-			2,20	1,62	1,53
Gd	7,80	5,20	5,20	5,60	7,84	4,27	-			8,40	5,08	5,01
Tb	1,30	0,83	0,85	0,98	1,19	0,69	-	-	-	1,40	0,79	0,78
Dy	7,50	5,13	5,30	5,90	7,38	4,15	-	-	-	8,00	4,66	4,71
Но	1,50	1,02	1,10	1,20	1,46	0,82	-	-	-	1,60	0,89	0,90
Er	4,50	2,93	3,10	3,40	4,28	2,38	-	-	-	4,60	2,54	2,55
Tm	0,64	0,40	0,44	0,47	0,59	0,32	-	-	-	0,66	0,34	0,32
Yb	4,00	2,66	2,70	3,00	3,96	2,12	-			4,30	2,14	2,17
Lu	0,61	0,39	0,42	0,45	0,59	0,31	-			0,65	0,31	0,31
Hf	5,74	3,49	3,30	4,06	5,28	2,75	-	-	-	3,60	3,00	3,00
Та	-	0,40	-	0,50	0,85	=	-	=	-	0,85	0,54	0,54
Th	8,68	2,45	2,36	2,54	8,90	2,53	-	=	-	10,0	1,60	1,50
U	1,43	0,50	0,47	0,37	1,41	0,41	-	=	-	1,30	0,30	0,30
Pb	9,85	3,63	3,96	8,32	9,90	8,23	-	-	-	6,80	7,30	8,72
Li	-	10,0	-	19,0	-	-	-	-	-	-	-	-
Sn	-	_	_	0,30	_	_	_	_	-	_	_	-

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

To	abelle A1	5: Spurei	nelementge	ehalte der	· Basisba	salte (Ge	halte in p	pm)				
	386B	386C	G184a	G185	G186	G191	G194	308A	378A	378C	381	382
Cr	71	16	775	1190	1128	26	1012	830	1034	1078	1093	958
Ni	68	10	160	378	272	13	344	265	107	430	119	302
Zn	94	132	102	93	97	140	159	80	80	10	78	86
Rb	21	51	33	15	14	82	32	25	13	14	13	11
Sr	272	239	172	188	211	300	258	184	202	193	195	165
Y	23	40	26	20	21	41	24	27	24	25	25	27
Zr	124	187	110	87	94	188	149	116	106	105	106	103
Nb	10	16	8	8	8	14	9	8	-	-	-	7
Ba	292	419	263	188	251	707	393	211	206	205	217	163
Cs	-	-	4,1	2,9	-	2,5	-	13	0,26	-	2,01	3,98
V	314	258	-	-	-	-	-	287	298	280	289	284
Sc	-	-	30	26	30	27	26	28	30	-	-	28
Co	-	-	51	71	-	40	-	59	55	-	-	59
Cu	-	-	58	87	-	22	-	94	73	-	-	104
Ga	-	-	19	-	-	-	-	-	18	-	-	-
La	-	-	16,0	9,1	11,0	29,6	22,0	13,6	12,0	-	11,8	10,1
Ce	-	-	33,0	20,2	23,0	63,0	32,0	28,6	26,8	-	26,0	22,4
Pr	-	-	4,30	2,78	3,30	7,95	3,90	3,71	3,67	-	3,62	3,01
Nd	-	-	17,0	12,7	15,0	33,2	16,0	16,2	15,9	-	16,0	13,4
Sm	-	-	4,30	3,18	3,80	7,57	3,90	3,94	3,91	-	4,02	3,42
Eu	-	-	1,30	1,02	1,20	2,01	1,10	1,24	1,22	-	1,25	1,14
Gd	-	-	4,70	3,51	4,10	7,43	4,20	4,41	4,24	-	4,29	4,04
Tb	-	-	0,76	0,58	0,63	1,14	0,74	0,71	0,69	-	0,73	0,66
Dy	-	-	4,90	3,56	4,10	7,04	4,50	4,54	4,36	-	4,33	4,24
Но	-	-	1,00	0,69	0,85	1,42	0,90	0,92	0,85	-	0,86	0,83
Er	-	-	2,90	2,02	2,40	4,09	2,60	2,68	2,45	-	2,46	2,46
Tm	-	-	0,42	0,26	0,34	0,58	0,37	0,37	0,33	-	0,34	0,33
Yb	-	-	2,60	1,75	2,10	3,78	2,40	2,39	2,17	-	2,18	2,20
Lu	-	-	0,38	0,26	0,31	0,56	0,36	0,34	0,32	-	0,32	0,32
Hf	-	-	-	2,40	-	5,10	-	3,14	2,69	-	2,73	2,91
Ta	-	-	0,43	0,40	-	0,80	-	0,40	0,46	-	-	0,40
Th	-	-	2,80	0,75	-	8,20	-	1,80	1,60	-	1,35	1,00
U	-	-	0,40	0,19	-	1,40	-	0,35	0,30	-	0,27	0,18
Pb	-	-	5,90	3,00	-	10,7	-	3,40	2,50	-	3,24	2,89
Li	-	-	-	4,00	-	34,0	-	8,00	-	-	-	9,00
Sn	-	-	-	-	-	-	-	-	-	-	-	0,10

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	384A	384B	384C	384D	G195	G196	312	313	315	300	301A	393A
Cr	743	757	877	536	919	645	826	10	871	93	20	797
Ni	216	168	189	21	189	133	210	6	242	63	17	112
Zn	84	81	61	80	94	96	88	140	78	58	99	161
Rb	17	26	30	19	31	36	26	135	23	55	108	58
Sr	197	182	192	279	378	410	382	249	307	218	227	220
Y	29	25	28	26	26	28	26	59	24	30	45	20
Zr	126	112	113	123	112	137	118	351	110	102	234	99
Nb	9	8	9	-	25	25	-	22	16	-	16	8
Ba	272	265	283	242	409	464	383	929	313	228	816	181
Cs	0,44	0,45	0,44	-	3,6	1,46	0,61	4,2	0,7	-	3,4	-
V	296	287	264	285	-	-	252	-	251	411	185	295
Sc	30	28	28	31	28	23	31	17	27	37	23	-
Co	52	51	49	46	52	46	55	21	55	47	32	-
Cu	100	59	60	39	62	61	44	29	60	125	18	-
Ga	-	-	-	20	18	-	18	-	-	22	-	-
La	14,6	14,7	16,4	15,6	37,0	35,0	39,0	60,5	23,9	11,6	36,8	-
Ce	31,0	30,5	32,9	34,8	67,0	66,0	69,0	126,0	45,1	25,5	76,4	-
Pr	4,05	3,88	4,09	4,70	7,30	7,70	7,80	15,5	5,31	3,54	9,68	-
Nd	17,4	16,2	16,9	19,9	28,0	30,0	29,0	61,4	21,3	15,3	39,3	-
Sm	4,27	3,93	4,04	4,73	5,60	6,20	5,70	12,7	4,60	4,09	8,47	-
Eu	1,32	1,20	1,18	1,46	1,60	1,80	1,70	2,24	1,36	1,31	1,94	-
Gd	4,79	4,42	4,43	5,34	5,30	5,80	6,10	11,4	4,49	4,93	8,09	-
Tb	0,78	0,71	0,72	0,77	0,81	0,91	0,80	1,74	0,72	0,76	1,26	-
Dy	4,93	4,57	4,61	4,72	4,90	5,00	4,80	10,4	4,42	4,80	7,66	-
Но	0,96	0,91	0,92	0,94	0,94	0,93	0,93	2,01	0,88	0,98	1,52	-
Er	2,91	2,65	2,71	2,69	2,70	2,60	2,70	5,87	2,49	2,85	4,50	-
Tm	0,40	0,37	0,38	0,38	0,40	0,38	0,37	0,84	0,34	0,40	0,62	-
Yb	2,57	2,41	2,52	2,35	2,40	2,30	2,30	5,42	2,23	2,57	4,11	-
Lu	0,38	0,36	0,36	0,35	0,35	0,33	0,35	0,80	0,31	0,39	0,60	-
Hf	3,48	3,02	2,90	-	1,50	3,57	2,80	9,60	2,80	2,00	6,60	-
Ta	0,50	0,40	-	0,47	0,83	0,90	0,87	1,20	0,70	0,40	0,90	-
Th	1,82	2,68	3,01	2,60	6,20	5,56	6,18	18,0	3,90	2,70	11,0	-
U	0,36	0,46	0,51	0,40	1,30	1,50	1,37	2,70	0,89	0,60	1,52	-
Pb	4,35	5,24	6,22	4,40	5,30	6,56	6,03	24,0	5,00	6,30	13,0	-
Li	9,00	9,00	10,0	-	-	6,00	-	30,0	6,00	-	30,0	-
Sn	0,10	0,30	0,05	-	-	0,10	-	-	-	-	-	-

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	403	407A	372	373	374	375A	375B	376	377	407D
Cr	386	1037	1396	118	602	593	594	1159	1301	966
Ni	42	84	498	58	264	214	258	391	469	94
Zn	93	95	62	81	77	84	250	75	268	87
Rb	16	41	20	196	27	37	25	41	19	36
Sr	255	191	114	221	162	168	163	168	116	208
Y	27	20	22	24	26	25	24	22	22	20
Zr	113	100	73	91	115	117	115	87	69	108
Nb	10	10	-	-	-	-	-	-	-	7
Ba	264	279	121	128	248	259	254	194	96	212
Cs	4,61	-	-	-	3,31	-	-	-	-	30,6
V	341	330	236	325	260	255	252	245	255	345
Sc	-	-	-	-	-	-	-	-	-	28
Co	-	-	-	-	-	-	-	-	-	50
Cu	-	-	-	-	-	-	-	-	-	37
Ga	-	-	-	-	-	-	-	-	-	-
La	14,6	-	-	-	16,5	-	-	-	-	10,2
Ce	31,7	-	-	-	34,7	-	-	-	-	24,3
Pr	4,22	-	-	-	4,38	-	-	-	-	3,43
Nd	17,9	-	-	-	18,3	-	-	-	-	15,6
Sm	4,45	-	-	-	4,14	-	-	-	-	3,86
Eu	1,41	-	-	-	1,22	-	-	-	-	1,23
Gd	5,01	-	-	-	4,47	-	-	-	-	4,10
Tb	0,78	-	-	-	0,72	-	-	-	-	0,63
Dy	4,91	-	-	-	4,57	-	-	-	-	3,84
Но	0,97	-	-	-	0,91	-	-	-	-	0,74
Er	2,78	-	-	-	2,66	-	-	-	-	2,11
Tm	0,37	-	-	-	0,37	-	-	-	-	0,28
Yb	2,42	-	-	-	2,40	-	-	-	-	1,81
Lu	0,35	-	-	-	0,34	-	-	-	-	0,26
Hf	3,40	-	-	-	3,20	-	-	-	-	2,72
Ta	0,46	-	-	-	-	-	-	-	-	0,30
Th	1,91	-	-	-	3,48	-	-	-	-	1,21
U	0,37	-	-	-	0,44	-	-	-	-	0,31
Pb	7,93	-	-	-	5,31	-	-	-	-	3,68
Li	-	-	-	-	-	-	-	-	-	68,0
Sn	-	-	-	-	-	-	-	-	-	0,50

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	316	317	318	319A	319B	321	324	328A
SiO_2	49,7	50,7	49,9	50,5	50,0	47,1	49,3	49,5
TiO_2	1,32	1,58	0,91	1,67	1,53	0,96	0,71	0,94
Al_2O_3	15,9	15,3	17,1	15,0	16,9	15,3	16,6	17,0
Fe_2O_3	2,91	3,40	2,40	3,86	3,16	2,11	2,62	2,95
FeO	8,62	8,55	7,09	8,74	8,05	10,1	6,05	6,45
Fe ₂ O _{3 total}	12,5	12,9	10,3	13,6	12,1	13,3	9,34	10,1
MnO	0,19	0,20	0,16	0,20	0,19	0,19	0,16	0,17
MgO	5,74	5,10	6,14	4,96	4,56	10,7	7,60	6,31
CaO	10,1	9,56	11,3	9,61	10,3	8,69	12,6	11,8
Na ₂ O	2,52	2,66	2,50	2,61	2,73	2,13	2,13	2,40
K_2O	0,79	1,08	0,59	1,05	0,86	0,54	0,36	0,47
P_2O_5	0,14	0,17	0,10	0,17	0,15	0,11	0,07	0,09
CO_2	0,05	0,05	0,06	0,06	0,07	0,07	0,09	0,07
H_2O	1,05	1,11	0,90	1,04	1,07	1,23	1,07	1,27
Summe	99,09	99,50	99,11	99,48	99,57	99,26	99,34	99,40
Q	7,3	5,8	2,9	7,4	8,9	-	1,7	3,7
or	-	6,4	-	6,5	-	-	-	_
ab	19,9	19,5	19,2	19,8	19,6	19,0	19,1	19,4
an	35,3	31,4	40,0	31,9	37,8	33,9	36,9	40,3
lc	-	-	-	-	-	-	-	-
ne	-	-	-	-	-	-	-	-
kal	=	-	-	-	-	-	=	-
C	-	-	-	-	-	-	-	-
di	15,6	13,6	14,7	13,8	13,0	6,6	21,1	14,8
hy	18,1	19,0	21,6	16,2	16,4	29,5	19,5	20,1
W0	=	-	-	-	-	- 0.4	-	-
ol	-	-	-	-	-	9,4	-	-
ac mt	2,3	2,8	1,7	2,9	2,8	1,7	- 1,7	1,7
iil	2,3 1,5	2,8 1,5	- , /	1,5	2,8 1,5	-	-	1,/
hem	-	-	_	-	-	_	_	- -
ti	_	_	-	_	_	_	_	_
ap	-	-	-	_	_	_	_	-
cc	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-
ru	_	-	-	-	-	_	_	_

	328C	329A	330	331A	332	333B	334	335A
SiO_2	49,9	49,3	49,4	49,6	50,0	49,3	50,9	49,4
TiO_2	1,22	1,12	0,77	1,27	1,59	1,42	1,29	0,56
Al_2O_3	16,7	16,4	17,2	16,7	14,9	15,9	13,9	17,6
Fe_2O_3	2,52	4,94	2,45	3,33	3,62	3,51	3,02	1,77
FeO	7,43	5,93	6,34	7,08	8,75	8,05	7,42	6,39
		11,5		11,2				8,87
Fe ₂ O _{3 total}	10,8		9,50		13,3	12,5	11,3	
MnO	0,17	0,18	0,16	0,17	0,21	0,19	0,17	0,15
MgO	5,48	6,32	6,89	5,57	5,39	5,76	8,83	7,32
CaO	11,4	11,0	12,0	10,8	9,68	10,3	8,62	12,6
Na ₂ O	2,56	2,45	2,35	2,52	2,51	2,49	2,13	2,27
K_2O	0,70	0,59	0,38	0,75	0,98	0,76	0,72	0,33
P_2O_5	0,12	0,11	0,08	0,14	0,16	0,15	0,16	0,06
CO_2	0,05	0,07	0,08	0,08	0,05	0,07	0,31	0,08
H_2O	1,19	1,33	1,23	1,28	1,31	1,24	2,24	0,83
Summe	99,40	99,72	99,35	99,24	99,16	99,18	99,67	99,31
~	22,11	, , , <u> </u>	,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	,-	,,,,,	,,,,,	,,,,,	,, , -
Q	6,3	5,5	2,6	7,3	8,9	7,0	7,7	1,3
or	-	-	-	-	-	-	-	-
ab	19,6	19,3	19,2	19,6	20,2	19,7	19,7	19,0
an	37,8	37,3	39,9	37,9	32,8	35,1	29,0	39,6
lc	-	-	-	-	-	-	-	-
ne	-	-	-	-	-	-	-	=
kal	-	-	-	-	-	-	_	-
C	17.2	- 17.1	10.0	- 12.1	12.0	15.5	-	10.7
di by	17,3 15,2	17,1 16,5	18,9 17,8	13,1 17,8	13,9 19,7	15,5 18,3	11,6 27,6	18,7 20,2
hy wo	13,2	10,3	17,0	17,0	19,7	10,5	27,0	20,2
ol	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	<u>-</u>	_	<u>-</u>	-
ac	_	_	_	_	_	_	_	_
mt	2,3	2,8	1,7	2,9	2,9	2,9	2,9	1,1
il	1,5	1,5	- -	1,5	1,6	1,5	1,5	-
hem	-	-	-	-	-	-	-	-
ti	-	-	-	-	-	-	-	-
ap	-	-	-	-	-	-	-	-
cc	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-
ru	-	-	-	-	-	-	=	-

Tabelle A20	0: Haupteleme	ntgehalte un	d CIPW-No	rm der Gan	gdolerite (G	Sehalte in Ge	ew%)	
	336	342	343	347	348	351	353A	355A
SiO_2	49,7	48,2	49,4	49,3	49,6	49,4	50,1	47,8
TiO_2	1,39	0,88	1,51	1,36	1,30	0,74	1,31	1,33
Al_2O_3	15,9	17,0	16,3	16,2	16,3	16,8	16,6	16,3
Fe_2O_3	2,99	2,07	3,23	2,41	2,59	2,00	2,32	3,74
FeO	8,44	7,98	8,19	8,82	8,70	7,42	8,44	7,84
Fe ₂ O _{3 total}	12,4	10,9	12,3	12,2	12,3	10,2	11,7	12,4
MnO	0,19	0,16	0,19	0,19	0,19	0,17	0,18	0,18
MgO	5,41	8,57	5,21	5,71	5,63	7,33	5,11	6,57
CaO	9,98	10,7	10,2	10,7	10,2	12,0	10,1	11,8
Na ₂ O	2,60	2,44	2,60	2,50	2,49	2,32	2,68	2,28
K_2O	0,90	0,53	0,80	0,71	0,84	0,38	0,89	0,36
P_2O_5	0,14	0,08	0,16	0,13	0,13	0,07	0,15	0,07
CO_2	0,43	0,05	0,05	0,05	0,04	0,12	0,91	0,04
H_2O	1,04	0,62	1,34	1,17	1,14	0,85	0,54	0,88
Summe	99,13	99,18	99,21	99,16	99,24	99,57	99,32	99,19
Q	8,5	0,6	6,4	6,6	6,6	2,2	7,5	2,6
or	· =	-	-	-	-	-	-	- -
ab	20,1	19,2	19,5	19,6	19,6	19,3	19,4	19,5
an	35,7	37,2	37,6	37,9	37,9	37,2	37,5	37,7
lc	-	-	-	-	-	-	-	-
ne	-	-	-	-	-	-	-	-
kal	-	-	-	-	-	-	-	-
С	-	-	-	-	-	-	-	-
di	11,4	12,8	12,9	13,0	13,0	17,1	12,9	17,3
hy	20,5	28,5	19,3	19,0	19,0	23,1	18,9	18,5
WO	-	-	-	-	-	-	-	-
ol	-	-	-	-	-	-	-	-
ac mt	2,3	1,7	2,8	2,3	2,3	1,1	2,3	2,8
il	1,6	-	1,5	2,3 1,5	1,5	-	1,5	1,5
hem	-	_	-	-	-	_	-	-
ti	=	-	-	-	-	-	-	-
ap	-	-	-	-	-	-	-	-
cc	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-
ru	-	-	-	-	-	-	-	-

