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Abstract

We consider first order optimality conditions for state constrained optimal
control problems. In particular we study the case where the state equation has
not enough regularity to admit existence of a Slater point in function space. We
overcome this difficulty by a special transformation. Under a density condition
we show existence of Lagrange multipliers, which have a representation via
measures and additional regularity properties.
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1 Introduction

First order optimality conditions for optimal control problems subject to partial
differential equations have been studied for a long time, successfully for large classes
of problems. For an excellent overview we refer to the text book [19], for original
papers in the pointwise state constrained elliptic case cf. [5, 6, 1].

The main structural assumption in the analysis of state constrained problems
is the existence of a Slater point, which lies in the interior of the feasible set. Usual
approaches require this to be satisfied with respect to the norm topology of the
space of states. In the case of pointwise state constraints this holds only if ‖·‖∞
or a stronger norm is used. For cases were the coercivity of the functional and the
properties of the PDE are strong enough to guarantee bounded states, optimality
systems were derived and precise conclusions on the structure and the regularity of
the dual variables were drawn. For the remaining cases not much is known. The
only available result in this direction does not exploit the structure of a Slater point
at all, which leads to poor conclusions. Similar issues arise in the analysis of bounds
on the gradient of the state.

The purpose of this work is to close the remaining theoretical gap between these
two extreme cases. Our idea is to introduce two separate topological frameworks.
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A full topological framework is needed for existence of a minimizer and a restricted
framework is needed for a Slater condition. Then we transform the problem onto
a space, where a Slater condition is satisfied by construction. By these techniques
we can derive first order optimality conditions and similar regularity results as
in [5, 6, 1] under weaker topological assumptions. In particular, if the restricted
control space is dense in the full control space, the Lagrange multipliers of the
state constraints still correspond to regular measures. In addition, these Lagrange
multipliers are regular enough to be applied to all feasible, possibly discontinuous
or unbounded states.

For simplicity we concentrate on the convex setting, remarking that smooth non-
convex problems can usually be reduced locally to convex problems by linearization.
For the sake of wide applicability and to clarify the analytic structure of the problem
our analysis is performed in an abstract framework. We illustrate the application
of our theory with an example from boundary control.

Acknowledgment The author wants to thank Prof. Dr. Fredi Tröltzsch for
discussions on the subject, which gave rise to a couple of new ideas and motivated
this thorough revision and extension of the preprint [18].

2 An Abstract Optimal Control Problem

Consider a convex optimal control problem of the following form:

min
(u,y)∈U×Y

j(u, y) s.t. Ay −Bu = 0, y ∈ Y, u ∈ U . (P)

As indicated, we will use two analytic frameworks for our problem.

Framework 2.1. (Full Framework) Let U , Y be normed spaces and R be a linear
space. Z := U × Y .

(i) Let A : Y ⊃ domA → R be an injective linear operator.

(ii) Let B : U → R be a linear operator.

(iii) There is a continuous “control-to-state“ mapping S : U → domA ⊂ Y such
that AS = B.

(iv) Let j : Z → R, let U ⊂ U and Y ⊂ Y . Define the feasible subspace

K := {(u, y) ∈ U × domA : Ay −Bu = 0} = {(u, y) ∈ U × domA : y = Su}

and the feasible subset Z := (U × Y) ∩ K.

Observe that A, which models a differential operator, does not have to be defined
on all of Y , but has its own domain of definition domA. This gives us additional
flexibility to choose Y , as we will demonstrate in Section 5.
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Framework 2.2. (Restricted Framework) Let Y∞ and R∞ be normed spaces. Let
U∞ ⊂ U be a linear subspace of U . Z∞ := U∞ × Y∞.

(i) There exists a continuous injective embedding Y∞ ↪→ Y , and an injective
embedding R∞ ↪→ R. Via the ranges of these embeddings we will identify Y∞
and R∞ with linear subspaces of Y and R, respectively.

(ii) Let A∞ : Y∞ ⊃ domA∞ → R∞ be a linear operator with domA∞ ⊂ domA
and A∞ = A on domA∞.

(iii) S maps U∞ into domA∞, i.e., S U∞ ⊂ domA∞ ⊂ Y∞.

Our analysis will take place within these two frameworks, and the assumptions
and notations introduced there will be in force throughout the whole paper. All
other assumptions will be referenced explicitely, when needed.

To be able to show existence of minimizers we will need additional assumptions
that hold within Framework 2.1. In particular, coercivity of j is crucial for existence.

Assumption 2.3. (Reflexivity, closedness, convexity, coercivity)

(i) U and Y are reflexive.

(ii) U and Y are closed, convex and non-empty. The feasible set Z is non-empty.

(iii) The functional j is convex and lower semi-continuous. It is coercive on Z, i.e.
for every sequence zk in Z, ‖zk‖Z →∞ implies j(zk) →∞.

Under Assumption 2.3 we will show later that our problem admits a minimizer,
and it is actually possible to derive some sort of first order optimality conditions,
however with poor conclusions. Most problems exhibit far more additional structure
that we want to exploit in our analysis. For this we state the following additional
regularity assumptions that hold only within the restricted Framework 2.2.

Assumption 2.4. (Restricted regularity)

(i) Y∞ is complete.

(ii) There is τ > 0 and (ŭ, y̆) ∈ Z ∩ Z∞ such that y̆ + y ∈ Y for all y ∈ Y∞ with
‖y‖Y∞ ≤ τ (Slater condition).

(iii) For every u ∈ U there are λ > 0, u∞ ∈ U∞, uad ∈ U with u = λ(u∞ + uad).

In short, Framework 2.1 and Assumption 2.3 describe a setting, where the func-
tional j is coercive, but a regularity condition fails to hold. The setting fixed in
Framework 2.2 and Assumption 2.4 yields regularity, but no coercivity.

As we want to derive an abstract adjoint PDE, we need a regularity condition
for the differential operator (cf. Appendix A).

