Atmospheric Science

AN INTRODUCTORY SURVEY

John M. Wallace Peter V. Hobbs University of Washington

IA 100 a Sektion Me ogie TECHNISC CHSCHULE 1 51) 16 21 70 B 14/78

ACADEMIC PRESS New York San Francisco London A Subsidiary of Harcourt Brace Jovanovich, Publishers

Contents

xi xv

Preface		
Units and Numerical Values		

Chapter 1 A BRIEF SURVEY OF THE ATMOSPHERE

1.1	Introduction	1
1.2	Origin and Composition of the Atmosphere	4
1.3	The Distribution of Atmospheric Mass and Gaseous Constituents	11
1.4	Charged Particles in the Atmosphere	16
1.5	The Temperature Distribution	21
1.6	Winds in the Earth's Atmosphere	28
1.7	Precipitation	39
	Problems	45

Chapter 2 ATMOSPHERIC THERMODYNAMICS

2.1	The Gas Laws	48
2.2	The Hydrostatic Equation and Its Applications	52
2.3	The First Law of Thermodynamics	61
2.4	Latent Heats	66
2.5	Adiabatic Processes	67
2.6	Water Vapor in the Air	71
2.7	The Concept of Static Stability	81
2.8	The Second Law of Thermodynamics and Entropy	86
2.9	Thermodynamic Functions and Equilibrium Conditions	98
	Problems	102

Chapter 3 EXTRATROPICAL SYNOPTIC-SCALE DISTURBANCES

3.1	The 500-mb Flow	108
3.2	Surface Weather Elements	111
3.3	Interpretation of Synoptic Surface Reports	121
3.4	Upper Level Structure	128
3.5	Thickness and Its Relationship to Vertical Structure	136
	Problems	141

Chapter 4 ATMOSPHERIC AEROSOL AND CLOUD MICROPHYSICAL PROCESSES

4.1	Atmospheric Aerosol	144
4.2	Nucleation of Water Vapor Condensation	158
4.3	The Microstructure of Warm Clouds	167
4.4	Growth of Cloud Droplets in Warm Clouds	169
4.5	The Microphysics of Cold Clouds	181
4.6	Thunderstorms	199
	Problems	209

S.

Chapter 5 CLOUDS AND STORMS

5.1	Cloud Morphology	216
5.2	The Air-Mass Thunderstorm	238
5.3	Severe Storms	240
5.4	Hurricanes	. 250
5.5	Extratropical Cyclonic Storms	254
5.6	Artificial Modification of Clouds and Precipitation	262
	Problems	274

Chapter 6 **RADIATIVE TRANSFER**

6.1	The Spectrum of Radiation	280
6.2	Absorption and Emission of Radiation by Molecules	281
6.3	Quantitative Description of Radiation	283
6.4	Blackbody Radiation	287
6.5	Absorptivity and Emissivity	290
6.6	Atmospheric Absorption of Solar Radiation	296
6.7	Atmospheric Absorption and Emission of Infrared Radiation	302
6.8	Scattering of Solar Radiation	306
6.9	The Role of Radiative Transfer in the Global Energy Balance	308
	Problems	309

Chapter 7 THE GLOBAL ENERGY BALANCE

7.1	The Globally Averaged Atmospheric Energy Balance	316
7.2	The Energy Balance of the Upper Atmosphere	322
7.3	The Tropospheric Energy Balance	330

viii

Contents		1X
7.4	The Energy Balance at the Earth's Surface	338
7.5	Time Variations in the Energy Balance	342
	Problems	354

Chapter 8 ATMOSPHERIC DYNAMICS

8.1	Coordinate Systems	361
8.2	Apparent Forces in a Rotating Coordinate System	365
8.3	Real Forces	371
8.4	The Horizontal Equation of Motion	375
8.5	The Vertical Equation of Motion	383
8.6	The Thermal Wind	384
8.7	The Thermodynamic Energy Equation	390
8.8	The Continuity Equation	396
8.9	The Primitive Equations	405
	Problems	407

Chapter 9 THE GENERAL CIRCULATION

9.1	Introduction	412
9.2	Thermally Driven Circulations in the Absence of Rotation	414
9.3	The Influence of Planetary Rotation upon Thermally Driven Circulations	419
9.4	Thermally Driven Circulations in the Tropics	424
9.5	Baroclinic Disturbances	431
9.6	The Dissipation of Kinetic Energy	437
9.7	The Kinetic Energy Cycle	441
9.8	The Role of the Atmospheric General Circulation in the Hydrologic Cycle	444
9.9	The Atmospheric Transport of Energy	445
9.10	The Atmosphere as a Heat Engine-	447
	Problems	448

1

451