SiO ₂ 49,3 49,1 45,8 47,9 49,3 45,3 TiO ₂ 0,75 1,52 1,87 0,72 1,62 1,87 Al ₂ O ₃ 17,5 16,2 15,0 16,2 14,7 14,6 Fe ₂ O ₃ 2,64 3,48 5,13 Fe ₂ O _{3 total} 9,52 12,5 15,0 12,1 12,1 13,5 MnO 0,15 0,19 0,18 0,17 0,19 0,22 MgO 6,95 5,38 8,07 9,82 6,21 6,03 CaO 12,1 10,4 10,4 9,72 11,2 10,1 Na ₂ O 2,35 2,53 2,51 2,02 2,66 3,22 K ₂ O 0,37 0,75 0,38 0,70 0,58 0,91 P ₂ O ₅ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or	49,5 0,94 17,1 3,39 6,78 10,9 0,17 6,08 11,4 2,33 0,52	47,9 0,85 12,5 3,54 7,14 11,5 0,17
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17,1 3,39 6,78 10,9 0,17 6,08 11,4 2,33	12,5 3,54 7,14 11,5 0,17
Fe ₂ O ₃ 2,64 3,48 5,13 - - - FeO 6,20 8,14 8,92 - - - Fe ₂ O _{3 total} 9,52 12,5 15,0 12,1 12,1 13,5 MnO 0,15 0,19 0,18 0,17 0,19 0,22 MgO 6,95 5,38 8,07 9,82 6,21 6,03 CaO 12,1 10,4 10,4 9,72 11,2 10,1 Na ₂ O 2,35 2,53 2,51 2,02 2,66 3,22 K ₂ O 0,37 0,75 0,38 0,70 0,58 0,91 P ₂ O ₅ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 1	3,39 6,78 10,9 0,17 6,08 11,4 2,33	12,5 3,54 7,14 11,5 0,17
Fe ₂ O ₃ 2,64 3,48 5,13 -	3,39 6,78 10,9 0,17 6,08 11,4 2,33	3,54 7,14 11,5 0,17
FeO 6,20 8,14 8,92 - - - Fe ₂ O _{3 total} 9,52 12,5 15,0 12,1 12,1 13,5 MnO 0,15 0,19 0,18 0,17 0,19 0,22 MgO 6,95 5,38 8,07 9,82 6,21 6,03 CaO 12,1 10,4 10,4 9,72 11,2 10,1 Na ₂ O 2,35 2,53 2,51 2,02 2,66 3,22 K ₂ O 0,37 0,75 0,38 0,70 0,58 0,91 P ₂ O ₅ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,	6,78 10,9 0,17 6,08 11,4 2,33	7,14 11,5 0,17
Fe ₂ O _{3 total} 9,52 12,5 15,0 12,1 12,1 13,5 MnO 0,15 0,19 0,18 0,17 0,19 0,22 MgO 6,95 5,38 8,07 9,82 6,21 6,03 CaO 12,1 10,4 10,4 9,72 11,2 10,1 Na ₂ O 2,35 2,53 2,51 2,02 2,66 3,22 K ₂ O 0,37 0,75 0,38 0,70 0,58 0,91 P ₂ O ₅ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or - - - - -	10,9 0,17 6,08 11,4 2,33	11,5 0,17
MnO 0,15 0,19 0,18 0,17 0,19 0,22 MgO 6,95 5,38 8,07 9,82 6,21 6,03 CaO 12,1 10,4 10,4 9,72 11,2 10,1 Na ₂ O 2,35 2,53 2,51 2,02 2,66 3,22 K ₂ O 0,37 0,75 0,38 0,70 0,58 0,91 P ₂ O ₅ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or	0,17 6,08 11,4 2,33	0,17
MgO 6,95 5,38 8,07 9,82 6,21 6,03 CaO 12,1 10,4 10,4 9,72 11,2 10,1 Na ₂ O 2,35 2,53 2,51 2,02 2,66 3,22 K ₂ O 0,37 0,75 0,38 0,70 0,58 0,91 P ₂ O ₅ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or - - - - - - ab 19,2 19,5 19,3 20,9 21,3 33,2 an 39,9 37,6 34,4 40,4 34,7 30,4 lc - - - - - - <	6,08 11,4 2,33	
CaO 12,1 10,4 10,4 9,72 11,2 10,1 Na ₂ O 2,35 2,53 2,51 2,02 2,66 3,22 K ₂ O 0,37 0,75 0,38 0,70 0,58 0,91 P ₂ O ₅ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or	11,4 2,33	122
Na ₂ O 2,35 2,53 2,51 2,02 2,66 3,22 K ₂ O 0,37 0,75 0,38 0,70 0,58 0,91 P ₂ O ₅ 0,08 0,15 0,13 0,09 0,18 0,49 CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or	2,33	13,3
K2O 0,37 0,75 0,38 0,70 0,58 0,91 P2O5 0,08 0,15 0,13 0,09 0,18 0,49 CO2 0,08 0,12 0,06 0,19 0,10 1,23 H2O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or - - - - - - ab 19,2 19,5 19,3 20,9 21,3 33,2 an 39,9 37,6 34,4 40,4 34,7 30,4 lc - - - - - - ne - - - - - - kal - - - - - - cd - - - - - - dc - - - </td <td></td> <td>9,13</td>		9,13
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.52	1,40
CO ₂ 0,08 0,12 0,06 0,19 0,10 1,23 H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or	0,32	0,38
H ₂ O 0,98 1,18 0,66 0,64 1,25 2,73 Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or	0,08	0,09
Summe 99,40 99,13 99,12 100,26 100,11 86,79 Q 2,6 6,4 - 5,2 11,4 2,9 or	0,08	0,33
Q 2,6 6,4 - 5,2 11,4 2,9 or	1,19	2,52
or	99,58	99,29
or	2,9	_
an 39,9 37,6 34,4 40,4 34,7 30,4 de	-	_
le	19,2	9,7
ne	40,0	30,4
cal - - - - - - C - - - - - - - di 18,9 12,9 15,2 9,3 20,8 21,1 ny 17,8 19,3 17,7 24,3 9,3 9,9 wo - - - - - - -	-	-
di 18,9 12,9 15,2 9,3 20,8 21,1 my 17,8 19,3 17,7 24,3 9,3 9,9 wo	-	-
di 18,9 12,9 15,2 9,3 20,8 21,1 hy 17,8 19,3 17,7 24,3 9,3 9,9 wo	-	-
hy 17,8 19,3 17,7 24,3 9,3 9,9 wo	-	-
wo	14,7	14,1
	21,4	43,0
9,1	_	1,1
ac	_	-
mt 1,7 2,8 2,8	1,7	1,7
1 - 1,5 1,5	-	- -
nem	-	-
ti 2,5 2,6	-	-
ap	-	-
ee	-	-
pero		-

	316	317	318	319A	319B	321	324	328A
Cr	38	31	100	29	30	48	147	70
Ni	47	35	52	31	33	137	71	53
Zn	85	95	68	97	92	82	350	62
Rb	26	34	17	33	28	14	10	18
Sr	242	239	252	229	255	217	228	248
Y	23	32	20	36	30	22	20	19
Zr	97	127	73	125	111	79	52	63
Nb	7	11	5	8	7	6	5	4
Ba	166	213	96	205	177	150	76	78
Cs	-	-	2,68	-	-	0,96	1,76	-
V	404	413	335	583	400	259	318	390
Sc	34	_	-	-	-	21	-	39
Co	47	-	-	-	-	67	-	43
Cu	119	-	-	-	-	63	-	68
Ga	23	-	-	-	-	-	-	21
La	12,0	-	8,74	-	-	9,13	5,45	7,00
Ce	27,0	-	18,9	-	-	19,4	12,0	15,0
Pr	3,60	-	2,53	-	-	2,54	1,67	2,10
Nd	15,0	-	11,1	-	-	11,1	7,69	9,00
Sm	4,10	-	2,94	-	-	2,88	2,13	2,60
Eu	1,50	-	1,14	-	-	1,04	0,92	1,20
Gd	4,80	-	3,33	-	-	3,25	2,64	3,20
Tb	0,73	-	0,55	-	-	0,53	0,43	0,50
Dy	4,60	-	3,58	-	-	3,41	2,81	3,20
Но	0,94	-	0,71	-	-	0,67	0,56	0,65
Er	2,70	-	2,08	-	-	1,99	1,63	1,90
Tm	0,39	-	0,29	-	-	0,28	0,23	0,27
Yb	2,50	-	1,93	-	-	1,82	1,51	1,70
Lu	0,38	-	0,29	-	-	0,27	0,22	0,27
Hf	2,60	-	1,96	-	-	2,11	1,33	1,60
Та	0,42	-	-	-	-	0,30	-	0,25
Th	3,70	-	2,44	-	-	2,23	1,33	1,90
U	1,10	-	0,7	-	-	0,63	0,40	0,60
Pb	5,50	-	3,84	-	-	3,49	2,38	3,20
Li	-	-	-	-	-	11,0	-	-
Sn	-	_	-	-	-	0,20	-	_

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	328C	329A	330	331A	332	333B	334	335A
Cr	82	184	84	71	37	47	636	107
Ni	28	43	64	45	87	51	220	67
Zn	63	81	61	77	98	105	90	56
Rb	23	18	13	24	32	25	50	10
Sr	246	238	242	244	227	238	207	261
Y	26	25	15	28	32	28	37	16
Zr	91	80	57	100	117	101	178	43
Nb	8	5	5	7	10	7	-	4
Ba	142	128	87	125	190	157	373	67
Cs	-	-	-	-	-	-	71,5	-
V	409	375	322	363	485	409	231	291
Sc	-	-	-	35,0	-	-	-	-
Со	-	-	-	42	-	-	-	-
Cu	-	-	-	76	-	-	-	-
Ga	-	-	-	22	-	-	-	-
La	-	-	-	12,0	-	-	23,3	-
Ce	-	-	-	26,0	-	-	48,0	-
Pr	-	-	-	3,5	-	-	5,94	-
Nd	-	-	-	15,0	-	-	24,5	-
Sm	-	-	-	4,00	-	-	5,69	-
Eu	-	-	-	1,40	-	-	1,47	-
Gd	-	-	-	4,80	-	-	6,12	-
ТЬ	-	-	-	0,73	-	-	0,96	-
Dy	-	-	-	4,60	-	-	6,20	-
Но	-	-	-	0,95	-	-	1,25	-
Er	-	-	-	2,80	-	-	3,69	-
Tm	-	-	-	0,40	-	-	0,50	-
Yb	-	-	-	2,60	-	-	3,35	-
Lu	-	-	-	0,39	-	-	0,49	-
Hf	-	-	-	2,60	-	-	4,90	-
Га	-	-	-	0,45	-	-	-	-
Γh	-	-	-	3,30	-	-	3,70	-
U	-	-	-	1,00	-	-	0,56	-
Pb	-	-	-	4,50	-	-	7,10	-
Li	-	-	-	-	-	-	-	-
Sn	-	-	_	_	_	_	-	_

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	336	342	343	347	348	351	353A	355A
Cr	36	371	42	57	56	82	40	60
Ni	40	201	41	45	46	67	41	60
Zn	88	73	87	82	93	60	83	66
Rb	24	10	24	20	26	10	27	10
Sr	244	238	238	238	243	240	251	232
Y	29	19	30	23	24	17	29	14
Zr	101	79	113	93	97	53	106	50
Nb	8	-	-	6	9	5	7	5
Ba	158	229	167	150	168	64	164	78
Cs	-	-	-	-	-	-	-	-
V	408	175	414	410	375	326	358	902
Sc	32,0	-	32,0	-	-	-	-	-
Со	43	-	42	-	-	-	-	-
Cu	112	-	106	-	-	-	-	-
Ga	22	-	23	-	-	-	-	-
La	13,0	-	14,0	-	-	-	-	-
Ce	28,0	-	30,0	-	-	-	-	-
Pr	3,80	-	4,00	-	-	-	-	-
Nd	16,0	-	18,0	-	-	-	-	-
Sm	4,20	-	4,60	-	-	-	-	-
Eu	1,50	-	1,60	-	-	-	-	-
Gd	4,90	-	5,50	-	-	-	-	-
Tb	0,78	-	0,85	-	-	-	-	-
Dy	4,80	-	5,30	-	-	-	-	-
Но	0,99	-	1,09	-	-	-	-	-
Er	2,90	-	3,10	-	-	-	-	-
Tm	0,41	-	0,46	-	-	-	-	-
Yb	2,60	-	2,80	-	-	-	-	-
Lu	0,41	-	0,46	-	-	-	-	-
Hf	2,80	-	3,00	-	-	-	-	-
Та	0,61	-	0,58	-	-	-	-	-
Th	3,90	-	3,90	-	-	-	-	-
U	1,20	-	1,20	-	-	-	-	-
Pb	5,70	-	6,10	-	-	-	-	-
Li	-	-	-	-	-	-	-	-
Sn	-	=	-	-	-	-	=	-

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	356A	357A	360A	422	452	466	G199	G201
Cr	113	42	83	555	109	41	74	1475
Ni	43	50	225	257	42	55	56	434
Zn	57	93	85	86	84	184	87	90
Rb	10	22	10	11	12	38	20	20
Sr	248	241	376	207	270	310	245	135
Y	16	27	10	20	27	43	17	20
Zr	55	102	32	91	116	133	61	80
Nb	6	6	-	10	8	29	3	4
3a	89	153	140	230	182	325	104	163
Cs	-	-	-	-	0,22	-	1,3	5,05
V	311	437	486	172	422	366	-	-
Sc	-	-	-	-	-	-	35,0	29,0
Co	-	-	-	-	-	-	44	-
Cu	-	-	-	-	-	-	99	-
Ga	-	-	-	-	-	-	22	-
_a	-	-	-	-	13,2	-	8,40	8,63
Ce	-	-	-	-	29,7	-	18,0	18,7
Pr	-	-	-	-	4,07	-	2,40	2,50
Nd	-	-	-	-	18,2	-	10,0	10,8
Sm	-	-	-	-	4,67	-	2,70	2,80
Eu	-	-	-	-	1,60	-	1,10	0,88
Gd	-	-	-	-	5,21	-	3,20	3,24
ГЬ	-	-	-	-	0,82	-	0,53	0,54
Оу	-	-	-	-	5,11	-	3,50	3,42
Но	-	-	-	-	1,02	-	0,72	0,71
Ξr	-	-	-	-	2,92	-	2,10	2,05
Гт	-	-	-	-	0,40	-	0,30	0,28
Yb	-	-	-	-	2,61	-	1,90	1,88
Lu	-	-	-	-	0,39	-	0,28	0,28
Hf	-	-	-	-	3,33	-	1,70	2,19
Га	-	-	-	-	0,46	-	0,29	0,23
Γh	-	-	-	-	2,46	-	2,10	1,33
J	-	-	-	-	0,51	-	0,60	0,25
Pb	-	-	-	-	3,60	-	3,20	2,76
_i	-	-	-	-	-	-	-	-
Sn	_	-	-	-	-	_	-	-

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	439	427	425	440	426	446	447	448	449
SiO_2	40,6	38,4	36,6	44,3	43,4	44,6	45,3	44,4	43,4
TiO_2	1,66	2,35	2,35	2,61	1,78	1,75	1,68	2,13	2,03
Al_2O_3	16,4	14,0	13,7	15,4	14,9	16,8	17,4	15,0	14,8
Fe_2O_3	6,66	4,58	4,66	3,14	4,25	4,88	4,36	2,93	2,62
FeO	3,26	3,94	3,86	7,02	4,92	4,90	5,00	5,09	5,01
Fe ₂ O _{3 total}	10,3	8,96	8,95	10,9	9,72	10,3	9,92	8,58	8,19
MnO	0,25	0,16	0,17	0,20	0,27	0,18	0,17	0,13	0,13
MgO	4,77	7,09	6,13	6,17	8,51	4,16	4,35	8,40	7,80
CaO	12,3	13,9	13,6	9,06	9,84	8,72	9,52	8,54	8,12
Na ₂ O	2,81	2,07	3,03	3,88	2,45	4,31	2,87	2,16	2,06
K ₂ O	4,64	4,04	3,29	3,11	3,02	2,34	3,34	4,24	4,54
P_2O_5	1,39	1,34	1,94	1,07	0,86	0,75	0,72	0,37	0,38
CO_2	1,08	4,06	4,58	1,06	1,87	3,71	2,91	4,04	6,21
H_2O	3,84	3,23	3,23	3,13	3,29	3,13	2,67	2,81	2,40
Summe	99,68	99,10	97,05	100,24	99,36	100,25	100,20	100,25	99,55
Q	-	-	-	-	-	-	-	-	-
or	8,3	-	-	19,1	20,0	13,5	19,9	25,9	26,9
ab	-	-	-	15,6	9,5	24,3	19,0	7,3	7,7
an	25,9	16,8	15,5	20,0	22,9	22,5	32,0	22,1	19,9
lc	14,8	21,6	16,7	-	-	-	-	-	-
ne	12,2	12,3	19,0	8,0	6,5	9,9	0,7	7,5	7,7
kal	-	-	-	-	-	-	-	-	-
C di	- 27.2	- 22.4	- 22.7	- 16 0	21.0	- 10 1	- 1 <i>4.4</i>	- 17.2	20.2
ui hy	27,3	32,4	32,7	16,8	21,9	18,1	14,4	17,2	20,3
wo	-	-	-	-	-	-	-	-	- -
ol	4,6	4,5	2,5	11,9	14,8	7,0	9,5	14,7	12,0
ac	-	- -	-	-	-	-	-	-	-
mt	3,0	4,2	4,3	3,4	2,9	3,0	2,9	2,3	2,4
il	1,6	3,2	3,3	3,0	1,6	1,6	1,6	3,1	3,2
nem	-	-	-	-	-	-	-	- ,-	-,-
ti	_	_	_	_	_	-	-	_	_
ap	2,4	2,4	2,5	2,2	-	-	-	-	-
cc	-	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-	-
ru	-	-	-	-	-	-	-	-	_