Assumption 2.5. Y∞ and R∞ are complete and the operator A∞ is closed, densely
defined, and has closed range.
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As an example, consider a pointwise state constrained linear quadratic optimal
control problem (for precise example cf. Section 5). Then, to assert coercivity,
U must be an L2-space, and Y has to be chosen sufficiently large, to guarantee
continuity of S : U → Y . Then Framework 2.1 is fixed, and Assumption 2.3 holds.
In contrast, Assumption 2.4(ii) can only be fulfilled, if Y∞ is sufficiently small. In
the state constrained case Y∞ usually has to be a space of continuous functions.
Then U∞ and R∞ have to be chosen accordingly.

In some cases, the regularity theory of the PDE shows that the choices Y∞ = Y
and U∞ = U are possible. These cases are well analysed (cf. e.g. [5, 6, 1]) and
precise structural results are known. Observe that Assumption 2.4(iii) is trivially
fulfilled in this case.

The remaining cases include Neumann boundary control in three space dimen-
sions, many parabolic control problems, and problems with bounds on the gradient
of the state. In Section 5 we will consider three dimensional boundary control in
detail. Analysis of these cases has been done (cf. e.g. [6, 1, 7, 8]), but only for
special choices of j and U to obtain sufficiently strong coercivity properties.

This work explores the case, where both settings do not coincide with the aim
to exploit as much structure are possible. Of particular interest is the case where
U∞ is dense in U . We will show that the conclusions of the case (Z, R) = (Z∞, R∞)
essentially extend to this more general case. Because U is often chosen as an Lp-
space in applications, a suitable dense subspace is easily found.

Without a density assumption the conclusions become considerably weaker. The
extreme case in this direction (Z∞, R∞) = ({0}, {0}) has been considered previously
(cf. e.g. [12]). Assumption 2.4(i)-(ii) and 2.5 hold trivially in this case, while
Assumption 2.4(iii) is only valid for U = U . However, to get a true insight into
the structure of a particular class of problems it is vital to choose the restricted
framework and in particular U∞ as large as possible. The larger U∞, Y∞ and R∞,
the stronger the results.

3 Main results

For the statement of our main results, in particular first order optimality conditions
for the problem (P), we will use basic concepts of the theory of unbounded operators
and convex analysis (cf. Appendix A and B).

3.1 Existence of minimizers

With the help of indicator functions (67) we can rewrite (P) as an unconstrained
optimal control problem.

min
z=(u,y)∈Z

F (z) := j(z) + ιZ = j(z) + ιU (u) + ιY(y) + ιK(z). (1)

Now F : Z → R is an extended real valued function. Equivalence to (P) follows,
because ιZ(z) = 0, if z is feasible and +∞ otherwise.
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Theorem 3.1. If Assumption 2.3 holds, then (P) admits a minimizer zopt ∈ Z.

Proof. The operator (−S, I) : U × Y → Y is continuous and thus K = ker(−S, I)
is closed. Hence, by Assumption 2.3(ii) Z is closed and convex as the intersection
of the closed and convex sets K and U × Y, and non-empty. Thus ιZ is convex,
lower semi-continuous and proper. By Assumption 2.3(iii), j is convex, lower semi-
continuous and finite on Z and coercive on Z.

So all in all, F = j + ιZ is convex, lower-semi continuous, proper, and coercive
on the space Z, which is reflexive by Assumption 2.3(i). Thus we can apply the
main existence theorem of convex optimization (cf. e.g. [9, Proposition II.1.2]),
which yields existence of a minimizer zopt ∈ Z of (P).

3.2 A tailored function space

It turns out that the analysis of (P) and its first order optimality conditions requires
a particularly tailored function space Ỹ for the states. It is constructed to contain
all feasible solutions and to reflect the regularity structure of the problem in view
of Assumption 2.4(ii).

Definition 3.2. Define the following subspace of Y :

Ỹ := ranS + Y∞ ⊂ Y, (2)

and the following functional on Ỹ :

‖y‖Ỹ := inf{‖u‖U + ‖w‖Y∞ : u ∈ U,w ∈ Y∞, y = Su + w}. (3)

The next proposition states the unsurprising result that (Ỹ , ‖·‖Ỹ ) is a normed
space:

Proposition 3.3. The functional ‖·‖Ỹ defines a norm on Ỹ and there exist the
injective continuous embeddings Ẽ : Y∞ ↪→ Ỹ and E : Ỹ ↪→ Y . The control-to-state
mapping S is continuous as a mapping S̃ : U → Ỹ .

If additionally U∞ is dense in U then the embedding Y∞ ↪→ Ỹ is dense, and if
domA∞ is dense in Y∞, then the following operators are densely defined

Ã : Ỹ ⊃ domA∞ → R∞
y 7→ A∞y,

(4)

B̃ : U ⊃ U∞ → R∞
u 7→ Bu.

(5)

Proof. First we show that (3) is a semi-norm. Clearly, ‖·‖Ỹ is non-negative, posi-
tively homogenous, and ‖y‖Ỹ < ∞ for all y ∈ Ỹ .

To see that the triangle inequality holds, let ε > 0, and choose for yi ∈ Ỹ , i =
1, 2, ui ∈ U and wi ∈ Y∞, such that yi = Sui +wi and ‖ui‖U +‖wi‖Y∞ ≤ ‖yi‖Ỹ + ε.
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Then

‖y1 + y2‖Ỹ ≤ ‖u1 + u2‖U + ‖w1 + w2‖Y∞ ≤ ‖u1‖U + ‖u2‖U + ‖w1‖Y∞ + ‖w2‖Y∞

≤ ‖y1‖Ỹ + ‖y2‖Ỹ + 2ε.

Because ε was arbitrary, the triangle inequality follows, and ‖·‖Ỹ is a semi-norm.
Similarly, to show ‖·‖Y ≤ c ‖·‖Ỹ choose for y ∈ Ỹ , u ∈ U and w ∈ Y∞ such that

y = Su + w and ‖u‖U + ‖w‖Y∞ ≤ ‖y‖Ỹ + ε. Then Framework 2.1(iii) and 2.2 (i)
yield

‖y‖Y ≤ ‖Su‖Y + ‖w‖Y ≤ ‖S‖ ‖u‖U + c ‖w‖Y∞ ≤ max{‖S‖ , c}(‖y‖Ỹ + ε).