100	belle A27: Sp		425	r Aikaiibasa 440		• • • • • • • • • • • • • • • • • • • •	*	449	110
	439	427			426	446	447		448
Cr	10	51	19	57	297	10	16	224	249
Ni	29	56	39	46	150	30	36	148	152
Zn	91	66	71	85	148	77	75	63	57
Rb	132	154	129	78	86	171	176	174	173
Sr	1776	1918	2264	1110	1951	651	771	528	510
Y	30	24	31	23	21	34	31	18	17
Zr	279	307	337	304	228	187	175	207	203
Nb	364	241	223	170	109	85	79	55	53
Ba	2556	1926	2103	1497	1461	1280	1285	1152	1107
Cs	18,9	87,8	117	22,7	11,2	13,8	21,1	410	630
V	285	266	247	205	234	231	228	221	240
Sc	-	-	-	-	-	-	-	-	-
Co	-	-	-	-	-	-	-	-	-
Cu	-	-	-	-	-	-	-	-	-
Ga	-	-	-	-	-	-	-	-	-
La	189	127	205	104	87,8	72,3	68,0	34,7	33,0
Ce	308	225	338	179	149	126	120	66,2	64,4
Pr	29,5	23,6	33,9	18,6	15,3	13,4	12,8	7,61	7,39
Nd	97	82,5	113	66,5	52,4	47,6	46,1	28,4	27,9
Sm	13,6	12,6	16,3	10,3	8,06	8,17	7,93	5,19	5,19
Eu	4,05	3,61	4,71	3,15	2,46	2,48	2,46	1,63	1,66
Gd	9,98	9,13	11,7	8,11	6,20	7,31	7,09	4,44	4,57
Tb	1,3	1,15	1,45	1,04	0,84	1,08	1,02	0,63	0,64
Dy	7,05	5,96	7,46	5,69	4,58	6,47	6,24	3,63	3,70
Но	1,27	1,02	1,27	1,01	0,83	1,27	1,22	0,68	0,69
Er	3,55	2,59	3,23	2,73	2,24	3,65	3,5	1,82	1,85
Tm	0,46	0,32	0,41	0,35	0,30	0,52	0,48	0,24	0,25
Yb	2,95	2,01	2,42	2,25	1,91	3,32	3,13	1,51	1,56
Lu	0,40	0,30	0,36	0,33	0,28	0,49	0,47	0,23	0,23
Hf	3,85	6,68	6,64	6,74	5,14	4,37	4,13	5,69	5,68
Та	14,7	12,6	9,60	9,37	7,30	5,00	4,70	5,10	5,10
Th	30,4	14,7	25,0	12,3	11,3	8,84	8,13	3,98	3,83
U	7,56	3,49	5,69	2,6	2,66	2,64	2,08	1,06	0,96
Pb	13,3	21,2	12,3	7,76	11,5	8,97	9,59	6,46	3,57
Li	-	-	411	-	-	-	-	-	-
Sn	-	_	-	_	_	_	_	_	-

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

Tabelle A28: Hauptelemente und CIPW-Norm der Tholeiite an der Basis des Erongo-Komplexes. (Gehalte in Gew.-%)

	301A	301B	313	G149	G178	G180	G183a	G192
SiO_2	53,6	59,6	59,3	57,2	57,8	58,1	58,6	58,3
TiO ₂	1,89	1,77	2,14	1,72	2,15	2,16	1,56	1,76
Al_2O_3	14,3	13,6	13,4	13,1	13,1	13,2	12,7	13,4
Fe_2O_3	2,91	5,17	5,43	6,1	7,4	7,84	4,42	6,02
FeO						2,86		
	7,65	3,3	4,77	3,59	3,22		4,79	3,66
Fe ₂ O _{3 total}	11,4	8,83	10,7	10,1	11,0	11,0	9,74	10,1
MnO	0,17	0,11	0,13	0,13	0,15	0,16	0,09	0,11
MgO	3,75	1,49	1,62	1,99	1,6	1,53	0,92	1,94
CaO	5,37	3,94	4,59	5,42	4,51	3,93	4,15	3,95
Na ₂ O	2,16	2,3	1,98	1,63	2,12	2,41	1,47	2,39
K_2O	3,21	4,78	4,14	3,97	4,52	4,57	5,08	4,47
P_2O_5	0,29	0,32	0,36	0,29	0,35	0,36	0,52	0,3
CO_2	0,70	0,93	0,14	2,22	1,06	0,5	3,04	1,08
H_2O	3,32	2,12	1,09	2,61	1,9	1,72	2,24	2,06
Summe	99,32	99,43	99,09	99,97	99,88	99,34	99,58	99,44
	,	,	,	,	,	,	,	,
Q	11,9	22,6	27,5	26,6	19,5	22,7	25,1	20,8
or	20,1	26,8	26,6	20,6	26,5	26,7	34,7	26,9
ab	20,4	20,4	10,1	10,5	20,1	20,3	10,6	20,5
an	23,1	16,7	21,6	25,8	16,5	16,6	15,9	16,7
lc	-	-	-	-	-	-	-	-
ne	-	-	-	-	-	-	-	-
kal	-	-	-	-	-	-	-	-
C	-	-	-	-	-	-	-	-
di 1	4,0	0,2	0,6	2,5	4,6	0,2	6,0	0,2
hy wo	16,5	8,7	6,3	9,4	5,6	6,1	3,1	10,3
ol	_	<u>-</u>	<u>-</u>	- -	<u>-</u>	- -	<u>-</u>	<u>-</u>
ac	_	_	_	_	_	_	_	_
mt	2,4	3,0	4,1	3,0	4,1	4,1	3,1	3,0
il	1,6	1,6	3,1	1,6	3,1	3,2	1,6	1,6
hem	-	-	-	-	-	-	-	-
ti	-	-	-	-	-	-	-	-
ap	-	-	-	-	-	-	-	-
cc	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-
ru	-	-	-	-	-	-	_	-

	301A	301B	313	G149	G178	G180	G183a	G192
Cr	20	10	10	15	10	10	10	16
Ni	17	7	6	10	10	10	5	10
Zn	99	76	140	131	110	138	59	130
Rb	108	159	135	153	162	171	243	158
Sr	227	282	249	171	197	211	142	268
Y	45	51	59	47	56	58	76	49
Zr	234	310	351	288	353	356	488	298
Nb	16	20	22	20	22	24	27	18
Ba	816	1043	929	723	928	1039	1440	868
Cs	3,40	3,29	4,20	3,00	4,10	4,39	9,00	2,00
V	185	-	-	-	-	-	-	-
Sc	23,0	17,0	17,0	18,0	16,0	17,0	14,0	18,0
Co	32	15	21	21	21	20	17	22
Cu	18	22	29	24	44	60	77	23
Ga	-	-	-	-	-	-	-	-
La	36,8	52,1	60,5	47,2	57,9	57,9	77,6	49,6
Се	76,4	109	126	99,3	121	121	161	104
Pr	9,68	13,7	15,5	12,4	15,0	15,1	19,8	12,9
Nd	39,3	54,0	61,4	49,0	59,1	59,4	77,9	51,1
Sm	8,47	11,0	12,7	10,1	12,2	12,1	15,9	10,6
Eu	1,94	2,00	2,24	1,92	2,10	2,14	2,53	2,01
Gd	8,09	10,0	11,4	9,26	10,9	11,2	14,3	9,43
Тb	1,26	1,48	1,74	1,38	1,65	1,65	2,12	1,41
Dy	7,66	9,13	10,4	8,29	9,88	10,0	13,2	8,58
Но	1,52	1,79	2,01	1,64	1,93	1,98	2,60	1,68
Er	4,50	5,32	5,87	4,81	5,60	5,77	7,50	4,91
Гт	0,62	0,75	0,84	0,66	0,79	0,79	1,03	0,70
Yb	4,11	4,78	5,42	4,40	5,21	5,25	6,75	4,60
Lu	0,60	0,71	0,80	0,64	0,77	0,79	1,02	0,66
Hf	6,60	8,85	9,60	8,28	9,89	10,20	13,0	8,27
Га	0,90	1,00	1,20	0,90	1,20	1,10	1,60	1,00
Th	11,0	17,0	18,0	15,2	18,0	17,9	21,0	16,0
U	1,52	2,19	2,70	1,70	2,30	2,47	2,70	2,30
Pb	13,0	30,0	24,0	22,2	17,3	16,5	11,8	19,4
Li	30,0	20,0	30,0	31,0	37,0	39,0	28,0	27,0
Sn	_	_	_	0,20	_	0,40	_	_

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	379	307A	307B	393C	451	453	458	G174a
SiO_2	69,3	69,3	70,8	48,9	68,0	69,3	73,6	68,4
TiO_2	0,76	0,72	0,77	1,16	0,79	0,38	0,3	0,76
Al_2O_3	13,9	13,7	13,5	13,5	13,8	14,9	13,0	13,4
Fe_2O_3	1,27	1,29	-	2,79	2,46		_	2,67
FeO	3,24	2,95	_	8,03	2,14	_	_	1,87
Fe ₂ O _{3 total}	4,87	4,57	4,16	11,7	4,84	3,46	2,26	4,75
MnO	0,07	0,06	0,03		0,08	0,06	0,02	0,08
				0,23				
MgO	1,04	0,90	1,02	9,8	1,28	0,61	0,39	0,85
CaO	1,79	1,67	0,81	9,48	1,77	1,91	0,75	1,67
Na ₂ O	2,62	2,44	1,82	1,85	2,42	3,08	2,54	2,47
K_2O	4,98	5,24	4,56	1,45	4,83	5,06	5,96	5,23
P_2O_5	0,23	0,22	0,27	0,13	0,24	0,15	0,17	0,22
CO_2	0,03	0,06	0,23	0,11	0,25	0,22	0,05	0,3
H_2O	0,61	0,83	1,61	2,40	1,81	0,84	0,64	1,43
Summe	99,84	99,38	99,58	99,83	99,87	99,97	99,68	99,35
0	266	25.5	50.5	4.1	26.7	20.5	42.0	25.5
Q	36,6	35,5	50,5	4,1	36,7	30,7	42,8	35,5
or ab	25,7 19,6	32,5 19,8	27,2 10,3	6,5 9,8	26,0 19,8	32,3 29,4	32,4 19,7	32,9 20,0
an	5,4	5,5	-	30,7	5,5	5,4	19,7	5,5
lc	-	-	_	-	-	-	_	-
ne	-	_	_	_	-	_	_	_
kal	-	-	-	-	-	-	-	_
C	4,2	3,0	8,8		4,3	2,2	5,1	3,0
di	-	-	-	14,6	-	-	-	-
hy	7,3	2,6	3,2	30,5	6,1	-	-	1,3
wo	=	-	-	-	-	-	-	-
ol	-	-	-	-	-	-	-	-
ac	- 1 1	1.2	_	2.2	- 1 7	-	_	17
mt il	1,1	1,2	-	2,3 1,5	1,7	-	-	1,7
hem	- -	-	- -	-	- -	- -	- -	-
ti	-	-	-	-	-	-	-	_
ap	-	-	-	-	-	-	-	-
cc	-	-	-	-	-	-	-	-
pero	-	-	-	-	-	-	-	-
ru	_	-	-	=	-	-	-	-

xxxviii

	G175	G179	G182	G189	G190	314	467	G153b
SiO_2	68,6	68,2	74,8	66,8	69,5	69,7	68,1	70,6
TiO ₂	0,77	0,67	0,19	0,81	0,65	0,51	0,64	0,64
Al_2O_3	13,6	13,0	12,8	13,7	12,1	12,5	12,7	12,9
Fe_2O_3	2,73	-	1,51	2,49	-	4,98	-	-
FeO	1,96	-	-	2,54	-	0,66	_	_
Fe ₂ O _{3 total}	4,91	4,34	1,51	5,31	4,49	5,71	5,42	4,76
MnO	0,10	0,06	0,01	0,13	0,01	0,06	0,05	0,03
MgO	0,96	0,59	0,14	1,15	0,19	0,19	0,48	0,43
CaO	1,79	1,53	0,41	1,86	1,27	1,82	2,34	0,65
Na ₂ O	2,25	2,98	2,97	2,51	0,02	2,27	1,26	0,8
K ₂ O	5,07	5,36	5,43	4,78	8,61	5,81	5,32	6,16
P_2O_5	0,22	0,2	0,23	0,24	0,17	0,1	0,18	0,18
CO_2	0,07	1,34	0,21	0,72	0,82	0,21	1,61	0,39
H_2O	1,28	1,09	0,82	1,86	1,23	0,58	1,76	1,79
Summe	99,40	99,36	99,52	99,59	99,06	99,39	99,86	99,33
Q	35,5	37,1	43,6	35,3	38,4	35,7	41,9	51,2
or	32,9	33,7	32,2	26,6	54,0	32,7	34,4	41,7
ıb	20,0	20,5	19,6	20,2	-	19,9	10,5	-
ın	5,5	5,7	-	5,6	5,7	5,5	11,6	-
c	-	-	-	-	-	-	-	-
ne	-	-	-	-	-	-	-	-
cal	-	-	-	-	-	-	-	-
C di	3,0	3,1	3,9	4,4	1,9	1,8	1,7	7,1
11 1y	1,3	- -	- -	6,2	<u>-</u> -	2,7	<u>-</u>	-
wo	-	<u>-</u>	<u>-</u>	-	<u>-</u>	<i>2</i> , <i>1</i>	<u>-</u>	- -
ol	-	-	-	-	-	-	-	-
ac	-	-	-	-	-	-	_	_
mt	1,7	-	-	1,8	-	1,7	-	-
1	-	-	-	-	-	-	-	-
nem	-	-	0,8	-	-	-	-	-
i	-	-	-	-	-	-	-	-
ap	-	-	-	-	-	-	-	-
ec	-	-	-	-	-	-	-	-
pero ru	-	-	-	=	-	-	-	-

	379	307A	307B	393C	451	453	458	G174a
Cr	38	19	16	847	10	11	<10	16
Ni	13	<10	16	156	12	<10	<10	<10
Zn	84	98	73	80	88	69	65	119
Rb	207	226	177	94	209	229	349	233
Sr	136	131	117	183	140	152	55	116
Y	46	48	57	21	46	52	50	48
Zr	283	310	285	95	267	337	221	308
Nb	17	-	<10	<10	19	<10	<10	20
Ва	744	770	2285	209	682	795	392	738
Cs	-	-	_	-	6,85	-	-	7,61
V	38	-	48	285	56	18	10	-
Sc	-	-	_	-	-	-	-	_
Co	-	-	_	-	-	-	-	-
Cu	-	-	-	-	-	-	-	-
Ga	-	-	-	-	-	-	-	-
La	-	-	_	-	51,4	-	-	56,9
Ce	-	-	-	-	107	-	-	119
Pr	-	-	-	-	13,0	-	-	14,5
Nd	-	-	-	-	49,4	-	-	54,8
Sm	-	-	-	-	10,2	-	-	11,2
Eu	-	-	-	-	1,29	-	-	1,30
Gd	-	-	_	-	9,03	-	-	9,66
Tb	-	-	-	-	1,36	-	-	1,43
Dy	-	-	-	-	7,81	-	-	8,27
Но	-	-	_	-	1,48	-	-	1,58
Er	-	-	_	-	4,23	-	-	4,41
Tm	-	-	-	-	0,57	-	-	0,62
Yb	-	-	-	-	3,62	-	-	3,89
Lu	-	-	_	-	0,52	-	-	0,57
Hf	-	-	-	-	4,53	-	-	6,31
Га	-	-	-	-	1,2	-	-	1,12
Γh	-	-	-	-	23,5	-	-	25,0
U	-	-	-	-	4,94	-	-	3,46
Pb	-	-	-	-	29,4	-	-	58,5
Li	-	-	-	-	-	-	-	-
Sn	_	_	_	_	_	_	_	_

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

x1

	G175	G179	G182	G189	G190	314	467	G153t
Cr	26	24	10	39	<10	13	10	20
Ni	11	<10	<10	11	<10	<10	<10	11
Zn	83	105	24	169	81	120	98	85
Rb	203	246	430	219	303	233	216	240
Sr	135	79	26	127	172	114	82	91
Y	49	49	33	45	57	67	62	56
Zr	306	317	100	276	365	448	363	366
Nb	14	12	12	14	6	26	12	20
Ва	749	808	113	690	960	1226	2161	806
Cs	-	-	13,8	-	-	5,30	4,06	2,55
V	-	-	-	-	-	-	<10	-
Sc	-	-	-	-	-	-	-	7,8
Co	-	-	-	-	-	-	-	-
Cu	-	-	-	-	-	-	-	-
Ga	-	-	-	-	-	-	-	-
La	-	-	13,4	-	-	79,5	82,8	64,0
Се	-	-	29,7	-	-	164	146	127
Pr	-	-	3,65	-	-	20,2	20,1	15,9
Nd	-	-	13,5	-	-	76,4	77,5	61,1
Sm	-	-	3,56	-	-	15,3	15,3	12,5
Eu	-	-	0,20	-	-	1,87	2,06	1,43
Gd	-	-	3,74	-	-	13,1	13,3	10,8
Тb	-	-	0,74	-	-	1,99	1,88	1,60
Dy	-	-	5,06	-	-	12,0	10,9	9,36
Но	-	-	1,04	-	-	2,34	2,09	1,82
Er	-	-	3,16	-	-	6,84	5,99	5,26
Тт	-	-	0,46	-	-	0,97	0,83	0,74
Yb	-	-	3,05	-	-	6,27	5,43	4,76
Lu	-	-	0,42	-	-	0,92	0,81	0,70
Hf	-	-	3,05	-	-	12,9	10,8	9,72
Га	-	-	2,06	-	-	1,30	1,20	1,11
Γh	-	-	12,0	-	-	27,6	25,6	25,3
U	-	-	6,52	-	-	4,45	3,15	3,54
Pb	-	-	26,1	-	-	34,0	25,4	20,7
Li	-	-	-	-	-	31,0	19,0	-
Sn	_	_	_	_	_	_	_	_

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

Tabelle A34: Hauptelemente und CIPW-Norm des Erongo-Granits & Ombu-Granodiorits (Gehalte in Gew.-

%)	445	151	155	450	201	C197
	445	454	455	459	391	G187
SiO_2	76,7	73,7	76,2	57,6	68,8	65,4
TiO_2	0,08	0,21	0,11	0,95	0,76	0,90
Al_2O_3	12,7	13,3	12,5	17,5	14,2	14,0
Fe_2O_3	0,71	-	-	-	0,91	3,35
FeO	0,66	-	-	-	3,72	2,94
Fe ₂ O _{3 total}	1,44	1,97	1,52	7,58	5,05	6,62
MnO	0,02	0,04	0,02	0,11	0,07	0,10
MgO	0,12	0,29	0,19	3,35	1,28	1,26
CaO	0,35	0,70	0,45	1,76	1,88	2,43
Na ₂ O	2,94	2,75	2,72	2,75	2,73	2,86
K_2O	5,33	5,35	5,08	4,79	4,60	4,30
P_2O_5	0,06	0,23	0,19	0,17	0,24	0,27
CO ₂	0,05	0,13	0,04	0,04	0,04	0,05
H_2O	0,56	0,76	0,65	2,86	0,85	1,44
Summe	100,32	99,40	99,64	99,49	100,53	99,63
Q	36,1	34,9	38,7	15,4	26,4	23,5
or	32,1	33,1	31,3	31,3	27,9	26,5
ab	26,9	25,9	25,5	27,3	25,1	26,8
an	1,4	2,1	1,0	8,4	7,9	10,7
lc	-	-	-	-	-	-
ne kal	-	-	-	-	-	-
C	1,8	2,5	2,5	6,1	2,1	1,0
di	-	-	-	-	- -	-
hy	0,8	0,8	0,5	10,2	7,9	6,9
wo	-	-	-	-	-	-
ol	-	-	-	-	-	-
ac	-	-	-	-	-	-
mt	0,8	-	-	-	1,0	2,6
il	0,1	0,1	-	0,2	1,1	1,3
hem	-	-	-	-	-	-
ti an	0,1	0,5	0,4	0,4	- 0,5	0,6
ap cc	U,1 -	0, <i>3</i> -	U, 4 -	U, 4	U,J -	-
pero	_	_	-	-	-	-
ru	-	0,1	0,1	0,6	-	-

	445	454	455	459	391	G187
Cr	<10	13	<10	93	23	32
Ni	12	<10	<10	28	18	12
Zn	45	59	44	131	88	114
Rb	636	442	503	245	193	202
Sr	17	36	14	164	141	148
Y	154	37	59	37	41	53
Zr	118	113	109	221	243	301
Nb	23	<10	<10	18	<10	16
Ba	37	175	28	940	673	649
Cs	24	26	24	7	-	-
V	<10	<10	<10	129	68	-
Sc	-	-	-	-	-	-
Co	-	-	-	-	-	-
Cu	-	-	-	-	-	-
Ga	-	-	-	-	-	-
La	32,2	17,2	12,8	47,8	-	-
Ce	87,8	38,0	31,2	97,3	-	-
Pr	10,6	4,69	3,80	11,9	-	-
Nd	37,6	17,2	13,3	45,2	-	-
Sm	11,9	4,49	3,76	9,01	-	-
Eu	0,11	0,34	0,07	1,82	-	-
Gd	13,9	4,53	4,49	7,68	-	-
Tb	3,14	0,90	1,09	1,16	-	-
Dy	22,7	6,06	8,40	6,86	-	-
Но	4,77	1,20	1,85	1,35	-	-
Er	15,4	3,68	6,18	3,98	-	-
Tm	2,31	0,54	0,97	0,56	-	-
Yb	15,1	3,57	6,51	3,72	-	-
Lu	2,05	0,50	0,90	0,55	-	-
Hf	6,17	3,74	4,43	4,37	-	-
Та	3,58	1,83	2,99	1,30	-	-
Th	43,4	15,1	21,8	16,7	-	-
U	28,0	5,44	11,0	3,32	-	-
Pb	30,6	27,2	22,2	30,0	-	-
Li	-	-	-	-	-	-
Sn	-	-	-	-	-	-

^{-:} Die Gehalte wurden nicht ermittelt oder lagen unterhalb der Nachweisgrenze.

	300	312	315	385	378A	G149a	G152
Sm [ppm]	4,09	5,70	4,60	5,03	3,91	8,00	4,80
Nd [ppm]	15,0	28,8	21,3	22,0	15,9	34,6	17,9
$^{143}Nd/^{144}Nd_{m}$	0,512577	0,512548	0,512483	0,512401	0,512453	0,512327	0,512599
2σ-Messfehler	0,000005	0,000005	0,000006	0,000007	0,000005	0,000005	0,000006
143 Nd/ 144 Nd $_{130 \text{ Ma}}$	0,512437	0,512451	0,512372	0,512283	0,512327	0,512214	0,512470
ε _{Nd (130 Ma)}	-0,7	-0,4	-1,9	-3,7	-2,8	-5,0	0,0
Rb [ppm]	59	29	23	28	15	71	27
Sr [ppm]	224	416	307	310	218	308	294
87 Sr/ 86 Sr $_{\rm m}$	0,712861	0,706373	0,707592	0,709243	0,708435	0,715242	0,708359
2σ-Messfehler	0,000004	0,000004	0,000004	0,000004	0,000004	0,000005	0,000004
$^{87}{\rm Sr}/^{86}{\rm Sr}$ $_{130~{\rm Ma}}$	0,71145	0,70600	0,70719	0,70876	0,70806	0,71400	0,70787
Th [ppm]	2,70	6,18	3,90	1,60	1,60	8,68	2,36
U [ppm]	0,60	1,37	0,89	0,30	0,30	1,43	0,47
Pb [ppm]	6,30	6,03	5,00	7,30	2,50	9,85	3,96
²⁰⁶ Pb/ ²⁰⁴ Pb _m	20,86	18,95	22,54	18,64	18,64	18,85	18,81
207 Pb/ 204 Pb _m	15,80	15,67	15,91	15,69	15,69	15,69	15,64
²⁰⁸ Pb/ ²⁰⁴ Pb _m	40,44	38,96	38,95	38,89	38,74	39,27	38,89
²⁰⁶ Pb/ ²⁰⁴ Pb _{130 Ma}	20,72	18,67	22,29	18,59	18,48	18,65	18,65
$^{207}\text{Pb}/^{204}\text{Pb}$ $_{130~\text{Ma}}$	15,79	15,66	15,90	15,69	15,68	15,68	15,64
$^{208}Pb/^{204}Pb\ _{130\ Ma}$	40,24	38,51	38,59	38,79	38,46	38,88	38,63

Bemerkungen zur Analytik und Datenauswertung: Die 87 Sr. 86 Sr- und 143 Nd. 144 Nd-Verhältnisse wurden unter Verwendung von λ 87 Rb = 1,42E-11 y^{-1} , λ 147 Sm = 6,54E-12 y^{-1} , $(^{147}$ Sm. 144 Nd) 0 CHUR = 0,1966 und $(^{143}$ Nd. 144 Nd) 0 CHUR = 0,512638 auf 130 Ma (Höhepunkt des Paraná-Etendeka-Flutbasaltvulkanismus) zurückgerechnet. Die Pb-Isotopenverhältnisse wurden aufgrund der instrumentell vorliegenden Massenfraktionierung mit einem Faktor von 0,11 % amu korrigiert. Der Korrekturfaktor basiert auf Wiederholungsmessungen des NBS 981. Der 2σ -Messfehler der Pb-Isotopenverhältnisse ist < 0,1%. Die Rb- und Sr-Konzentrationen wurden mit der RFA gemessen (relative Standardabweichung < 10 %). Die Messung der Sm-, Nd-, Th-, U- und Pb-Konzentrationen erfolgte mit der ICP-MS (relative Standardabweichung < 10 %).

	G181	G184a	G185	G195	G196	G197
Sm [ppm]	8,70	4,30	3,18	5,60	6,20	5,20
Nd [ppm]	38,0	17,0	12,7	28,0	30,0	22,0
143 Nd/ 144 Nd $_{\rm m}$	0,512313	0,512361	0,512419	0,512539	0,512507	0,51222
2σ-Messfehler	0,000004	0,000004	0,000007	0,000006	0,000005	0,000004
143 Nd/ 144 Nd $_{130 \text{ Ma}}$	0,512196	0,512231	0,512291	0,512437	0,512401	0,512099
€ _{Nd (130 Ma)}	-5,4	-4,7	-3,5	-0,7	-1,4	-7,3
Rb [ppm]	68	31	15	31	37	12
Sr [ppm]	275	177	188	378	420	226
⁸⁷ Sr/ ⁸⁶ Sr _m	0,715606	0,711463	0,707659	0,706632	0,707048	0,711560
2σ-Messfehler	0,000005	0,000004	0,000004	0,000004	0,000004	0,000004
⁸⁷ Sr/ ⁸⁶ Sr _{130 Ma}	0,71428	0,71053	0,70723	0,70619	0,70658	0,71128
Th [ppm]	10,0	2,80	0,75	6,20	5,56	2,54
U [ppm]	1,30	0,40	0,19	1,30	1,50	0,37
Pb [ppm]	6,80	5,90	3,00	5,30	6,56	8,32
²⁰⁶ Pb/ ²⁰⁴ Pb _m	18,84	18,61	18,59	19,01	18,97	18,45
207 Pb/ 204 Pb _m	15,68	15,69	15,67	15,67	15,67	15,67
208 Pb/ 204 Pb m	39,35	38,78	38,51	39,03	38,91	38,83
²⁰⁶ Pb/ ²⁰⁴ Pb _{130 Ma}	18,59	18,52	18,51	18,68	-	18,45
²⁰⁷ Pb/ ²⁰⁴ Pb _{130 Ma}	15,67	15,68	15,67	15,66	-	15,67
²⁰⁸ Pb/ ²⁰⁴ Pb _{130 Ma}	38,71	38,58	38,40	38,52	-	38,83

Tabelle A38: Isotopenverhältnisse der Tholeiite an der Basis des Erongo-Komplexes

	301A	301B	G178	G192
Sm [ppm]	8,47	11,0	12,2	10,6
Nd [ppm]	39,3	54,0	59,1	51,1
143 Nd/ 144 Nd $_{\rm m}$	0,512263	0,512176	0,512191	0,512187
2σ-Messfehler	0,000006	0,000005	0,000006	0,000006
¹⁴³ Nd/ ¹⁴⁴ Nd _{130 Ma}	0,512153	0,512070	0,512085	0,512081
ε _{Nd (130 Ma)}	-6,2	-7,8	-7,5	-7,6
Rb [ppm]	108	159	162	158
Sr [ppm]	227	282	197	268
⁸⁷ Sr/ ⁸⁶ Sr _m	0,717312	0,719497	0,719297	0,719287
2σ-Messfehler	0,000006	0,000004	0,000005	0,000004
⁸⁷ Sr/ ⁸⁶ Sr _{130 Ma}	0,71477	0,71648	0,714900	0,71613
Th [ppm]	11,0	17,0	18,0	16,0
U [ppm]	1,52	2,19	2,30	2,30
Pb [ppm]	13,0	30,0	17,3	19,4
²⁰⁶ Pb/ ²⁰⁴ Pb _m	19,01	18,86	18,81	18,85
207 Pb/ 204 Pb _m	15,72	15,71	15,74	15,69
208 Pb/ 204 Pb _m	39,16	39,06	39,51	39,27
²⁰⁶ Pb/ ²⁰⁴ Pb _{130 Ma}	18,85	18,76	18,63	18,69
²⁰⁷ Pb/ ²⁰⁴ Pb _{130 Ma}	15,71	15,70	15,73	15,69
²⁰⁸ Pb/ ²⁰⁴ Pb _{130 Ma}	38,79	38,81	39,05	38,91

	324	328A	336	456
Sm [ppm]	2,13	2,60	4,20	4,45
Nd [ppm]	7,69	9,00	16,0	17,9
43 Nd/ 144 Nd $_{\rm m}$	0,512570	0,512550	0,512495	0,512502
cσ-Messfehler	0,000007	0,000004	0,000007	0,000006
⁴³ Nd/ ¹⁴⁴ Nd _{130 Ma}	0,512428	0,512402	0,512361	0,512375
Nd (130 Ma)	-0,8	-1,3	-2,1	-1,9
Rb [ppm]	10	22	31	16
Sr [ppm]	228	255	253	255
7 Sr/ 86 Sr m	0,710280	0,710598	0,711507	0,708682
2σ-Messfehler	0,000005	0,000009	0,000007	0,000006
¹⁷ Sr/ ⁸⁶ Sr _{130 Ma}	0,71005	0,71014	0,71085	0,70835
Th [ppm]	1,33	1,90	3,90	1,91
J [ppm]	0,40	0,60	1,20	0,37
Pb [ppm]	2,38	3,20	5,70	7,93
$^{06}{ m Pb}/^{204}{ m Pb}_{ m m}$	19,22	19,23	19,21	18,74
107 Pb/ 204 Pb m	15,70	15,70	15,71	15,71
$^{08}\mathrm{Pb}/^{204}\mathrm{Pb}$ m	39,08	39,11	39,17	38,97
⁰⁶ Pb/ ²⁰⁴ Pb _{130 Ma}	18,99	18,98	18,93	18,68
107 Pb/ 204 Pb $_{130 \text{ Ma}}$	15,69	15,69	15,70	15,71
108 Pb/ 204 Pb $_{130 \text{ Ma}}$	38,84	38,85	38,87	38,86

	425	426	446	447	448	449
Sm [ppm]	16,3	8,06	8,17	7,93	5,19	5,19
Nd [ppm]	113	52,4	47,6	46,1	27,9	28,4
¹⁴³ Nd/ ¹⁴⁴ Nd _m	0,512678	0,512704	0,512633	0,512631	0,512697	0,512697
2σ-Messfehler	0,000007	0,000007	0,000005	0,000007	0,000007	0,000006
143 Nd/ 144 Nd $_{130 \text{ Ma}}$	0,512604	0,512625	0,512545	0,512543	0,512536	0,512603
ENd (130 Ma)	2,6	3,0	1,5	1,4	1,3	2,6
Rb [ppm]	129	86	171	176	173	174
Sr [ppm]	2264	1951	651	771	510	528
87 Sr/ 86 Sr m	0,704645	0,714473	0,706754	0,706736	0,708697	0,706615
2σ-Messfehler	0,000004	0,000004	0,000004	0,000004	0,000005	0,000005
⁸⁷ Sr/ ⁸⁶ Sr _{130 Ma}	0,70434	0,71424	0,70533	0,70552	0,70688	0,70485
Гһ [ррт]	25,0	11,3	8,84	-	3,83	3,98
U [ppm]	5,69	2,66	2,64	-	0,96	1,06
Pb [ppm]	12,3	11,5	8,97	-	3,57	6,46
²⁰⁶ Pb/ ²⁰⁴ Pb _m	19,53	19,01	19,10	-	19,09	19,00
207 Pb/ 204 Pb _m	15,67	15,77	15,72	-	15,70	15,75
208 Pb/ 204 Pb m	39,80	39,54	39,16	-	39,23	39,17
²⁰⁶ Pb/ ²⁰⁴ Pb _{130 Ma}	18,90	18,70	18,71	-	18,73	18,78
²⁰⁷ Pb/ ²⁰⁴ Pb _{130 Ma}	15,64	15,76	15,70	-	15,68	15,74
²⁰⁸ Pb/ ²⁰⁴ Pb _{130 Ma}	38,90	39,11	38,73	-	38,76	38,90

	G153b	314	467	G182	463	464
Sm [ppm]	12,0	15,3	15,3	3,65	10,1	10,9
Nd [ppm]	60,0	76,4	77,5	13,5	49,0	52,7
143 Nd/ 144 Nd $_{\rm m}$	0,512147	0,512172	0,512154	0,512168	0,512121	0,51212
2σ-Messfehler	0,000006	0,000006	0,000006	0,000006	0,000007	0,000006
143 Nd/ 144 Nd $_{130 \text{ Ma}}$	0,512045	0,512069	0,512053	0,512033	0,512015	0,512014
€Nd (130 Ma)	-8,3	-7,8	-8,2	-8,5	-8,9	-8,9
Rb [ppm]	240	233	216	430	228	210
Sr [ppm]	91	114	82	26	152	147
⁸⁷ Sr/ ⁸⁶ Sr _m	0,736765	0,731436	0,736309	0,829575	0,736019	0,735178
2σ-Messfehler	0,000018	0,000004	0,000005	0,000005	0,000004	0,000004
⁸⁷ Sr/ ⁸⁶ Sr _{130 Ma}	0,72265	0,72048	0,72219	0,74011	0,72798	0,72752
Th [ppm]	25,3	27,6	25,6	12,0	20,8	22,5
U [ppm]	3,54	4,45	3,15	6,52	5,00	3,70
Pb [ppm]	20,7	34,0	25,4	26,1	40,2	26,7
²⁰⁶ Pb/ ²⁰⁴ Pb _m	18,84	18,76	18,78	19,48	18,89	18,98
207 Pb/ 204 Pb _m	15,71	15,72	15,69	15,77	15,73	15,77
208 Pb/ 204 Pb _m	39,43	39,41	39,35	38,79	39,14	39,45
²⁰⁶ Pb/ ²⁰⁴ Pb _{130 Ma}	18,61	18,59	18,61	19,14	18,73	18,79
²⁰⁷ Pb/ ²⁰⁴ Pb _{130 Ma}	15,70	15,71	15,68	15,75	15,72	15,76
²⁰⁸ Pb/ ²⁰⁴ Pb _{130 Ma}	38,89	39,05	38,91	38,59	38,91	39,08

	G149 a	384 b	384 c	385
Re [ppt]	173,9	790,0	569,4	3175,1
2σ-Messfehler	1,7	7,7	5,6	31,8
Os [ppt]	7,4	87,7	138,9	127,6
2σ-Messfehler	0,1	0,8	1,3	1,5
¹⁸⁷ Re/ ¹⁸⁶ Os	985,9	364,5	168,2	822,2
2σ-Messfehler	14,8	5,5	2,5	12,3
¹⁸⁷ Re/ ¹⁸⁸ Os	118,6	43,9	20,2	99,0
2σ-Messfehler	1,8	0,7	0,3	1,5
¹⁸⁷ Os/ ¹⁸⁶ Os _m	5,2162	2,4919	3,3821	3,3642
2σ-Messfehler	0,0023	0,0023	0,0023	0,0023
¹⁸⁷ Os/ ¹⁸⁸ Os _m	0,6278	0,2999	0,4070	0,4049
2σ-Messfehler	0,0003	0,0003	0,0003	0,0003
¹⁸⁷ Os/ ¹⁸⁶ Os _(130 Ma)	3,079	1,702	3,017	1,582
¹⁸⁷ Os/ ¹⁸⁸ Os _(130 Ma)	0,3705	0,2048	0,3631	0,1903
γOs (130 Ma)	+192	+61,6	+186	+50,2
T _{MA} [Ma]	253,4	237,4	839,7	168,7