Thus E : Ỹ ↪→ Y is continuous. This implies also that, ‖·‖Ỹ is not only a semi-
norm, but a norm on Ỹ and E is injective: if ‖y‖Ỹ = 0, then also ‖y‖Y = 0, and
thus y = 0, because Ỹ was defined as a subspace of Y .

Continuity of S̃ : U → Ỹ immediately follows from the definition of ‖·‖Ỹ (setting
w = 0), which yields ‖S̃u‖Ỹ ≤ ‖u‖U . Further, ‖y‖Ỹ ≤ ‖y‖Y∞ follows from the choice
u = 0 in (3), and thus the embedding Ẽ : Y∞ ↪→ Ỹ is continuous. Injectivity of Ẽ
follows, because the embedding Y∞ ↪→ Y is injective due to Framework 2.2(i) and
Ỹ is a subspace of Y .

By Framework 2.2(iii) and (ii) SU∞ ⊂ domA∞ and A = A∞ on domA∞. We
compute for u ∈ U∞: ASu = A∞Su = Bu, and thus, because A∞ maps into R∞,
Bu ∈ R∞. Hence, B̃ is well defined in (5). If U∞ is dense in U , then clearly B̃
is densely defined. For the remaining density assertions let y ∈ Ỹ . Then there is
u ∈ U and w ∈ Y∞ with y = Su + w. Further, there is a sequence uk in U∞ with
‖uk − u‖U → 0. Consequently yk := Suk + w ∈ Y∞, and ‖y − yk‖Ỹ → 0 by (3).
Hence, Y∞ is dense in Ỹ , which implies also that Ã is densely defined.

Finally, we define for later reference the following space and a continuous em-
bedding

Z̃ := U × Ỹ , EZ := (I, E) : Z̃ ↪→ Z. (6)

Note that S = ES̃ and that both operators are algebraically equivalent and thus
might as well be identified. However, as we will consider their adjoints later, a
notational distinction seems to be appropriate for the sake of clarity. Similarly, we
write the embeddings EZ , Ẽ and E explicitely, because we will use their adjoints.
Adjoints of embeddings usually have an interpretation as restrictions of linear func-
tionals to subspaces.

Further, we define Ỹ := Y ∩ Ỹ . More formally, Ỹ is the pre-image of Y with
respect to E. Because E is continuous, Ỹ is closed in Ỹ . Observe that the subspace
K defined in framework 2.1(iv) is contained in Z̃. Thus Z̃ contains the feasible set
of (P) and thus also its minimizers.
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3.3 First order optimality conditions

Now we can formulate our main result, which is the most important special case of
Theorem 4.8, proved in Section 4. Observe that all quantities are well defined by
Proposition 3.3, in particular Ã∗ and B̃∗ (cf. Appendix A.2).

Theorem 3.4. Suppose that Assumptions 2.3-2.5 hold and that U∞ is dense in U .
Then zopt = (uopt, yopt) ∈ Z is a minimizer of (P) if and only if zopt ∈ Z and the
following system of equations has a solution (j∗, u∗, y∗, p) ∈ Z∗ × U∗ × Ỹ ∗ ×R∗∞:

E∗j∗y + y∗ + Ã∗p = 0 in Ỹ ∗ (7)

j∗u + u∗ − B̃∗p = 0 in U∗ (8)

〈y∗, ỹ − yopt〉 ≤ 0 ∀ỹ ∈ Ỹ (9)
〈u∗, u− uopt〉 ≤ 0 ∀u ∈ U (10)

p ∈ dom B̃∗ ∩ dom Ã∗ ⊂ R∗
∞, j∗ = (j∗u, j∗y) ∈ ∂j(zopt). (11)

Proof. Compare (35)-(40) and (7)-(11). Obviously Theorem 3.4 follows from Theo-
rem 4.8, if we can show that there is p ∈ dom B̃∗∩dom Ã∗, such that (−S̃∗a∗, a∗) =
(−B̃∗p, Ã∗p).

Since U∞ is dense in U and by Assumption 2.5, Proposition 3.3 yields that Ã
and B̃ are densely defined (thus Ã∗ and B̃∗ are well defined, cf. Appendix A.2),
and Y∞ is dense in Ỹ . Equation (40) yields 〈a∗, y〉 = 〈r∗, A∞y〉 = 〈r∗, Ãy〉 for all
y ∈ Y∞. Because a∗ ∈ Ỹ ∗, also 〈r∗, Ã·〉 is continuous on the dense subspace Y∞
of Ỹ . Hence, by definition of dom Ã∗, r∗ ∈ dom Ã∗, and Ã∗r∗ = a∗, because this
equality holds on a dense subset of Ỹ .

Moreover, Proposition 4.7 yields 〈S̃∗a∗, u〉 = 〈r∗, Bu〉 = 〈r∗, B̃u〉 for all u ∈ U∞,
which is again dense in U . Similarly as above we obtain r∗ ∈ dom B̃∗ and S̃∗a∗ =
B̃∗r∗. Hence, we may set p = r∗.

Theorem 3.4 is a structural result in the first place, which also implies regularity
assertions for the quantities p and y∗. In Section 5 we will consider an example
where the space R∗∞ is a Sobolev space W 1,q′(Ω). Hence, p is smooth (this explains,
why the “adjoint state” p is perceived as a function, rather than as a functional).
Usually one can conclude also smoothness of the optimal control uopt from this.
This regularity result is independent of the representation of Ỹ ∗, which we will
discuss in the following section.