Bemerkungen zur Analytik und Datenauswertung: Das von Walker et al. (1994) und Morgan et al. (1995) beschriebene Messverfahren diente als Grundlage für die durchgeführten Messungen. Die Isotopenverhältnisse wurden nach diesen Methoden mit N-TIMS (Finnigan MAT 261) gemessen. Zur Bestimmung der Re-Konzentrationen wurden Faraday-Detektoren und für die Os-Konzentrationsbestimmung Ionenzähler im "Peakjump"-Verfahren verwendet. Die 2σ -"in-run"-Messfehler waren für Re < 0,1 ‰ und für Os < 0,2 ‰. Die externe Reproduzierbarkeit für Wiederholungsmessungen mit vergleichbaren Gehalten an Re (5 ng) und Os (100 pg) in den jeweiligen Standards liegt bei $\pm 0,05$ % und $\pm 0,2$ %. Aufgrund der Tatsache, dass geeignete Methoden zur Verknüpfung der einzelnen Fehler fehlen, lässt sich der Gesamtfehler nur abschätzen. Die 2σ -Gesamtfehler lagen für 187 Re/ 188 Os bei $\pm 1,3$ %, für 187 Os/ 188 Os bei $\pm 0,32$ %, für Re bei $\pm 0,2$ % und für Os bei $\pm 0,5$ %.

$$\gamma_{OS\ (130\ Ma)} = \{ [(^{187}OS/^{188}OS)_{PROBE} / (^{187}OS/^{188}OS)_{CHONDRIT}] - 1 \} \times 100; (^{187}OS/^{188}OS)_{CHONDRIT\ (130\ Ma)} = 0,1261 \}$$

$$T_{MA} = 1/\lambda \times \ln\{ [(^{187}OS/^{188}OS)_{CHONDRIT} - ^{187}OS/^{188}OS)_{PROBE} / (^{187}Re/^{188}OS)_{CHONDRIT} - ^{187}Re/^{188}OS)_{PROBE}] + 1 \}$$

$$\lambda (^{187}Re) = 1,666 \times 10^{-11} \text{ a}^{-1}$$

	435	437	321	360 A
Re [ppt]	2248,8	1128,1	6472,2	6047,7
2σ-Messfehler	21,0	11,2	64,7	60,5
Os [ppt]	21,6	106,6	209,0	127,2
2σ-Messfehler	0,2	1,1	1,9	1,2
¹⁸⁷ Re/ ¹⁸⁶ Os	3747,8	361,8	1271,5	2001,5
2σ-Messfehler	56,2	5,4	19,1	30,0
¹⁸⁷ Re/ ¹⁸⁸ Os	451,0	43,5	153,0	240,9
2σ-Messfehler	6,8	0,7	2,3	3,6
¹⁸⁷ Os/ ¹⁸⁶ Os m	9,2216	1,8929	3,7242	5,3904
2σ-Messfehler	0,0023	0,0023	0,0023	0,0023
¹⁸⁷ Os/ ¹⁸⁸ Os _m	1,1098	0,2278	0,4482	0,6487
2σ-Messfehler	0,0003	0,0003	0,0003	0,0003
¹⁸⁷ Os/ ¹⁸⁶ Os _(130 Ma)	1,096	1,109	0,968	1,051
¹⁸⁷ Os/ ¹⁸⁸ Os _(130 Ma)	0,1319	0,1334	0,1164	0,1265
γOs (130 Ma)	+4,1	+5,3	-8,1	-0,2
T _{MA} [Ma]	130,7	139,4	126,0	130,0

Bemerkungen zur Analytik und Datenauswertung: Das von Walker et al. (1994) und Morgan et al. (1995) beschriebene Messverfahren diente als Grundlage für die durchgeführten Messungen. Die Isotopenverhältnisse wurden nach diesen Methoden mit N-TIMS (Finnigan MAT 261) gemessen. Zur Bestimmung der Re-Konzentrationen wurden Faraday-Detektoren und für die Os-Konzentrationsbestimmung Ionenzähler im "Peakjump"-Verfahren verwendet. Die 2σ -"in-run"-Messfehler waren für Re < 0,1 ‰ und für Os < 0,2 ‰. Die externe Reproduzierbarkeit für Wiederholungsmessungen mit vergleichbaren Gehalten an Re (5 ng) und Os (100 pg) in den jeweiligen Standards liegt bei \pm 0,05 % und \pm 0,2 %. Aufgrund der Tatsache, dass geeignete Methoden zur Verknüpfung der einzelnen Fehler fehlen, lässt sich der Gesamtfehler nur abschätzen. Die 2σ -Gesamtfehler lagen für 187 Re/ 188 Os bei \pm 1,3 %, für 187 Os/ 188 Os bei \pm 0,32 %, für Re bei \pm 0,2 % und für Os bei \pm 0,5 %.

$$\gamma_{Os\ (130\ Ma)} = \{ [(^{187}Os/^{188}Os)_{PROBE} / (^{187}Os/^{188}Os)_{CHONDRIT}] - 1 \} \times 100; (^{187}Os/^{188}Os)_{CHONDRIT\ (130\ Ma)} = 0,1261$$

$$T_{MA} = 1/\lambda \times ln \{ [(^{187}Os/^{188}Os)_{CHONDRIT} - ^{187}Os/^{188}Os)_{PROBE} / (^{187}Re/^{188}Os)_{CHONDRIT} - ^{187}Re/^{188}Os)_{PROBE}] + 1 \}$$

$$\lambda (^{187}Re) = 1,666 \times 10^{-11} \alpha^{-1}$$

Tabelle A44: Ar-Isoto	mendaten a	dor alkalik	nasaltischen	Stöcke des	Franga-Kam	nloro
1 uvene A++. A1-13010	иренишен и	iei ainaii	usuuschen	Dioche des	LI UNEU-IXUIII	υιελεί

Heizschritt	T (°C)	⁴⁰ Ar tot	40 Ar $_{\rm tot}^{a}$	³⁹ Ar ^a	³⁹ Ar ^a	$^{38}Ar^{a}$	$^{38}Ar^{a}$	$^{37}Ar^{a}$	³⁷ Ar ^a	$^{36}Ar^{a}$	$^{36}Ar^{a}$	Alter (Ma)	±Alter (Ma)
			1σ		1σ		1σ		1σ		1σ		1σ
Probe 432													
1	573	32,88	0,27	0,287	0,003	0,050	0,003	0,088	0,002	0,031	0,003	78,0	2,9
2	700	479,03	0,03	3,223	0,003	0,178	0,001	0,004	0,006	0,078	0,001	130,7	0,2
3	780	385,01	0,06	2,593	0,003	0,131	0,001	-	-	0,063	0,002	130,5	0,3
4	827	301,48	0,02	1,966	0,003	0,097	0,002	0,054	0,002	0,075	0,002	131,2	0,3
5	873	103,81	0,02	0,627	0,002	0,045	0,002	0,056	0,002	0,049	0,001	131,4	0,7
6	917	77,43	0,01	0,424	0,002	0,050	0,001	-	-	0,057	0,002	131,8	1,4
7	990	30,76	0,01	0,167	0,001	0,020	0,001	0,033	0,007	0,050	0,002	89,0	3,3
8	1021	134,44	0,03	0,731	0,002	0,069	0,001	0,066	0,002	0,102	0,002	131,8	0,9
9	1188	110,81	0,08	0,599	0,002	0,033	0,001	0,091	0,007	0,084	0,002	132,5	1,1
10	1427	25,02	0,01	0,061	0,001	0,014	0,001	0,020	0,002	0,056	0,001	126,6	9,4
Probe 435													
1	629	7,20	0,02	0,035	0,002	0,061	0,002	-	-	0,017	0,002	60,5	20,2
2	894	35,30	0,01	0,165	0,002	0,255	0,002	0,227	0,007	0,037	0,002	136,4	3,9
3	979	160,89	0,03	1,048	0,002	0,231	0,003	3,447	0,013	0,049	0,002	129,0	0,5
4	1006	315,39	0,03	2,108	0,004	0,368	0,002	7,131	0,024	0,045	0,002	132,2	0,3
5	1037	220,16	0,02	1,487	0,003	0,254	0,002	4,958	0,017	0,027	0,002	131,6	0,4
6	1064	45,31	0,01	0,273	0,002	0,062	0,002	0,947	0,008	0,023	0,002	129,8	2,2
7	1086	25,75	0,01	0,143	0,003	0,035	0,002	0,479	0,009	0,010	0,002	146,0	4,2
8	1188	35,56	0,01	0,211	0,002	0,047	0,001	0,797	0,009	0,017	0,002	133,2	2,3
9	1429	149,83	0,02	0,975	0,003	0,227	0,001	3,566	0,014	0,040	0,001	130,7	0,5

^{-:} Werte unterhalb der Nachweisgrenze
^a: Alle Ar-Konzentrationen werden in Picoliter pro Gramm (pl/g) angegeben

Heizschritt	T (°C)	40 Ar $_{tot}^{a}$	⁴⁰ Ar tot ^a	³⁹ Ar ^a	³⁹ Ar ^a	$^{38}Ar^{a}$	$^{38}Ar^{a}$	$^{37}Ar^{a}$	$^{37}Ar^{a}$	$^{36}Ar^a$	³⁶ Ar ^a	Alter (Ma)	±Alter (Ma)
			1σ		1σ		1σ		1σ		1σ		1σ
Probe 391													
1	581	23,38	0,39	0,292	0,008	0,076	0,004	0,035	0,006	0,058	0,003	19,9	4,0
2	698	27,16	0,21	0,273	0,005	0,056	0,002	0,026	0,003	0,059	0,002	33,2	2,9
3	778	38,28	0,07	0,209	0,001	0,060	0,002	=	-	0,071	0,002	77,1	2,3
1	826	20,62	0,01	0,111	0,001	0,011	0,001	-	-	0,014	0,002	136,0	5,5
5	857	35,34	0,01	0,193	0,002	0,014	0,002	0,004	0,003	0,023	0,001	135,8	2,4
5	901	1961,63	0,40	13,189	0,013	0,763	0,001	0,108	0,002	0,187	0,002	132,5	0,1
1	941	626,25	0,17	4,242	0,005	0,253	0,001	0,052	0,001	0,039	0,001	132,8	0,2
}	1024	210,79	0,02	1,380	0,002	0,067	0,001	0,015	0,002	0,016	0,003	136,8	0,5
)	1188	60,06	0,01	0,387	0,003	0,020	0,002	0,006	0,004	0,042	0,001	113,1	1,3
Probe 454													
	570	21,06	0,39	0,276	0,008	0,091	0,003	-	-	0,041	0,003	30,9	4,1
2	701	30,59	0,07	0,164	0,003	0,056	0,001	0,057	0,002	0,066	0,002	63,2	4,8
}	782	69,14	0,01	0,330	0,002	0,145	0,002	0,064	0,002	0,083	0,002	123,7	1,8
1	828	54,98	0,01	0,287	0,000	0,099	0,001	0,052	0,003	0,041	0,001	136,2	1,3
5	930	738,06	0,05	4,362	0,005	1,780	0,003	0,071	0,005	0,358	0,002	132,4	0,2
5	927	789,50	0,08	5,326	0,006	2,118	0,004	-	-	0,038	0,002	133,4	0,2
7	982	337,24	0,05	2,230	0,003	0,871	0,003	0,002	0,001	0,028	0,002	134,8	0,3
3	1023	23,74	0,01	0,112	0,002	0,028	0,001	-	-	0,019	0,002	146,9	5,4
)	1201	11,57	0,01	0,049	0,002	0,008	0,001	-	-	0,017	0,002	123,0	14,7
0	1428	11,04	0,01	0,012	0,001	0,004	0,002	0,010	0,002	0,032	0,002	126,2	36,7
Probe 212													
	582	41,82	0,17	0,367	0,011	0,138	0,003	0,023	0,003	0,058	0,002	62,4	3,7
2	708	412,78	0,02	2,579	0,003	1,018	0,002	-	-	0,122	0,001	133,7	0,2
}	784	260,67	0,04	1,711	0,002	0,659	0,002	0,013	0,004	0,041	0,001	133,0	0,2
	833	213,73	0,01	1,386	0,002	0,554	0,001	-	-	0,041	0,001	133,1	0,3
	876	333,18	0,08	2,189	0,003	0,872	0,002	-	-	0,041	0,002	134,3	0,2
)	920	490,27	0,06	3,248	0,003	1,266	0,003	0,012	0,006	0,074	0,002	132,0	0,2
,	960	143,22	0,03	0,911	0,001	0,347	0,002	0,007	0,005	0,061	0,001	126,1	0,4
3	1020	39,77	0,05	0,214	0,001	0,077	0,002	0,058	0,004	0,046	0,001	113,2	1,9
9	1199	28,22	0,01	0,092	0,002	0,013	0,003	0,015	0,001	0,049	0,001	137,2	8,5
1.0	1.40=	-,	0.00	0.0.50	0.001	0.015	0.000	- ,	- ,	0.001	0.000	146.5	1.4.6

⁻ Werte unterhalb der Nachweisgrenze; ^a Alle Ar-Konzentrationen werden in Picoliter pro Gramm (pl/g) angegeben

0,001

0,017

0,002

36,22

0,08

0,058

1427

10

146,5

14,6

0,091

0,002

Tabelle A46: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) > 10 Gew.-%.

Genutien (C) >10 Gew%		222 4	222.4	2224	2224	2224
	322A Gangdolerit							
	Olivin							
	1/1	1/2	1/3	1/4	1/5	1/6	1/7	1/8
	Rand	Rand					Kern	Kern
SiO_2	37,9	37,5	37,8	37,8	37,7	37,8	37,8	37,7
TiO_2	0,02	0,05	0,02	0,01	0,05	0,05	0,03	0,04
Al_2O_3	0,02	0,01	0,01	0,01	0,02	0,01	-	0,02
FeO tot	27,1	27,4	27,9	27,4	27,1	27,0	27,3	27,2
MnO	0,33	0,34	0,32	0,39	0,30	0,37	0,40	0,34
MgO	34,4	34,3	34,5	34,2	34,7	34,5	34,6	34,5
CaO	0,10	0,10	0,08	0,08	0,06	0,09	0,10	0,06
Na_2O	_	-	0,02	0,04	-	-	0,01	-
K_2O	0,01	-	-	-	-	-	0,01	-
NiO	0,27	0,24	0,20	0,11	0,24	0,20	0,27	0,20
Summe	100,23	99,97	100,75	100,11	100,23	100,08	100,55	100,02
Mg#	69	69	69	69	70	70	69	69
Fo	69	69	68	69	69	69	69	69
Fa	31	31	31	31	30	30	31	31
Mo	-	-	-	-	-	-	-	-
Te	-	-	-	-	-	-	-	_

Bemerkungen für die Tabellen A46-A57: Die Gehalte wurden mittels einer Elektronenstrahl-Mikrosonde CAMECA SX 100 am GeoForschungsZentrum Potsdam ermittelt. $Mg-\#=100*Mg/(Mg+Fe_{tot})$. Abkürzungen: Fo: Forsterit; Fa: Fayalit; Mo: Monticellit; Te: Tephroit. -: unterhalb der Nachweisgrenze oder nicht ermittelt.

Tabelle A47: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-Gehalten (Gesamtgestein) >10 Gew.-%.

322A 322A 322A 322A 322A 322A 322A 322A Gangdolerit Gangdo Olivin Olivin Olivin Olivin Olivin Olivin Olivin Olivin 1/9 1/10 1/11 1/12 1/13 1/14 1/15 1/16 Rand Rand Kern SiO₂ 37,7 37,6 37,6 37,7 37,2 37,8 37,3 37,7 0,05 TiO_2 0,02 0,01 0,05 0,05 0,04 0,03 0,03 Al_2O_3 0,01 0,04 0,01 0,02 0,01 0,03 27,6 FeO tot 27,1 27,4 27,4 27,4 27,3 26,9 27,2 0,35 0,32 0,38 MnO 0,33 0,31 0,42 0,37 0,31 MgO 34,6 34,6 34,4 34,7 34,6 34,5 34,5 34,6 CaO 0,10 0,09 0,08 0,10 0,07 0,06 0,10 0,08 Na₂O 0,02 0,03 0,01 0,03 K_2O 0,01 0,01 0,01 0,01 NiO 0,27 0,16 0,14 0,21 0,19 0,12 0,19 0,19 Summe 100,14 100,19 100,37 100,23 100,16 100,35 99,35 100,04 69 69 69 69 69 69 70 69 Mg# 69 69 Fo 69 69 69 69 69 69 Fa 30 31 31 31 31 31 30 31 Mo Te

Tabelle A48: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) >10 Gew.-%.

	322A	322A	322A	322A	322A	322A	322A	322A
	-	Gangdolerit						Gangdolerit
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	2/1	2/2	2/3	2/4	2/5	2/6	2/7	2/8
	Rand						Kern	Kern
SiO_2	36,9	37,6	37,3	37,7	37,6	37,7	37,6	37,6
TiO_2	0,03	0,03	0,02	0,03	0,04	0,01	0,01	0,02
Al_2O_3	0,01	-	0,02	0,01	0,01	0,02	0,01	0,01
FeO tot	27,6	27,8	27,3	27,4	27,4	27,3	27,3	27,4
MnO	0,42	0,26	0,36	0,33	0,28	0,36	0,32	0,35
MgO	34,4	34,8	34,4	34,6	34,4	34,7	34,6	34,5
CaO	0,05	0,06	0,07	0,08	0,07	0,09	0,09	0,06
Na_2O	0,01	0,01	-	0,02	-	-	0,01	0,01
K_2O	0,02	0,01	-	0,01	0,01	-	-	=
NiO	0,18	0,24	0,22	0,22	0,24	0,26	0,20	0,16
Summe	99,65	100,73	99,60	100,43	100,10	100,40	100,11	100,07
Mg#	69	69	69	69	69	69	69	69
Fo	69	69	69	69	69	69	69	69
Fa	31	31	31	31	31	30	30	31
Mo	-	-	-	-	-	-	-	-
Te	-	-	-	-	-	-	-	-

Tabelle A49: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) >10 Gew.-%.