3.4 Representations of the space of Lagrange multipliers

Theorem 3.4 states existence of Lagrange multipliers in an abstract dual space Ỹ ∗.
It is thus interesting to consider representations of Ỹ ∗. To keep the discussion
concrete, we will consider the case Y∞ = C(Q) for a compact set Q, which implies
by the Riesz representation theorem that Y ∗∞ ∼= M(Q), the space of Radon measures
on Q.
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Proposition 3.5. Let Y∞ = C(Q) and suppose that the embedding Ẽ : Y∞ ↪→ Ỹ is
dense. There is the continuous injective embedding

Ẽ∗ : Ỹ ∗ ↪→ M(Q).

In particular, there is the following representation for Ỹ ∗:
Let y∗ ∈ Ỹ ∗ and µ = Ẽ∗y∗. For each y ∈ Ỹ there are sequences yk in C(Q) with

yk → y in Ỹ , and it holds independently of the choice of the sequence

〈y∗, y〉 = lim
k→∞

∫

Q
yk dµ, (12)

∣∣∣∣〈y∗, y〉 −
∫

Q
yk dµ

∣∣∣∣ ≤ ‖y∗‖Ỹ ∗ ‖y − yk‖Ỹ . (13)

Proof. By assumption there is a continuous embedding Ẽ : Y∞ ↪→ Ỹ , which has
dense range. Its (continuous) adjoint mapping Ẽ∗ : Ỹ ∗ ↪→ Y ∗∞ ∼= M(Q) is thus
injective by Theorem A.2.

Next, (13) follows from
∣∣∣∣〈y∗, y〉 −

∫

Q
yk dµ

∣∣∣∣ = |〈y∗, y〉 − 〈y∗, yk〉| ≤ ‖y∗‖Ỹ ∗ ‖y − yk‖Ỹ .

Finally, density of Y∞ ↪→ Ỹ and (13) imply (12).

Remark 3.6. Density of Y∞ ↪→ Ỹ and thus injectivity of Ẽ∗ is crucial for the
regularity of Ỹ . A notorious example with missing injectivity is the “embedding”
L∞(Q)∗ ↪→ M(Q). Although its continuity implies that each element of L∗∞ acts as
a measure if applied to a continuous function, the representation of L∗∞ (as space
of countably additive set functions) is less regular than M(Q). This is due to the
very large and irregular kernel of this embedding: each measure corresponds to a
large affine subspace of L∗∞. In contrast, ker Ẽ∗ = 0, so each measure corresponds
to at most one element of Ỹ ∗ and thus actually serves as a representation of this
element.

Clearly, if y ∈ Ỹ is a continuous function, then 〈y∗, y〉 is represented via an
integral. Proposition 3.5 states that for all other elements of Ỹ the evaluation of
〈y∗, y〉 can be done via converging sequences of integrals, but not directly via an
integral in general.

Such a situation occurs surprisingly often at the interface between measure the-
ory and functional analysis. The interested reader is referred to [3, 10] for an account
on their interplay. Perhaps the most prominent example is the Fourier transforma-
tion, which is defined as an integral transform only on L1(Rd), but isometric with
respect to the L2-norm. This allows to extend the corresponding linear operator to
an isometry on L2(Rd), called Fourier-Plancherel transformation, and use it there
conveniently in a Hilbert space setting. Failure of the integral in the context of opti-
mal control can be observed in [13]. Here a control problem is considered, where the
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optimal solution depends on the type of integral (Lebesgue or improper Riemann
integral) used.

In some cases, however, we do have a direct representation via an integral. Here
one has to take into account that the space Y is usually a space of equivalence
classes of functions, and Ỹ is a subspace thereof. Thus, such a representation is
only meaningful via a continuous “trace” operator γµ : Ỹ → L1(µ). Here is a simple
case, where γµ exists.

Proposition 3.7. Let Y∞ = C(Q) and suppose that Ẽ : Y∞ ↪→ Ỹ is dense. Assume
that there is a constant C, such that

‖|y|‖Ỹ ≤ C ‖y‖Ỹ ∀y ∈ C(Q). (14)

Let y∗ ∈ Ỹ ∗ and µ = Ẽ∗y∗. If µ is positive, then there is a linear continuous trace
operator

γµ : Ỹ → L1(µ),

such that γµ(y) = y ∀y ∈ C(Q) and

〈y∗, y〉 =
∫

Q
γµ(y) dµ ∀ y ∈ Ỹ . (15)

Proof. For y ∈ C(Q) define γµ(y) := y. By (14) we have:

‖γµ(y)‖L1(µ) =
∫

Q
|γµ(y)| dµ ≤ ‖|y|‖Ỹ ‖y∗‖Ỹ ∗ ≤ C ‖y‖Ỹ ‖y∗‖Ỹ ∗ .

Hence, γµ is continuous on the dense subspace C(Q) ⊂ Ỹ . Since additionally L1(µ)
is complete, this operator has a unique continuous extension (cf. e.g. [20, Satz
II.1.5]) with the stated properties.

We close this section by noting that there may be more sophisticated representa-
tion criteria, depending on the particular problem. Further, it may be an interesting
task to analyse the subspace ran Ẽ∗ for a particular problem.

4 Proof of the main results

We will now proof first order optimality conditions for (P). We have to cope with
the problem that the space Z is too large for a direct approach. Our strategy
thus consists of three main steps. In Section 4.1 we transform (P) from Z to an
equivalent problem on an auxiliary space X. In Section 4.2, which contains the core
of the proof, we apply the sum-rule of convex analysis to the transformed version of
(P). Characterization of the summands yields a dual equation in X∗. In Section 4.3
a back-transformation to Z̃∗ is performed.

In our proof we will use basic tools from the theory of unbounded operators and
from convex analysis. For convenient reference we have gathered these tools in the
appendix.
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4.1 Transformation of the problem

We introduce the auxiliary space X and a transformation T̃ : X → Z̃. X and T̃ will
be chosen, such that the feasible subspace K is transformed to the first component
of X. This gives us the freedom to choose the second component of X according to
our needs, namely as Y∞ to exploit a Slater condition. We define the normed space
X by

X := U × Y∞, ‖·‖X = ‖·‖U + ‖·‖Y∞ .