	322A	322A	322A	322A	322A	322A	322A	322A
	Gangdolerit					Gangdolerit		
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	2/9	2/10	2/11	2/12	2/13	2/14	2/15	3/1
	Kern						Rand	Rand
SiO_2	37,4	37,4	37,5	37,8	38,0	37,6	37,5	37,7
TiO_2	0,04	-	0,04	0,01	0,06	0,04	0,03	0,05
Al_2O_3	-	0,02	0,01	0,02	0,02	0,02	0,02	0,01
FeO tot	27,2	27,5	27,4	26,8	27,3	27,3	27,3	27,3
MnO	0,39	0,36	0,33	0,31	0,37	0,37	0,39	0,31
MgO	34,5	34,4	34,6	34,3	34,4	34,3	33,9	34,3
CaO	0,08	0,10	0,08	0,07	0,05	0,08	0,09	0,08
Na_2O	-	0,01	-	0,01	-	0,01	0,01	-
K_2O	-	0,02	-	-	-	-	-	0,01
NiO	0,18	0,22	0,19	0,22	0,18	0,16	0,27	0,16
Summe	99,81	100,07	100,09	99,66	100,35	99,87	99,49	99,85
Mg#	69	69	69	70	69	69	69	69
Fo	69	69	69	69	69	69	68	69
Fa	31	31	31	30	31	31	31	31
Mo	-	-	-	-	-	-	-	-
Te	-	-	-	-	-	-	-	-

Tabelle A50: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) >10 Gew.-%.

	322A	322A	322A	322A	322A	322A	322A	321
		Gangdolerit					Gangdolerit	-
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	3/2	3/3	3/4	3/5	3/6	3/7	3/8	1/1
	Rand			Kern	Kern	Kern	Kern	Rand
SiO_2	37,7	37,3	37,6	37,3	37,1	37,7	37,3	36,7
TiO_2	0,05	0,04	0,04	0,02	0,06	-	0,04	0,03
Al_2O_3	0,02	=	0,02	0,03	0,01	0,02	0,01	-
FeO tot	27,2	27,3	27,2	27,3	26,9	27,4	27,6	33,9
MnO	0,30	0,34	0,31	0,30	0,34	0,27	0,34	0,52
MgO	34,3	34,6	34,3	34,4	34,3	34,6	34,6	29,3
CaO	0,09	0,06	0,08	0,07	0,09	0,07	0,07	0,13
Na_2O	_	0,01	-	0,01	0,02	0,01	0,01	0,02
K_2O	-	-	-	-	=	=	0,01	=
NiO	0,16	0,20	0,23	0,20	0,19	0,21	0,25	=
Summe	99,76	99,82	99,79	99,65	99,01	100,33	100,21	100,62
Mg#	69	69	69	69	69	69	69	61
Fo	69	69	69	69	69	69	69	60
Fa	31	31	31	31	30	31	31	39
Mo	-	-	-	-	-	-	-	-
Te	<u> </u>	-			-		-	1

Tabelle A51: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) >10 Gew.-%.

	321	321	321	321	321	321	321	321
	Gangdolerit						Gangdolerit	
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	1/2	1/3	1/4	1/5	1/6	1/7	1/8	1/9
	Rand							Kern
SiO_2	36,8	37,1	37,0	37,3	37,1	36,9	37,2	37,1
TiO_2	0,05	-	0,05	0,04	0,05	0,02	0,02	0,03
Al_2O_3	0,01	0,01	0,01	-	0,02	0,01	0,02	0,02
FeO tot	33,8	32,5	32,5	32,1	32,0	32,4	32,2	32,2
MnO	0,55	0,58	0,52	0,47	0,51	0,43	0,53	0,52
MgO	29,1	30,4	30,5	30,3	30,3	30,5	30,3	30,3
CaO	0,13	0,17	0,12	0,14	0,13	0,17	0,16	0,18
Na_2O	-	0,01	-	-	0,01	0,01	0,02	0,01
K_2O	0,02	0,01	-	0,02	-	-	-	-
NiO	0,07	0,03	-	0,05	0,07	0,04	0,04	0,08
Summe	100,53	100,78	100,63	100,39	100,17	100,51	100,51	100,47
Mg#	61	62	63	63	63	63	63	63
Fo	60	62	62	62	62	62	62	62
Fa	39	37	37	37	37	37	37	37
Mo	-	-	-	-	-	-	-	-
Te	1	1	1	1	1	1	1	1

Tabelle A52: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) >10 Gew.-%.

	321	321	321	321	321	321	321	321
		Gangdolerit					Gangdolerit	
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	1/10	1/11	1/12	1/13	1/14	1/15	1/16	1/17
	Kern	Kern	Kern					
SiO_2	36,7	37,2	37,9	37,1	37,3	37,3	37,3	37,4
TiO_2	0,02	0,07	0,03	0,01	0,04	0,05	0,05	0,03
Al_2O_3	-	0,02	0,03	0,01	0,04	0,03	-	0,03
FeO tot	32,7	32,4	29,0	31,6	31,6	31,5	30,9	30,9
MnO	0,53	0,51	0,47	0,49	0,45	0,57	0,49	0,48
MgO	30,3	30,4	33,2	31,3	31,0	31,1	31,6	31,7
CaO	0,18	0,18	0,14	0,13	0,15	0,15	0,15	0,16
Na_2O	0,02	0,02	-	0,02	0,02	0,02	0,02	0,01
K_2O	0,01	0,01	-	-	-	0,01	0,01	0,01
NiO	0,05	0,07	0,12	0,07	0,03	0,06	-	0,01
Summe	100,53	100,88	100,91	100,67	100,58	100,76	100,48	100,68
Mg#	62	63	67	64	64	64	65	65
Fo	62	62	67	63	63	63	64	64
Fa	37	37	33	36	36	36	35	35
Mo	-	-	-	-	-	-	-	-
Te	1	1	1	1	1	1	1	1

Tabelle A53: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) > 10 Gew.-%.

	321	321	321	321	321	321	321	321
	Gangdolerit						Gangdolerit	
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	1/18	1/19	2/1	2/2	2/3	2/4	2/5	2/6
	Rand	Rand	Rand			Kern		Rand
SiO_2	37,5	37,0	36,7	36,7	36,7	38,3	36,9	36,6
TiO ₂	0,03	0,04	0,05	0,02	0,02	0,04	0,01	0,05
Al_2O_3	0,02	0,02	-	-	-	0,06	0,01	0,01
FeO tot	30,9	32,9	32,7	32,8	32,9	31,9	32,9	33,1
MnO	0,44	0,55	0,54	0,49	0,54	0,47	0,53	0,47
MgO	31,7	29,9	29,9	30,0	30,0	27,9	30,1	29,9
CaO	0,16	0,09	0,13	0,14	0,14	0,19	0,12	0,09
Na_2O	0,02	-	-	0,01	0,01	-	=	0,02
K_2O	-	0,01	-	=	-	-	=	-
NiO	0,10	0,06	0,04	0,09	0,06	0,10	=	-
Summe	100,77	100,52	100,16	100,20	100,40	98,98	100,51	100,24
Mg#	65	62	62	62	62	61	62	62
Fo	64	61	61	61	61	60	62	61
Fa	35	38	38	38	38	39	38	38
Mo	-	-	-	-	-	-	-	-
Te	1	1	1	1	1	1	1	1

Tabelle A54: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) >10 Gew.-%.

	384C	384C	384C	384C	384C	384C	384C	384C
	Basisbasalt		Basisbasalt					
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	1/1	1/2	1/3	1/4	1/5	1/6	1/7	1/8
	Rand	Rand				Kern	Kern	Kern
SiO_2	37,1	35,7	35,9	35,4	35,7	35,6	36,0	35,6
TiO_2	0,04	0,04	0,01	0,08	0,01	0,05	-	-
Al_2O_3	0,04	-	0,02	0,01	-	0,02	-	0,02
FeO tot	34,1	35,5	35,2	35,3	34,9	35,4	34,9	35,1
MnO	0,42	0,43	0,40	0,44	0,45	0,45	0,43	0,43
MgO	27,9	28,6	28,4	28,6	28,7	28,7	28,7	28,5
CaO	1,02	0,02	0,20	0,02	0,02	0,01	0,01	0,03
Na_2O	0,02	0,02	0,01	0,02	0,01	0,01	-	-
K_2O	-	0,01	0,01	-	-	-	-	0,01
NiO	-	-	-	-	-	-	-	-
Summe	100,68	100,40	100,10	99,93	99,74	100,29	100,09	99,67
Mg#	59	59	59	59	59	59	59	59
Fo	58	59	59	59	59	59	59	59
Fa	40	41	41	41	40	41	40	41
Mo	2	-	-	-	-	-	-	-
Te	1_	1		1	1	1_	1	1

Tabelle A55: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) >10 Gew.-%.

	384C	384C	384C	384C	384C	384C	384C	384C
	Basisbasalt					Basisbasalt		
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	1/9	1/10	1/11	1/12	1/13	1/14	1/16	1/17
							Rand	Rand
SiO_2	35,7	35,7	35,5	35,5	35,7	35,7	35,6	35,6
TiO ₂	0,03	0,01	0,04	0,05	0,01	0,01	0,02	0,04
		,		· ·		· ·		
Al_2O_3	0,01	-	0,02	-	0,01	-	0,01	-
FeO tot	35,4	35,3	35,1	35,3	35,6	35,5	35,1	34,5
MnO	0,47	0,44	0,44	0,42	0,37	0,37	0,47	0,36
MgO	28,5	28,7	28,5	28,7	28,6	28,5	28,5	28,9
CaO	0,01	0,02	0,02	0,01	0,01	0,02	0,02	0,02
Na_2O	-	-	0,01	0,01	-	-	0,01	-
K_2O	0,01	0,01	-	0,01	-	0,01	=	-
NiO	-	-	-	-	-	-	-	-
Summe	100,15	100,16	99,60	99,95	100,35	100,00	99,80	99,41
Mg#	59	59	59	59	59	59	59	60
Fo	59	59	59	59	59	59	59	60
Fa	41	41	41	41	41	41	41	40
Mo	-	-	-	-	-	-	-	-
Te	1	1	1	-	-	-	1	-

Scientific Technical Report STR 05/02 DOI: 10.2312/GFZ.b103-050283

Tabelle A56: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) > 10 Gew.-%.

	384C	384C	384C	384C	384C	384C	384C	384C
	Basisbasalt	Basisbasalt	Basisbasalt	Basisbasalt		Basisbasalt	Basisbasalt	Basisbasalt
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	2/1	2/2	2/3	2/4	2/5	2/6	2/7	2/8
	Rand				Kern			Rand
SiO_2	35,8	35,7	35,7	35,7	36,6	35,4	35,6	35,7
TiO_2	-	0,03	0,02	-	0,01	0,01	0,02	0,01
Al_2O_3	0,01	0,01	0,01	-	0,04	-	0,01	0,01
FeO tot	34,4	34,8	34,7	36,1	35,8	35,9	36,0	35,6
MnO	0,48	0,45	0,44	0,44	0,47	0,40	0,43	0,40
MgO	28,8	28,8	28,7	27,7	27,4	27,6	27,5	28,1
CaO	0,04	0,02	0,03	0,02	0,05	0,01	0,02	0,02
Na_2O	-	-	-	-	0,01	0,03	-	-
K_2O	-	-	-	-	-	-	-	-
NiO	-	-	-	-	-	-	-	-
Summe	99,53	99,85	99,71	99,85	100,36	99,32	99,68	99,84
Mg#	60	60	60	58	58	58	58	60
Fo	59	59	59	57	57	58	57	59
Fa	40	40	40	42	42	42	42	40
Mo	-	-	-	-	-	-	-	-
Te	1	1	1	1	1	-	1	1

Tabelle A57: Ausgewählte Mikrosondenanalysen von Olivinen der Basisbasalte und Gangdolerite mit MgO-

Gehalten (Gesamtgestein) > 10 Gew.-%.

	384C	384C	384C	384C	384C	384C
	Basisbasalt	Basisbasalt	Basisbasalt	Basisbasalt	Basisbasalt	Basisbasal
	Olivin	Olivin	Olivin	Olivin	Olivin	Olivin
	3/1	3/2	3/3	3/4	3/5	3/6
	Rand		Kern	Kern		Rand
SiO_2	36,1	35,8	36,0	36,0	35,9	36,0
TiO_2	0,03	0,04	0,02	0,02	-	0,03
Al_2O_3	0,01	-	0,01	-	-	-
FeO tot	33,2	33,3	33,5	33,6	33,3	33,4
MnO	0,42	0,47	0,35	0,40	0,43	0,46
MgO	29,7	29,9	29,8	29,8	29,8	29,9
CaO	0,03	0,01	0,01	0,02	0,02	0,02
Na ₂ O		0,01	-	0,02	-	-
K_2O	0,02	-	-	-	-	0,01
NiO	-	-	-	-	-	-
Summe	99,53	99,51	99,80	99,90	99,50	99,80
Mg#	61	62	61	61	61	61
Fo	61	61	61	61	61	61
Fa	38	38	39	39	38	38
Mo	-	-	-	-	-	-
Te	1	1	=	-	1	1

Scientific Technical Report STR 05/02 DOI: 10.2312/GFZ.b103-050283

Tabelle A58: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und

Gangdoler	ite.							
	G152C	G152C	G152C	G152C	G152C	G152C	G152C	G152C
	Gangdolerit	_	Gangdolerit		Gangdolerit	Gangdolerit		Gangdolerit
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	1/4	1/5	1/6	1/7	1/8	1/9	1/10	1/11
	Rand							
SiO_2	50,5	50,5	50,2	50,1	50,1	50,2	50,2	50,0
TiO_2	0,88	0,90	0,89	0,88	0,88	0,92	0,93	0,91
Al_2O_3	1,17	1,14	1,16	1,15	1,17	1,11	1,19	1,16
FeO tot	16,0	15,8	16,0	15,8	15,9	16,2	16,0	15,9
MnO	0,41	0,48	0,45	0,41	0,50	0,45	0,47	0,45
MgO	11,6	11,6	11,7	11,6	11,4	11,5	11,5	11,3
CaO	18,1	18,2	18,2	18,2	18,3	18,5	18,4	18,5
Na_2O	0,31	0,27	0,25	0,26	0,26	0,29	0,27	0,30
Summe	99,03	98,80	98,86	98,48	98,54	99,10	99,00	98,41
Mg#	56	56	56	56	55	55	55	55
Wo	38	39	38	39	39	39	39	39
En	34	34	34	34	34	34	34	33
Fs	27	27	27	27	27	27	27	27

Bemerkungen für die Tabellen A58-A75: Die Gehalte wurden mittels einer Elektronenstrahl-Mikrosonde CAMECA $SX~100~am~GeoForschungsZentrum~Potsdam~ermittelt.~Mg-\#=100~*Mg~/~(Mg~+Fe_{tot}).~Abk\"urzungen:~CPX:$ Klinopyroxen; Wo: Wollastonit; En: Enstatit; Fs: Ferrosalit. -: unterhalb der Nachweisgrenze oder nicht ermittelt.

Tabelle A59: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und <u>Gangdolerite</u>.

Gangaoieri								
	G152C	G152C	G152C	G152C	G152C	G152C	G152C	G152C
	Gangdolerit		Gangdolerit	_			Gangdolerit	-
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	1/12	1/13	1/14	1/15	1/16	1/17	1/18	1/19
		Rand	Rand	Rand	Rand	Rand	Kern	Kern
SiO_2	50,1	50,0	50,2	49,8	49,8	49,8	50,1	50,4
TiO_2	0,94	0,87	0,90	0,83	0,90	0,87	0,89	0,86
Al_2O_3	1,18	1,09	1,15	1,08	1,12	1,10	1,15	1,15
FeO tot	16,8	17,3	17,5	17,7	17,8	17,6	16,1	15,5
MnO	0,42	0,41	0,51	0,48	0,50	0,41	0,44	0,43
MgO	11,0	10,5	10,4	10,4	10,3	10,1	11,5	11,6
CaO	18,3	18,3	18,3	18,1	18,0	18,1	18,2	18,4
Na_2O	0,27	0,28	0,28	0,27	0,26	0,25	0,28	0,25
Summe	99,08	98,71	99,16	98,58	98,65	98,29	98,64	98,57
Mg#	53	51	51	50	50	50	55	57
Wo	39	39	39	39	39	39	39	39
En	33	31	31	31	31	30	34	34
Fs	29	30	30	30	31	30	27	26

Tabelle A60: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

Gunguoien	G152C							
	Gangdolerit							
	CPX							
	1/21	1/22	1/24	1/25	1/26	1/27	1/28	1/29
	Kern	Rand						
SiO_2	50,1	50,0	50,1	50,6	50,5	50,0	50,2	49,9
TiO_2	0,90	0,91	0,92	0,91	0,91	0,92	0,86	0,93
Al_2O_3	1,17	1,17	1,19	1,22	1,19	1,18	1,16	1,23
FeO tot	15,6	16,8	15,2	15,0	15,5	15,8	15,7	15,7
MnO	0,42	0,45	0,39	0,39	0,38	0,39	0,39	0,37
MgO	11,7	10,8	12,0	11,9	11,8	11,6	11,7	11,7
CaO	18,3	18,2	18,2	18,0	18,2	18,3	18,2	18,1
Na_2O	0,26	0,23	0,30	0,28	0,30	0,26	0,27	0,27
Summe	98,56	98,67	98,31	98,26	98,87	98,53	98,54	98,16
Mg#	57	53	58	58	57	56	56	56
Wo	39	39	39	39	39	39	39	39
En	35	32	36	36	35	34	35	35
Fs	27	29	26	26	26	27	27	27

Tabelle A61: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

	G152C	315	315	315	315	315	315	315
	Gangdolerit					Basisbasalt	Basisbasalt	Basisbasalt
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	1/30	1/1	1/2	1/3	1/4	1/5	1/6	1/7
		Rand	Rand					
SiO ₂	50,5	51,2	51,8	52,6	52,4	52,4	51,9	52,5
TiO ₂	0,89	0,94	0,81	0,58	0,57	0,61	0,61	0,60
Al_2O_3	1,21	2,94	2,61	2,36	2,24	2,34	2,31	2,23
FeO tot	15,3	9,90	9,30	8,50	8,70	8,30	8,40	8,70
MnO	0,39	0,24	0,21	0,21	0,22	0,23	0,25	0,26
MgO	12,3	15,8	15,8	16,0	15,9	16,0	16,0	16,1
CaO	17,9	19,1	19,6	20,2	20,3	20,4	20,4	20,2
Na ₂ O	0,29	0,30	0,27	0,29	0,29	0,25	0,29	0,29
Summe	98,81	100,35	100,36	100,70	100,63	100,54	100,21	100,87
Mg#	58	73	75	77	76	77	77	76
Wo	38	39	40	41	41	41	41	41
En	36	45	45	45	45	45	45	45
Fs	26	16	15	14	14	14	14	14