The components of X will not be interpreted as control and state. We will express
this by the notational convention x = (v, w). Rather, the connection between
X and Z̃ is established by the following transformation (S̃ and Ẽ, are defined in
Proposition 3.3).

Proposition 4.1. There is the continuous transformation:

T̃ : X → Z̃

(v, w) 7→ (u, y) := (v, S̃v + Ẽw).
(16)

T̃ is injective and ran T̃ ⊃ K + Z∞. T̃ |U : U → K ⊂ Z̃ is an isomorphism.

Proof. By construction of Ỹ (cf. Proposition 2), T̃ is well defined. If T̃ (v, w) =
(0, 0), then v = 0 and S̃v + Ẽw = 0, thus also Ẽw = 0. Since Ẽ is injective, T̃ is
injective, too. Continuity of T̃ follows from

‖T̃ (v, w)‖Z̃ = ‖v‖U + ‖S̃v + Ẽw‖Ỹ ≤ ‖v‖U + (‖v‖U + c ‖w‖Y∞) ≤ c ‖(v, w)‖X .

Consider T̃ |U , which maps (v, 0) to (v, S̃v). As a restriction, T̃ |U inherits injectivity
and continuity from T̃ . From Framework 2.1(iv) we obtain {(v, S̃v) : v ∈ U} = K.
Hence, ran T̃ |U = K. Thus, T̃ |U : U → K is bijective and its inverse is continuous,
because ‖T̃ (v, 0)‖Z̃ = ‖v‖U + ‖S̃v‖Ỹ ≥ ‖v‖U = ‖(v, 0)‖X .

If z = (u, y) ∈ Z∞ ⊂ Z̃, then S̃u ∈ Y∞ by Framework 2.2(iii). Hence, y − Su ∈
Y∞, thus x := (u, y − Su) ∈ X and we compute

T̃ x = (u, S̃u + Ẽ(y − Su)) = (u, Ẽy) = (u, y) = z

and thus ran T̃ ⊃ Z∞. We have already shown that ran T̃ ⊃ K, thus ran T̃ ⊃
Z∞ +K.

We may also write our transformation in matrix form:

T̃ =
(

I 0
S̃ Ẽ

)
: U × Y∞ → U × Ỹ .

The composition of T̃ with the continuous embedding EZ : Z̃ → Z defined in
(6) yields the continuous transformation

T := EZ T̃ : X → Z. (17)
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Proposition 4.2. The following assertions are equivalent for x ∈ X:

(i) Tx is a minimizer of F : Z → R as defined in (1).

(ii) x is a minimizer of F ◦ T : X → R.

(iii) 0 ∈ ∂(F ◦ T )(x) ⊂ X∗.

Proof. First of all (ii) ⇔ (iii) by (68). To show (i) ⇔ (ii), we note that all
minimizers of F are in K, and T maps U onto K bijectively. Since (F ◦ T )(x) =
F (Tx) equivalence of (i) and (ii) follows.

For the back-transformation in Section 4.3 we need some results on T̃ ∗.

Proposition 4.3. Consider the continuous adjoint operator of T̃ :

T̃ ∗ : Z̃∗ → X∗

(u∗, y∗) 7→ (v∗, w∗) := (u∗ + S̃∗y∗, Ẽ∗y∗).
(18)

(i) There are the following characterizations:

ker T̃ ∗ =
{

(−S̃∗y∗, y∗) ∈ Z̃∗ : y∗ ∈ ker Ẽ∗ ⊂ Ỹ ∗
}

(19)

ran T̃ ∗ =
{

(v∗, w∗) ∈ X∗ : 〈w∗, w〉 ≤ c‖Ẽw‖Ỹ ∀w ∈ Y∞
}

. (20)

(ii) z∗ solves the equation T̃ ∗z∗ = (v∗, w∗) if and only if there is y∗ ∈ Ỹ , such that
Ẽ∗y∗ = w∗ and z∗ = (v∗ − S̃∗y∗, y∗).

(iii) If 〈x∗, x〉 = 0 for all x = (v, w) satisfying S̃v+ Ẽw = 0, then there is y∗ ∈ Ỹ ∗,
such that z∗ = (0, y∗) and T̃ ∗z∗ = x∗.

Proof. Let z∗ = (u∗, y∗) ∈ Z̃∗. Then (18) follows from the computation

〈T̃ ∗z∗, x〉 = 〈z∗, T̃ x〉 = 〈u∗, v〉+ 〈y∗, S̃v + Ẽw〉 = 〈u∗ + S̃∗y∗, v〉+ 〈Ẽ∗y∗, w〉.

By (18) (v∗, w∗) = 0, iff Ẽ∗y∗ = 0 and u∗ = −S̃∗y∗. This yields (19).
For the characterization of ran T̃ ∗ denote by M the set defined on the right hand

side of (20). It follows from (18) that ran T̃ ∗ ⊂ M , because w∗ = Ẽ∗y∗ and y∗ ∈ Ỹ ∗.
Let in converse x∗ = (v∗, w∗) ∈ M . By injectivity of Ẽ, w∗ induces a continuous

linear functional e∗ on ran Ẽ ⊂ Ỹ via the definition 〈e∗, Ẽw〉 := 〈w∗, w〉. By the
Hahn-Banach theorem e∗ can be extended continuously to a functional y∗0 ∈ Ỹ ∗ ,
and it holds w∗ = Ẽ∗y∗0. Setting z∗0 = (v∗ − S̃∗y∗0, y

∗
0) we compute

〈z∗0 , T̃ x〉 = 〈v∗ − S̃∗y∗0, v〉+ 〈y∗0, S̃v + Ẽw〉 = 〈v∗, v〉+ 〈Ẽ∗y∗0, w〉 = 〈v∗, v〉+ 〈w∗, w〉,

and hence x∗ = T̃ ∗z∗0 ∈ ran T̃ ∗, which implies M ⊂ ran T̃ ∗ and thus (20). Linear
algebra yields that the set of solutions of the equation x∗ = T̃ ∗z∗ is z∗0 +ker T̃ ∗. By
(19) it is clear that z∗0 + ker T̃ ∗ is the set of all z∗ of the form z∗ = (v∗ − S̃∗y∗, y∗),
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with Ẽ∗y∗ = Ẽ∗y∗0 = w∗. This yields the characterization of the set of solutions
(ii).

Next, we show (iii). By definition of Ỹ , every ỹ ∈ Ỹ can be written in the form
ỹ = S̃v + Ẽw. Let 〈x∗, x〉 = 〈v∗, v〉+ 〈w∗, w〉 = 0 for all x that satisfy S̃v + Ẽw = 0.
Then for S̃v + Ẽw = ỹ ∈ Ỹ the expression 〈v∗, v〉+ 〈w∗, w〉 depends only on ỹ and
not on the choice of v and w. Thus we can define a linear functional y∗ on Ỹ by

〈y∗, ỹ〉 := 〈v∗, v〉+ 〈w∗, w〉 for ỹ = S̃v + Ẽw. (21)

To show continuity of y∗ and thus y∗ ∈ Ỹ ∗, let ε > 0 and choose v ∈ U , and w ∈ Y∞
such that ỹ = S̃v + Ẽw and ‖v‖U + ‖w‖Y∞ ≤ ‖ỹ‖Ỹ + ε. Then

|〈y∗, ỹ〉| = |〈v∗, v〉+ 〈w∗, w〉| ≤ ‖v∗‖U∗ ‖v‖U + ‖w∗‖Y ∗∞
‖w‖Y∞ ≤ C(‖ỹ‖Ỹ + ε).

Finally, setting z∗ := (0, y∗) we compute by (21) for all x ∈ X:

〈T̃ ∗z∗, x〉 = 〈z∗, T̃ x〉 = 〈0, v〉+ 〈y∗, S̃v + Ẽw〉 = 〈v∗, v〉+ 〈w∗, w〉 = 〈x∗, x〉,

and thus T̃ ∗z∗ = x∗.

It is clear from (19) that T̃ ∗ is injective, iff Ẽ∗ is injective. Then possible
solutions of the equation T̃ ∗z∗ = x∗ are unique.

4.2 Analysis of the transformed problem

Now we come to the core of our proof: the application of the sum-rule and the chain
rule of subdifferential calculus (Theorem B.2) to our problem.

Proposition 4.4. Suppose that the Assumptions 2.3 and 2.4 hold. For all x ∈ X
the following equation holds in X∗:

∂(F ◦ T )(x) = T ∗∂j(Tx) + T ∗∂ιU (Tx) + ∂(ιY ◦ T )(x) + ∂(ιK ◦ T )(x). (22)

Proof. Recall that F = j + ιZ = j + ιU + ιY + ιK, and thus

∂(F ◦ T )(x) = ∂(j ◦ T + ιU ◦ T + ιY ◦ T + ιK ◦ T )(x). (23)

We will apply Theorem B.2 to (23) three times to obtain (22) step by step. The
interesting step, which only works in the space X, is the third one.

For the later application of Theorem B.2 we remark that the spaces X and Z are
complete by Assumption 2.3(i) and Assumption 2.4(i) and all functions involved in
our computations are convex and lower semi-continuous: either directly by assump-
tion, or as a composition of a continuous mapping and a lower semi-continuous
function. Thus it remains to show the crucial regularity condition (73) for each
particular step.

Further will use the following simple identity: if M ⊂ Z, and L : X → Z, then

Ldom(ιM ◦ L) = L{x ∈ X : Lx ∈ M} = {Lx ∈ Z : Lx ∈ M} = ranL ∩M. (24)
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We will need Assumption 2.4(ii): existence of a Slater point (ŭ, y̆). We may assume
w.l.o.g. that (ŭ, y̆) = 0. Otherwise, a simple shift by (−ŭ,−y̆) can be performed to
achieve this. This simplification is possible, because (ŭ, y̆) ∈ Z ∩Z∞ and it implies
that 0 ∈ Z.
Step 1: splitting off the objective functional

First, we will show the regularity condition (73) for g = j, f = ιZ◦T , and L = T .
By Framework 2.1(iv) j : Z → R and thus dom j = Z. By Assumption 2.3(ii) Z is
non-empty, and by Proposition 4.1 Z ⊂ K ⊂ ranT . Hence, by (24)

0 ∈ core(dom j − T dom(ιZ ◦ T )) = core(Z − ranT ∩ Z) = Z,

and Theorem B.2 yields

∂(F ◦ T )(x) = T ∗∂j(Tx) + ∂ (ιZ ◦ T ) (x) in X∗. (25)

Step 2: splitting off the control constraints
Next, we will show (73) for g = ιU , f = ιY ◦ T + ιK ◦ T , and L = T which reads

0 ∈ core(dom ιU − T dom(ιY ◦ T + ιK ◦ T )). (26)

First of all dom ιU = U ×Y . Further, T dom(ιY ◦T + ιK ◦T ) = ranT ∩ (U ×Y)∩K
by (24) and K ⊂ ranT by Proposition 4.1. So (26) reduces to

0 ∈ core (U × Y − (U × Y) ∩ K) . (27)

To verify (27), let z = (u, y) ∈ Z. We have to find zf and zg such that zf ∈
(U × Y) ∩ K, zg ∈ U × Y and for some λ > 0, λ(zf − zg) = z.

By Assumption 2.4(iii) there are u∞ ∈ U∞, uad ∈ U , and λ0 > 0, such that u =
λ0(uad + u∞). As stated in Framework 2.2(iii) Su∞ ∈ Y∞. By Assumption 2.4(ii)
(w.l.o.g. (ŭ, y̆) = 0) there is τ > 0 such that y ∈ Y for all y ∈ Y∞ with ‖y‖Y∞ ≤ τ .