Tabelle A62: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

Gungaoteri	315	315	315	328C	328C	328C	328C	328C
	Basisbasalt	Basisbasalt			Gangdolerit			
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	1/8	1/9	1/10	1/1	1/2	1/3	1/4	1/5
	Kern	Kern	Kern	Rand	Rand	Rand		
SiO_2	52,4	52,5	52,8	50,9	50,7	50,6	50,8	51,3
TiO_2	0,56	0,60	0,57	0,86	0,90	0,91	0,92	0,84
Al_2O_3	2,23	2,14	2,18	1,79	1,87	1,97	2,08	2,12
FeO tot	8,71	8,72	8,90	15,2	14,5	14,3	13,2	12,2
MnO	0,27	0,18	0,23	0,45	0,42	0,44	0,41	0,32
MgO	16,2	16,1	16,1	13,7	13,8	13,8	13,7	14,2
CaO	20,1	20,1	19,9	16,4	16,9	17,1	17,9	18,2
Na_2O	0,28	0,24	0,26	0,27	0,27	0,29	0,29	0,27
Summe	100,70	100,62	100,90	99,56	99,26	99,29	99,30	99,41
Mg#	76	76	76	61	62	63	64	67
Wo	41	41	40	34	35	36	38	38
En	45	45	45	40	40	40	40	41
Fs	14	14	14	26	24	24	22	20

Tabelle A63: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

Gangaoier								
	328C	328C	328C	328C	328C	328C	328C	328C
	Gangdolerit				_			
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	1/6	1/7	1/8	1/9	1/10	1/11	1/12	1/13
					Kern	Kern	Kern	
SiO_2	51,1	51,0	51,5	51,5	51,7	52,0	51,5	51,8
TiO_2	0,78	0,80	0,65	0,63	0,65	0,61	0,63	0,64
Al_2O_3	2,07	2,17	1,77	1,80	1,82	1,82	1,84	1,80
FeO tot	11,4	11,3	11,4	11,0	11,0	11,1	11,1	10,8
MnO	0,25	0,29	0,27	0,31	0,31	0,29	0,27	0,24
MgO	14,7	14,6	15,1	15,2	15,0	15,2	15,2	15,0
CaO	18,2	18,5	18,2	18,2	18,1	18,4	18,2	18,3
Na_2O	0,26	0,24	0,26	0,24	0,25	0,27	0,28	0,26
Summe	98,87	99,00	99,21	98,94	98,88	99,62	98,93	98,92
Mg#	69	69	70	70	70	70	70	71
Wo	38	39	38	38	38	38	38	38
En	43	42	43	44	44	44	44	44
Fs	19	19	19	18	18	18	18	18

Tabelle A64: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

unguoier		2200	2200	2200	220.0	2200	220.0	2200
	328C	328C	328C	328C	328C	328C	328C	328C
	Gangdolerit	0	_	Gangdolerit	_		Gangdolerit	-
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	1/14	1/15	2/1	2/2	2/3	2/4	2/5	2/6
			Rand	Rand				
SiO_2	51,9	51,9	51,9	51,6	51,9	51,7	51,9	51,9
TiO_2	0,61	0,62	0,64	0,60	0,64	0,64	0,61	0,60
Al_2O_3	1,86	1,86	1,85	1,87	1,87	1,83	1,72	1,77
FeO tot	11,1	10,8	10,8	10,6	10,6	10,5	10,5	10,3
MnO	0,27	0,22	0,23	0,29	0,27	0,27	0,22	0,30
MgO	15,3	15,2	15,3	15,1	15,3	15,3	15,5	15,5
CaO	18,3	18,5	18,4	18,5	18,5	18,6	18,6	18,5
Na_2O	0,25	0,24	0,27	0,25	0,26	0,23	0,23	0,26
Summe	99,62	99,29	99,45	98,87	99,41	99,04	99,27	99,09
Mg#	70	71	71	71	72	72	72	72
Wo	38	38	38	39	38	39	38	38
En	44	44	44	44	44	44	44	45
Fs	18	18	18	18	18	17	17	17

Tabelle A65: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

	328C							
	Gangdolerit							
	CPX							
	2/7	2/8	2/9	2/10	2/11	2/12	2/13	2/14
			Kern	Kern				
SiO_2	51,9	51,8	51,6	51,8	51,8	51,8	52,0	52,1
TiO_2	0,59	0,59	0,58	0,62	0,61	0,61	0,61	0,56
Al_2O_3	1,74	1,77	1,73	1,74	1,73	1,76	1,72	1,77
FeO tot	10,4	10,5	10,7	10,5	10,5	10,5	10,5	10,6
MnO	0,24	0,33	0,30	0,28	0,26	0,30	0,28	0,32
MgO	15,6	15,5	15,4	15,5	15,6	15,4	15,5	15,5
CaO	18,4	18,4	18,4	18,6	18,5	18,3	18,3	18,5
Na_2O	0,26	0,26	0,23	0,24	0,26	0,23	0,26	0,27
Summe	99,15	99,08	98,99	99,37	99,21	98,99	99,12	99,62
Mg#	72	72	72	72	72	72	72	72
Wo	38	38	38	38	38	38	38	38
En	45	45	44	44	45	44	45	44
Fs	17	18	18	17	17	18	17	18

Tabelle A66: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

Gungaoter	328C	328C	328C	328C	328C	328C	328C	328C
	Gangdolerit						Gangdolerit	
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	2/15	2/16	2/17	2/18	2/19	2/20	3/1	3/2
		2,10	2,11	Rand	Rand	Rand	Rand	J, 2
SiO_2	51,8	52,2	51,8	51,3	51,3	51,2	51,2	51,4
TiO_2	0,59	0,55	0,66	0,73	0,71	0,73	0,76	0,73
Al_2O_3	1,74	1,75	2,00	2,24	2,26	2,24	2,21	2,26
FeO tot	10,5	10,5	10,3	10,2	10,4	10,3	10,4	10,5
MnO	0,26	0,30	0,30	0,29	0,28	0,27	0,27	0,25
MgO	15,6	15,5	15,4	15,2	15,1	15,1	14,9	14,9
CaO	18,4	18,2	18,6	18,6	18,9	19,1	18,7	18,9
Na_2O	0,24	0,25	0,24	0,25	0,27	0,27	0,25	0,25
Summe	99,15	99,18	99,29	98,81	99,22	99,11	98,66	99,22
Mg#	72	72	72	72	72	72	71	71
Wo	38	38	38	39	39	39	39	39
En	45	45	44	44	44	43	43	43
Fs	17	17	17	17	17	17	17	17

Tabelle A67: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

	328C	328C						
	Gangdolerit	Gangdolerit						
	CPX	CPX						
	3/3	3/4	3/5	3/6	3/7	3/8	3/9	3/10 Kern
SiO_2	51,2	51,6	51,3	51,1	51,1	51,2	51,2	50,9
_							· · · · · · · · · · · · · · · · · · ·	
TiO ₂	0,73	0,75	0,74	0,78	0,78	0,80	0,81	0,87
Al_2O_3	2,18	2,19	2,20	2,16	2,20	2,27	2,16	2,16
FeO tot	10,6	11,2	10,8	11,2	11,1	11,4	11,8	12,1
MnO	0,27	0,27	0,29	0,27	0,31	0,25	0,34	0,31
MgO	14,9	15,1	14,9	14,9	14,9	14,9	14,7	14,4
CaO	18,7	18,6	18,5	18,3	18,2	18,3	18,2	18,1
Na_2O	0,24	0,30	0,25	0,26	0,25	0,26	0,26	0,27
Summe	98,90	99,94	99,01	99,05	98,89	99,29	99,45	99,06
Mg#	71	70	71	70	70	70	68	67
Wo	39	38	39	38	38	38	38	38
En	43	43	43	43	43	43	43	42
Fs	18	18	18	19	19	19	20	20

Tabelle A68: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

sangaoteri	328C	328C	328C	378A	378A	378A	378A	378A
	Gangdolerit					Basisbasalt	Basisbasalt	Basisbasalt
	CPX	CPX	CPX	OPX	OPX	OPX	OPX	OPX
	3/11	3/12	3/13	1/1	1/2	1/3	1/4	1/5
	Kern	Kern	Rand	Rand				
SiO_2	50,7	50,6	52,3	54,2	53,9	54,5	54,4	54,5
TiO_2	0,85	0,85	0,07	0,67	0,70	0,61	0,65	0,62
Al_2O_3	2,10	2,05	0,57	1,00	1,02	1,15	1,37	1,41
FeO tot	12,2	13,0	12,7	16,6	17,3	16,1	15,8	15,9
MnO	0,31	0,32	0,47	0,30	0,34	0,32	0,28	0,29
MgO	14,2	13,9	12,2	25,7	25,8	26,4	26,2	26,4
CaO	18,0	17,9	21,0	2,1	2,1	2,2	2,2	2,3
Na_2O	0,28	0,29	0,15	0,05	0,05	0,05	0,04	0,06
Summe	98,65	98,89	99,34	100,48	101,27	101,22	100,99	101,44
Mg#	67	65	62	73	72	74	74	74
Wo	38	38	44	4	4	4	4	4
En	42	41	35	70	69	71	71	71
Fs	20	22	21	26	27	25	25	25

Tabelle A69: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

	378A	378A	378A	378A	378A	378A	378A	378A
	Basisbasalt	Basisbasalt		Basisbasalt		Basisbasalt	Basisbasalt	Basisbasalt
	OPX	OPX	OPX	OPX	OPX	OPX	OPX	OPX
	1/6	1/7	1/8	1/9	1/10	1/11	1/12	1/13
		Kern	Kern					
SiO ₂	54,1	54,1	54,2	54,5	54,4	54,2	53,8	53,8
TiO_2	0,59	0,59	0,64	0,60	0,60	0,75	0,75	0,76
Al_2O_3	1,38	1,32	1,26	1,35	1,43	1,30	1,29	1,30
FeO tot	15,9	16,5	16,8	16,1	15,7	16,2	16,5	16,5
MnO	0,29	0,23	0,27	0,34	0,30	0,32	0,35	0,31
MgO	26,3	26,0	25,6	26,1	26,3	26,2	25,9	26,0
CaO	2,2	2,2	2,2	2,3	2,3	2,3	2,4	2,3
Na_2O	0,05	0,04	0,06	0,03	0,08	0,06	0,06	0,06
Summe	100,83	101,02	100,95	101,35	101,06	101,17	100,96	100,96
Mg#	74	74	73	74	75	74	73	73
Wo	4	4	4	4	4	4	5	4
En	71	70	70	71	71	71	70	70
Fs	25	25	26	25	24	25	26	25

Tabelle A70: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

unguoieri								
	378A	378A	378A	378A	378A	378A	378A	378A
	Basisbasalt	Basisbasalt	Basisbasalt	Basisbasalt		Basisbasalt	Basisbasalt	Basisbasalt
	OPX	OPX	OPX	OPX	OPX	OPX	OPX	OPX
	1/14	1/15	1/15	1/16	2/1	2/2	2/3	2/4
				Rand	Rand			
SiO_2	54,0	53,8	54,3	53,9	54,5	54,3	54,1	54,0
TiO_2	0,83	0,80	0,74	0,79	0,74	0,72	0,68	0,68
Al_2O_3	1,14	1,15	1,16	1,23	1,14	1,15	1,17	1,22
FeO tot	17,0	16,9	16,9	16,6	16,5	16,3	16,4	16,2
MnO	0,28	0,30	0,33	0,31	0,33	0,34	0,29	0,33
MgO	25,5	25,8	25,7	25,8	25,8	25,9	25,7	25,9
CaO	2,1	2,1	2,2	2,3	2,1	2,2	2,2	2,2
Na_2O	0,04	0,05	0,06	0,06	0,05	0,05	0,07	0,03
Summe	101,00	100,95	101,34	101,10	101,16	100,86	100,62	100,54
Mg#	72	73	73	73	73	73	73	74
Wo	4	4	4	5	4	4	4	4
En	69	70	70	70	70	70	70	71
Fs	26	26	26	26	26	25	26	25

Tabelle A71: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

378A 378A 378A 378A 378A 378A 378A 378A Basisbasalt Basisbasalt Basisbasalt Basisbasalt Basisbasalt Basisbasalt Basisbasalt **OPX** OPX OPX **OPX** OPX OPX OPX OPX 2/5 2/6 2/7 2/8 2/9 2/10 2/11 2/12 Kern SiO_2 54,1 53,9 54,6 54,7 54,0 54,4 54,3 54,2 TiO₂ 0,68 0,67 0,54 0,55 0,63 0,66 0,65 0,68 Al_2O_3 1,31 1,32 1,04 1,02 1,35 1,28 1,12 1,14 FeO tot 15,7 16,1 15,8 15,8 15,8 16,0 15,9 16,4 0,31 0,29 0,28 0,30 MnO 0,23 0,32 0,32 0,30 MgO 26,1 26,2 26,2 26,3 26,1 26,1 26,0 25,9 CaO 2,2 2,3 2,1 2,2 2,2 2,2 2,0 2,1 0,04 0,06 Na₂O 0,06 0,04 0,04 0,05 0.06 0,04 100,50 100,82 Summe 100,35 100,83 100,68 100,86 100,96 100,31 Mg# 74 74 74 74 74 74 73 73 Wo 4 5 4 4 4 4 4 4 71 71 71 71 71 71 70 70 En Fs 24 25 25 24 25 25 26 26

Scientific Technical Report STR 05/02 DOI: 10.2312/GFZ.b103-050283

Tabelle A72: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

	452	452	452	452	452	452	452	452
	Basisbasalt	Basisbasalt			Basisbasalt	Basisbasalt	Basisbasalt	Basisbasalt
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	1/1	1/2	1/3	1/4	1/5	1/6	1/7	1/8
	Rand							Kern
SiO_2	50,5	50,5	50,6	50,7	51,0	51,3	51,2	52,2
TiO_2	0,91	0,90	0,92	0,94	0,87	0,81	0,75	0,64
Al_2O_3	1,68	1,78	1,84	2,01	2,10	2,18	2,18	1,83
FeO tot	15,5	14,9	14,5	14,2	12,6	11,4	11,2	11,1
MnO	0,44	0,40	0,37	0,38	0,29	0,27	0,30	0,35
MgO	13,6	13,7	13,7	13,7	14,0	14,8	14,7	15,3
CaO	16,3	16,4	16,7	17,3	17,8	18,4	18,6	18,2
Na_2O	0,27	0,25	0,27	0,27	0,27	0,25	0,27	0,26
Summe	99,19	98,80	98,81	99,48	98,95	99,44	99,19	99,82
Mg#	60	61	62	63	66	69	70	70
Wo	34	35	35	36	38	38	39	38
En	40	40	40	40	41	43	43	44
Fs	26	25	25	24	21	19	19	18

Tabelle A73: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und

Gangdoler	452	452	452	452	452	452	452	452
	Basisbasalt							
	CPX							
	1/9	1/10	1/11	1/12	1/14	1/15	1/16	1/17
	Kern							Rand
SiO_2	51,5	51,7	51,4	51,8	51,5	52,0	51,4	51,6
TiO_2	0,62	0,62	0,63	0,64	0,65	0,62	0,67	0,57
Al_2O_3	1,83	1,83	1,84	1,86	1,85	1,82	1,82	1,85
FeO tot	11,2	11,2	11,0	11,1	11,0	10,7	10,9	10,8
MnO	0,33	0,28	0,37	0,34	0,22	0,28	0,29	0,30
MgO	15,0	15,2	15,3	15,3	15,3	15,4	15,3	15,3
CaO	18,3	18,2	18,2	18,3	18,2	18,3	18,5	18,3
Na_2O	0,26	0,26	0,24	0,26	0,25	0,25	0,26	0,24
Summe	99,02	99,27	99,02	99,64	98,91	99,29	99,05	98,92
Mg#	70	70	71	70	71	71	71	71
Wo	38	38	38	38	38	38	38	38
En	43	44	44	44	44	44	44	44
Fs	19	19	18	18	18	18	18	18

Scientific Technical Report STR 05/02 DOI: 10.2312/GFZ.b103-050283

Tabelle A74: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

angaoteri	452	452	452	452	452	452	452	452
	Basisbasalt	Basisbasalt			Basisbasalt	Basisbasalt	Basisbasalt	Basisbasal
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	2/1	2/2	2/3	2/4	2/5	2/6	2/7	2/8
	Rand						Kern	Kern
SiO ₂	51,6	51,6	51,4	51,5	51,7	52,1	52,0	51,9
TiO_2	0,62	0,61	0,62	0,62	0,58	0,62	0,58	0,62
Al_2O_3	1,83	1,84	1,89	1,86	1,77	1,72	1,75	1,75
FeO tot	10,6	10,6	10,5	10,6	10,5	10,4	10,5	10,5
MnO	0,31	0,33	0,25	0,26	0,33	0,32	0,22	0,27
MgO	15,3	15,4	15,2	15,3	15,5	15,3	15,5	15,5
CaO	18,5	18,5	18,2	18,3	18,5	18,4	18,5	18,5
Na ₂ O	0,25	0,24	0,23	0,25	0,25	0,24	0,26	0,24
Summe	99,02	99,16	98,42	98,61	99,16	99,18	99,33	99,2
Mg#	71	72	71	71	72	72	72	72
Wo	38	38	38	38	38	38	38	38
En	44	44	44	44	44	44	45	45
Fs	18	18	18	18	17	17	17	17

Tabelle A75: Ausgewählte Mikrosondenanalysen von Klino- und Orthopyroxenen der Basisbasalte und Gangdolerite.