Let σ := min{1, τ/ ‖Su∞‖Y∞} and zf = (uf , yf ) := −σ(u∞, Su∞). It follows
‖yf‖Y∞ ≤ τ and yf = Suf , and thus zf ∈ (U × Y) ∩ K. Set λ := λ0/σ and
zg = (ug, yg) := (σuad, λ

−1y+yf ). Then zg ∈ U ×Y , because σ ≤ 1 and U is convex
with 0 ∈ U w.l.o.g.. We obtain

λ(zg−zf ) = (λ0σ
−1(ug−uf ), λ(yg−yf )) = (λ0(uad +u∞), (y+λyf )−λyf ) = (u, y).

This shows (27) and we conclude by Theorem B.2:

∂ (ιZ ◦ T ) (x) = T ∗∂ιU (Tx) + ∂ (ιK ◦ T + ιY ◦ T ) (x) in X∗. (28)

Step 3: separation of state constraints and equality constraints
Finally, we will show (73) for g = ιY ◦ T , f = ιK ◦ T , and L = IdX , which reads

0 ∈ core (dom(ιY ◦ T )− dom(ιK ◦ T )) . (29)

To verify (29) let x = (v, w) ∈ X. We have to find xf and xg such that Txf ∈ K,
Txg ∈ Y and for some λ > 0, x = λ(xf − xg). By our Assumption 2.4(ii) (with
(ŭ, y̆) = 0 w.l.o.g.) there is τ > 0, such that y ∈ Y, for all y ∈ Y∞ with ‖y‖Y∞ ≤ τ .
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Let σ := τ/ ‖w‖Y∞ and set xf := (σv, 0), xg := (0,−σw), and λ := σ−1. Then
Txf = σ(v, Sv) ∈ K, and Txg = (0,−σw) ∈ Y, because ‖σw‖Y∞ ≤ τ . Further,
λ(xf − xg) = (v, w) = x. Hence, (29) holds and Theorem B.2 yields

∂ (ιK ◦ T + ιY ◦ T ) (x) = ∂(ιK ◦ T )(x) + ∂(ιY ◦ T )(x) in X∗. (30)

Now (25), (28), and (30) yield (22).

Next we study ∂(ιY ◦ T )(x) and ∂(ιK ◦ T )(x) that appear in (22).

Lemma 4.5. Let f : Z̃ → R be independent of u, i.e., f(z) = f(y). Then

∂(f ◦ T̃ )(x) = T̃ ∗∂f(T̃ x) ∀x ∈ X. (31)

Proof. Consider x ∈ X, (u, y) = z = T̃ x ∈ Z̃, and assume f(T̃ x) = f(y) < ∞.
Otherwise (31) holds trivially.

If z∗ ∈ ∂f(T̃ x), then by definition of the subdifferential 〈z∗, ẑ − T̃ x〉 ≤ f(ẑ) −
f(T̃ x) for all ẑ ∈ Z̃ and in particular for all T̃ x̂ ∈ ran T̃ . Thus,

〈T̃ ∗z∗, x̂−x〉 = 〈z∗, T̃ (x̂−x)〉 ≤ f(T̃ x̂)− f(T̃ x) = (f ◦ T̃ )(x̂)− (f ◦ T̃ )(x) ∀x̂ ∈ X.

Hence, T̃ ∗z∗ ∈ ∂(f ◦ T̃ )(x) and thus T̃ ∗∂f(T̃ x) ⊂ ∂(f ◦ T̃ )(x).
For the reverse inclusion let x∗ ∈ ∂(f ◦ T̃ )(x). We have to show existence of

z∗ ∈ ∂f(T̃ x) with T̃ ∗z∗ = x∗. For this we will need Proposition 4.3(iii).
Let δx = (δv, δw) ∈ X, with S̃δv + Ẽδw = 0. Then T̃ (x + δx) = (u + δv, y + 0)

and f(T̃ (x + δx)) = f(y) = f(T̃ x) because f is independent of u. We conclude

〈x∗, δx〉 ≤ (f ◦ T̃ )(x + δx)− (f ◦ T̃ )(x) = f(y)− f(y) = 0.

This holds also for −δx and hence 〈x∗, δx〉 = 0. Thus x∗ vanishes for all δx that
satisfy S̃δv + Ẽδw = 0. By Proposition 4.3(iii) there is y∗ ∈ Ỹ ∗, such that z∗ =
(0, y∗) and x∗ = T̃ ∗z∗.

To show that z∗ ∈ ∂f(T̃ x), we have to verify 〈z∗, ẑ − T̃ x〉 ≤ f(ẑ) − f(T̃ x) for
all ẑ = (û, ŷ) ∈ Z̃. Because ŷ ∈ Ỹ = ran S̃ + Y∞, by definition of T̃ in (16) there
exist x̄ and ū, such that T̃ x̄ = z̄ := (ū, ŷ). Since z∗ and f do not depend on u, we
compute 〈z∗, ẑ〉 = 〈y∗, ŷ〉 = 〈z∗, z̄〉 and f(ẑ) = f(ŷ) = f(z̄) = f(T̃ x̄). Thus, because
x∗ ∈ ∂(f ◦ T̃ )(x)

〈z∗, ẑ − T̃ x〉 = 〈z∗, z̄ − T̃ x〉 = 〈z∗, T̃ (x̄− x)〉 = 〈T̃ ∗z∗, x̄− x〉
= 〈x∗, x̄− x〉 ≤ (f ◦ T̃ )(x̄)− (f ◦ T̃ )(x) = f(ẑ)− f(T̃ x).

Hence, z∗ ∈ ∂f(T̃ x) and thus T̃ ∗∂f(T̃ x) ⊃ ∂(f ◦ T̃ )(x).