	452	452	452	452	452	452	452	452
	Basisbasalt	Basisbasalt		Basisbasalt		Basisbasalt	Basisbasalt	Basisbasalt
	CPX	CPX	CPX	CPX	CPX	CPX	CPX	CPX
	2/8	2/9	2/10	2/11	2/12	2/13	2/14	2/15
	Kern	Kern					Rand	Rand
SiO_2	52,1	52,2	51,4	51,4	51,6	51,4	51,3	51,5
_								
TiO_2	0,56	0,59	0,70	0,70	0,74	0,71	0,75	0,75
Al_2O_3	1,78	1,80	2,23	2,27	2,26	2,23	2,24	2,21
FeO tot	10,5	10,7	10,4	10,2	10,3	10,3	10,5	10,2
MnO	0,26	0,28	0,25	0,23	0,27	0,19	0,25	0,32
MgO	15,5	15,5	14,8	15,0	15,0	15,1	14,9	14,8
CaO	18,3	18,3	18,7	18,8	18,9	18,6	18,8	18,8
Na_2O	0,24	0,24	0,27	0,24	0,26	0,27	0,26	0,27
Summe	99,15	99,59	98,65	98,79	99,22	98,74	98,98	98,82
Mg#	72	71	71	72	72	72	71	72
Wo	38	38	39	39	39	39	39	39
En	45	44	43	44	44	44	43	43
Fs	17	18	17	17	17	17	17	17

Tabelle A76: Probenlokalitäten der Tholeiite an der Basis des Erongo-Komplexes

	Gesteinsbezeichnung	Lokation	Geographische Breite	Geographische Länge
300	Tholeiitischer Basalt	Farm Pristelwitz	21° 28,848′ S	15° 44,863′ E
308A	Tholeiitischer Basalt	Farm Niewoudt	21° 43,895′ S	15° 44,253′ E
312	Tholeiitischer Basalt	Farm Erongorus	21° 42,449′ S	15° 30,974′ E
315	Tholeiitischer Basalt	Farm Erongorus	21° 42,158′ S	15° 31,461′ E
378A	Tholeiitischer Basalt	Farm Niewoudt	-	-
378C	Tholeiitischer Basalt	Farm Niewoudt	21° 43,621′ S	15° 44,135′ E
381	Tholeiitischer Basalt	Farm Niewoudt	21° 43,584′ S	15° 44,266′ E
382	Tholeiitischer Basalt	Farm Niewoudt	21° 43,782′ S	15° 44,291′ E
384A	Tholeiitischer Basalt	Farm Niewoudt	21° 43,819′ S	15° 43,431′ E
384B	Tholeiitischer Basalt	Farm Niewoudt	21° 43,875′ S	15° 43,375′ E
384C	Tholeiitischer Basalt	Farm Niewoudt	-	-
384D	Tholeiitischer Basalt	Farm Niewoudt	21° 44,003′ S	15° 43,369′ E
385	Tholeiitischer Basalt	Farm Hoogenoeg	21° 36,728′ S	15° 49,214′ E
386A	Tholeiitischer Basalt	Farm Hoogenoeg	21° 36,599′ S	15° 49,192′ E
386B	Tholeiitischer Basalt	Farm Hoogenoeg	21° 36,639′ S	15° 49,278′ E
386C	Tholeiitischer Basalt	Farm Hoogenoeg	21° 36,662′ S	15° 49,325′ E
393A	Tholeiitischer Basalt	Farm Eileen	21° 32,027′ S	15° 47,362′ E
393C	Tholeiitischer Basalt	Farm Eileen	21° 32,027′ S	15° 47,362′ E
399A	Tholeiitischer Basalt	Farm Omandumba West	21° 32,781′ S	15° 35,847′ E
401A	Tholeiitischer Basalt	Farm Omandumba Ost	21° 30,836′ S	15° 38,752′ E
402B	Tholeiitischer Basalt	Farm Omandumba Ost	21° 30,889′ S	15° 38,951′ E
402C	Tholeiitischer Basalt	Farm Omandumba Ost	21° 30,889′ S	15° 38,951′ E
403	Tholeiitischer Basalt	Farm Eileen	21° 33,825′ S	15° 47,504′ E
407A	Tholeiitischer Basalt	Farm Eileen	21° 32,137′ S	15° 47,258′ E
407D	Tholeiitischer Basalt	Farm Eileen	-	-
G149a	Tholeiitischer Basalt	Farm Omandumba Ost	21° 32,767′ S	15° 35,814′ E
G181	Tholeiitischer Basalt	Farm Hoogenoeg	21° 36,639′ S	15° 49,473′ E
G184a	Tholeiitischer Basalt	Farm Niewoudt	21° 44,002′ S	15° 44,192′ E
G185	Tholeiitischer Basalt	Farm Niewoudt	21° 44,132′ S	15° 43,684′ E
G186	Tholeiitischer Basalt	Farm Niewoudt	21° 43,920′ S	15° 43,313′ E
G191	Tholeiitischer Basalt	Farm Niewoudt	-	-
G194	Tholeiitischer Basalt	Farm Niewoudt	21° 31,726′ S	15° 37,521′ E
G195	Tholeiitischer Basalt	Farm Erongorus	21° 42,597′ S	15° 30,849′ E
G196	Tholeiitischer Basalt	Farm Erongorus	-	-
G197	Tholeiitischer Basalt	Farm Erongorus	21° 35,235′ S	15° 33,248′ E

Tabelle A76 (Fortsetzung): Probenlokalitäten der Tholeiite an der Basis des Erongo-Komplexes

	Gesteinsbezeichnung	Lokation	Geographische Breite	Geographische Länge
301A	Basaltischer Andesit	Farm Pristelwitz	21° 30,581′ S	$15^{\rm o}45,\!068'{\rm E}$
301B	Trachyandesit	Farm Pristelwitz	21° 30,581′ S	$15^{\rm o}45,\!068'{\rm E}$
313	Andesit	Farm Erongorus	21° 42,557′ S	15° 31,272′ E
G149	Basaltischer Andesit	Farm Omandumba Ost	21° 32,767′ S	15° 35,814′ E
G178	Trachyandesit	Farm Hoogenoeg	21° 35,106′ S	15° 49,320′ E
G180	Trachyandesit	Farm Hoogenoeg	21° 35,105′ S	15° 49,329′ E
G183a	Trachyandesit	Farm Pristelwitz	21° 30,747′ S	15° 45,223′ E
G192	Trachyandesit	Farm Niewoudt	21° 43,920′ S	15° 43,313′ E

Tabelle A77: Probenlokalitäten der Gangdolerite

Tuociic	Gesteinsbezeichnung	Lokation	Geographische Breite	Geographische Länge
316	Tholeiitischer Basalt	Farm Johannesbank	21° 22,007′ S	15° 46,425′ E
317	Tholeiitischer Basalt	Farm Johannesbank	21° 21,770′ S	15° 46,021′ E
318	Tholeiitischer Basalt	Farm Johannesbank	21° 21,714′ S	15° 45,917′ E
319A	Tholeiitischer Basalt	Farm Johannesbank	21° 22,964′ S	15° 51,230′ E
319B	Tholeiitischer Basalt	Farm Johannesbank	21° 23,038′ S	15° 51,236′ E
324	Tholeiitischer Basalt	Damaraland	21° 44,841′ S	15° 23,784′ E
328A	Tholeiitischer Basalt	Damaraland	21° 41,891′ S	15° 22,397′ E
328C	Tholeiitischer Basalt	Damaraland	21° 41,891′ S	15° 22,397′ E
329A	Tholeiitischer Basalt	Damaraland	21° 42,533′ S	15° 22,554′ E
329B	Tholeiitischer Basalt	Damaraland	21° 42,533′ S	15° 22,554′ E
330	Tholeiitischer Basalt	Damaraland	21° 41,213′ S	15° 22,097′ E
331A	Tholeiitischer Basalt	Farm Okarundu	21° 22,398′ S	15° 32,504′ E
332	Tholeiitischer Basalt	Farm Okarundu	21° 22,181′ S	15° 33,832′ E
333B	Tholeiitischer Basalt	Farm Okarundu	21° 22,084′ S	15° 34,367′ E
335A	Tholeiitischer Basalt	Farm Okarundu	21° 21,823′ S	15° 35,575′ E
336	Tholeiitischer Basalt	Farm Okarundu	21° 21,694′ S	15° 36,660′ E
343	Tholeiitischer Basalt	Damaraland	21° 25,351′ S	15° 29,120′ E
347	Tholeiitischer Basalt	Damaraland	21° 32,242′ S	15° 31,235′ E
348	Tholeiitischer Basalt	Omaruru	21° 22,834′ S	15° 31,734′ E
351	Tholeiitischer Basalt	Tubussis	21° 33,144′ S	15° 23,219′ E
353A	Tholeiitischer Basalt	Damaraland	21° 31,374′ S	15° 24,107′ E
355A	Tholeiitischer Basalt	Tubussis	21° 34,488′ S	15° 22,540′ E
356A	Tholeiitischer Basalt	Tubussis	21° 36,071′ S	15° 22,196′ E
357A	Tholeiitischer Basalt	Farm Lindolm	21° 23,702′ S	15° 53,475′ E
G199	Tholeiitischer Basalt	Tubussis	21° 33,736′ S	15° 22,888′ E

Tabelle A78: Probenlokalitäten der Alkalibasaltgänge

	Gesteinsbezeichnung	Lokation	Geographische Breite	Geographische Länge
425	Tephrit	Farm Omandumba Ost	21° 31,440′ S	15° 42,432′ E
426	Tephrit	Farm Omandumba Ost	21° 31,850′ S	15° 41,666′ E
427	Tephrit	Farm Omandumba Ost	21° 31,850′ S	15° 41,666′ E
428	Phonotephrit	Farm Omandumba Ost	21° 31,466′ S	$15^{\circ}42,\!264'\mathrm{E}$
439	Tephrit	Farm Omandumba Ost	21° 31,900′ S	15° 41,231′ E
440	Tephrit	Farm Omandumba Ost	21° 31,900′ S	15° 41,231′ E
446	Tephrit	Farm Anibib	21° 29,832′ S	15° 35,100′ E
447	Tephrit	Farm Anibib	21° 29,859′ S	15° 35,178′ E
448	Tephrit	Farm Anibib	21° 29,846′ S	15° 35,145′ E
449	Tephrit	Farm Anibib	21° 29,862′ S	15° 35,088′ E
450	Basaltischer Trachyandesit	Farm Anibib	21° 29,765′ S	15° 34,767′ E

Tabelle A79: Probenlokalitäten der Erongorus- und Ombu-Rhyodazite

	Gesteinsbezeichnung	Lokation	Geographische Breite	Geographische Länge
314	Rhyolith	Farm Erongorus	21° 42,589′ S	15° 31,461′ E
467	Rhyodazit	Farm Omandumba West	21° 38,996′ S	15° 33,796′ E
G153b	Rhyolith	Farm Omandumba West	21° 32,990′ S	15° 36,136′ E
307A	Rhyodazit	Farm Eileen	21° 32,770′ S	15° 44,030′ E
307B	Rhyolith	Farm Eileen	21° 32,770′ S	15° 44,030′ E
379	Rhyodazit	Farm Niewoudt	21° 43,584′ S	15° 44,266′ E
451	Rhyodazit	Farm Omandumba West	21° 32,607′ S	15° 35,750′ E
458	Rhyolith	Farm Eileen	21° 31,680′ S	15° 46,452′ E
463	Trachydazit	Farm Koedoeberg	21° 38,625′ S	15° 45,168′ E
G174a	Rhyodazit	Farm Hoogenoeg	21° 31,966′ S	15° 52,234′ E
G175	Rhyodazit	Farm Hoogenoeg	21° 32,940′ S	15° 52,457′ E
G179	Trachydazit	Farm Hoogenoeg	21° 35,052′ S	15° 49,224′ E
G182	Rhyolith	Farm Hoogenoeg	21° 36,609′ S	15° 49,440′ E
G189	Rhyodazit	Farm Ekuta	21° 35,936′ S	15° 42,762′ E
G190	Rhyolith	Farm Hoogenoeg	21° 31,951′ S	15° 37,603′ E

Anhang

Tabelle A80: Probenlokalitäten des Ombu-Granodiorit und des Erongo-Granits

	Gesteinsbezeichnung	Lokation	Geographische Breite	Geographische Länge
445	Erongo-Granit	Farm Anibib	21° 30,550′ S	15° 35,430′ E
454	Erongo-Granit	Erongo Wilderness Lodge	21° 27,178′ S	15° 53,457′ E
455	Erongo-Granit	Erongo Wilderness Lodge	21° 27,036′ S	15° 53,474′ E
459	Ombu-Granodiorit	Farm Ombu	21° 43,265′ S	15° 43,725′ E
391	Ombu-Granodiorit	Farm Bergsig	21° 40,089′ S	15° 39,693′ E
G187	Ombu-Granodiorit	Farm Ombu	21° 43,239′ S	15° 43,354′ E

Danksagung

Herrn Prof. Dr. h. c. Rolf Emmermann danke ich für die Anregung zu dieser Arbeit und für das rege Interesse an ihrer Fortführung. Durch seine stete Hilfsbereitschaft in wissenschaftlicher als auch organisatorischer Sicht war es mir möglich das Projekt in der vorliegenden Form abzuschließen.

Besonderer Dank geht an Dr. Robert Bruce Trumbull für seine immer währende Gesprächsbereitschaft, seine zahlreichen Anregungen und für seine unterstützenden Tätigkeiten während der Feldkampagne im Jahr 1999.

Herrn Prof. Dr. Jörg Erzinger danke ich für die Anfertigung des Korreferats.

Herrn Prof. Dr. Udo Haack möchte ich für die Übernahme des externen Gutachtens danken.

Für die kritischen und konstruktiven Diskussionen sowie die tatkräftige Unterstützung möchte ich mich ganz herzlich bei Dr. Axel K. Schmitt bedanken. Wichtige Beiträge zum Gelingen dieser Arbeit waren die Unterstützung bei der Feldarbeit im Jahre 2000 und die Durchführung der U-Pb-Messungen mit der CAMECA ims 1270 an der UCLA. An dieser Stelle sei weiterhin Herrn Prof. Dr. Marty Grove (UCLA) für seine Unterstützung bei den U-Pb-Messungen mit der CAMECA ims 1270 gedankt.

Herrn Dr. Michael Brauns danke ich für die Durchführung der Re-Os-Analytik und Re-Os-Messungen am Institut für Geowissenschaften und Lithosphärenforschung der Justus Liebig Universität Gießen

Ein herzliches Dankeschön an Prof. Dr. Igor M. Villa, der mir die ⁴⁰Ar/³⁹Ar-Messungen im Institut für Isotopengeologie an der Universität Bern in den Jahren 2001 und 2002 ermöglichte, für seine Unterstützung und Diskussionsbereitschaft.

Meinen Kollegen Kai Hahne, Dr. Tim Vietor und Dr. Hans-Ulrich Wetzel danke ich für ihre Unterstützung während der Geländeaufenthalte in Namibia in den Jahren 1999 und 2000 sowie ihre stete Diskussionsbereitschaft während der Anfertigung dieser Arbeit.

Allen Mitarbeitern des GeoForschungsZentrum Potsdam, die die Entstehung dieser Arbeit unterstützt haben, gilt mein Dank. Namentlich möchte ich die folgenden Personen besonders hervorheben: Rudolf Naumann (RFA), Heike Rothe, Christa Wiesenberg, Birgit Zander, Dr. Peter Dulski, Dr. Knut Hahne (ICP-MS), Annette Meixner, Catrin Schulz, Sten Littmann und Dr. Rolf Romer (Isotopengeochemie), Oona Appelt und Dr. Dieter Rede (Mikrosonde), Erika Kramer (SEE-Analytik), Ilona Schäpan und Sabine Schumann (H₂O- und CO₂-Bestimmung), Eva-Maria Schemmert und Gerhard Berger (Dünnschliffpräparation), Marina Ospald und Hartmut Liep (Gesteinsaufbereitung).

Weiterhin möchte ich mich bei Diana Krüger, Alexander Mock und Dr. Thomas Wiersberg bedanken.

Den Mitarbeitern des Geological Survey of Namibia und den Farmern des Erongo-Komplexes, insbesondere den Familien Rust und Van Alphen, gilt mein Dank für ihre Hilfsbereitschaft und Freundlichkeit während unserer Geländeaufenthalte in den Jahren 1999 und 2000 in Namibia.

Meinen Eltern möchte ich für ihre immer währende Unterstützung ganz herzlich danken.

Die vorliegende Arbeit wurde vom GeoForschungsZentrum Potsdam im Rahmen des Namibiaprojektes finanziert.

Wissenschaftliche Publikationen im Rahmen dieser Arbeit

- Trumbull, R. B., Harris, C., Frindt, S. & Wigand, M. (in press): Oxygen and neodymium isotope evidence for source diversity in Cretaceous anorogenic granites from Namibia and implications for A-type granite genesis. *Lithos*.
- Wigand, M., Schmitt, A. K., Trumbull, R. B., Villa, I. M. & Emmermann, R. (in press): Short-lived magmatic activity in an anorogenic subvolcanic complex: ⁴⁰Ar/³⁹Ar and ion microprobe U-Pb zircon dating of the Erongo, Damaraland, Namibia. *Journal of Volcanology and Geothermal Research*.

Tagungsbeiträge

- Vietor, T., Ameglio, L., Wigand, M., Trumbull, R., Wetzel, H. U. (2002): Constraints on the emplacement mechanisms and 3D structure of the Erongo Magmatic Complex: new geophysical, geochemical and remote sensing data. *Geocongress* 2002, 22-26. *July*, 2002, Windhoek, Abstract CD unpaginated.
- Wigand, M., Brauns, M., Trumbull, R., Emmermann, R. (2002): Age and origin of the alkaline rocks from the Erongo complex: an Os, Sr and Nd isotope study. 80. Jahrestagung der DMG, 8. 12. Sept. 2002, Hamburg, Berichte Deutsche Mineralogische Gesellschaft. European Journal of Mineralogy 14, Beiheft 1: 174.
- Trumbull, R. B., Hahne, K., Wigand, M., Vietor, T., Kaufmann, H. (2001): The Damara Belt as a failed arm of the South Atlantic rift system: evidence from the Henties Bay-Outjo dike swarm in NW Namibia 2001. *Margins Meeting, Kiel, October 2 6, 2001, Schriftenreihe der Deutschen Geologischen Gesellschaft* **14**: 216-217.
- Wigand, M., Trumbull, R. B., Emmermann, R. (2001a): Crust and mantle contributions to anorogenic magmatism: a case study of the Cretaceous Erongo Complex, Namibia. *EUG XI, Strasbourg, April 8-12, 2001, Journal of Conference Abstracts, 6/1, Cambridge Publications, UK*: 474.
- Wigand, M., Trumbull, R. B., Emmermann, R. (2001b): Bimodal magmatism at passive continental margins: a case study of the Erongo Complex, Namibia. 79. *Jahrestagung der DMG*, 9. 14. Sept. 2001, Potsdam. Berichte Deutsche Mineralogische Gesellschaft No. 1. European Journal of Mineralogy 13: 198.