Clearly, ιY ◦EZ : Z̃ → R is independent of u, and thus Lemma 4.5 yields

∂(ιY ◦ T )(x) = ∂((ιY ◦EZ) ◦ T̃ )(x) = T̃ ∗∂(ιY ◦ EZ)(T̃ x) ∀x ∈ X. (32)
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Lemma 4.6. Suppose that Assumption 2.5 holds. Let domK := U×domA∞ ⊂ X.
Then

K : X ⊃ domK → R∞
(v, w) 7→ A∞w.

is a densely defined, closed linear operator with closed range and U = kerK. Its
adjoint operator K∗ : R∗∞ ⊃ domK∗ → X∗ is given by domK∗ = domA∗∞ and

〈K∗r∗, x〉 = 〈A∗∞r∗, w〉 ∀r∗ ∈ domK∗ ∀x = (v, w) ∈ X. (33)

It holds
∂(ιK ◦ T )(x) = ranK∗. (34)

Proof. We will deduce the properties of K form the ones of A and A∞ stated in
Framework 2.1(i), 2.2(ii), and Assumption 2.5. We compute

graph(K) = {(v, w, r) ∈ U × domA∞ ×R∞ : A∞w = r} = U × graph(A∞).

By closedness of A∞, U × graph(A∞) is closed and thus K is closed. Density of
domK and closedness of ranK follows immediately from the corresponding assump-
tions on A∞. Finally, A∞ inherits injectivity from A and we conclude U = kerK.

Let r∗ ∈ R∗∞. Then 〈r∗,Kx〉 = 〈r∗, A∞w〉 for all x ∈ domK. In particu-
lar 〈r∗,K·〉 is continuous on domK, iff 〈r∗, A∞·〉 is continuous on domA∞. By
definition of adjoints (cf. Appendix A.2) this implies domA∗∞ = domK∗ and (33).

Since U = kerK and T maps U onto K bijectively, we have ιK ◦T = ιU = ιker K ,
and thus by (70) we conclude (34).

4.3 Back-transformation

Finally, we transform (22) from X∗ back to Z̃∗.

Proposition 4.7. Suppose that Assumption 2.5 holds and let a∗ ∈ Ỹ ∗ and r∗ ∈
domA∗∞ ⊂ R∗∞.

(i) If Ẽ∗a∗ = A∗∞r∗, then for all u ∈ U∞ we conclude 〈S̃∗a∗, u〉 = 〈r∗, Bu〉 and
|〈r∗, Bu〉| ≤ C ‖u‖U .

(ii) z∗ ∈ Z̃ is a solution of the equation T̃ ∗z∗ = K∗r∗, if and only if there is
a∗ ∈ Ỹ , such that Ẽ∗a∗ = A∗∞r∗ and z∗ = (−S̃∗a∗, a∗).

Proof. Let a∗ ∈ Ỹ ∗, Ẽ∗a∗ = A∗∞r∗ ∈ Y ∗∞ and u ∈ U∞. Then S̃u = Su ∈ domA∞ ⊂
Y∞ by Framework 2.2(iii), and we can write ẼS̃u = S̃u ∈ Y∞. Further, we use that
A and A∞ coincide on domA and thus Bu = ASu = A∞S̃u ∈ R∞. We compute

〈S̃∗a∗, u〉 = 〈Ẽ∗a∗, S̃u〉 = 〈A∗∞r∗, S̃u〉 = 〈r∗, A∞S̃u〉 = 〈r∗, Bu〉,
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and thus by continuity of the operator S̃ : U → Ỹ (cf. Proposition 3.3):

|〈r∗, Bu〉| = |〈a∗, S̃u〉| ≤ ‖a∗‖Ỹ ∗ ‖S̃u‖Ỹ ≤ C ‖u‖U ∀ u ∈ U∞.

To show (ii) we observe that Lemma 4.6 yields K∗r∗ = (0, A∗∞r∗). Hence, the char-
acterization of solutions z∗ = (−S̃∗a∗, a∗) follows directly from Proposition 4.3(ii).

Theorem 4.8. Suppose that the Assumptions 2.3-2.5 hold. zopt = (uopt, yopt) ∈ Z
is a minimizer of (P) if and only if zopt ∈ Z and the following nonlinear system of
equations has a solution (j∗, y∗, u∗, a∗) ∈ Z∗ × Ỹ ∗ × U∗ × Ỹ ∗:

E∗j∗y + y∗ + a∗ = 0 in Ỹ ∗ (35)

j∗u + u∗ − S̃∗a∗ = 0 in U∗ (36)

〈y∗, ỹ − yopt〉 ≤ 0 ∀ỹ ∈ Ỹ (37)
〈u∗, u− uopt〉 ≤ 0 ∀u ∈ U (38)
j∗ = (j∗u, j∗y) ∈ ∂j(zopt) (39)

∃r∗ ∈ domA∗∞ ⊂ R∗
∞ : Ẽ∗a∗ = A∗∞r∗. (40)

In this case
〈j∗u, δu〉+ 〈u∗, δu〉 − 〈r∗, Bδu〉 = 0 ∀δu ∈ U∞ ⊂ U. (41)

Proof. By Proposition 4.2 and Proposition 4.4, zopt = Txopt is a minimizer of (P)
if and only if in X∗:

0 ∈ ∂(F ◦ T )(xopt) = T ∗∂j(zopt) + T ∗∂ιU (zopt) + ∂(ιY ◦ T )(xopt) + ∂(ιK ◦ T )(xopt).

Inserting (34), (32), and T ∗ = (EZ T̃ )∗ = T̃ ∗E∗
Z (cf. (17) and (6)) we obtain

0 ∈ T̃ ∗E∗
Z∂j(zopt) + T̃ ∗E∗

Z∂ιU (zopt) + T̃ ∗∂(ιY ◦ EZ)(T̃ xopt) + ranK∗.

This is equivalent to existence of j∗ ∈ ∂j(zopt), u∗ ∈ ∂ιU (zopt), y∗ ∈ ∂(ιY ◦
EZ)(T̃ xopt), and r∗ ∈ domK∗, such that with z∗ := E∗

Zj∗+E∗
Zu∗+y∗ the equation

0 = T̃ ∗z∗ + K∗r∗.

is solvable for z∗. By Proposition 4.7 this is equivalent to existence of a∗ ∈ Ỹ
with Ẽ∗a∗ = −A∗∞r∗, such that z∗ = −(−S̃∗a∗, a∗) and thus to solvability of the
equation

0 = z∗ + (−S̃∗a∗, a∗) = E∗
Zj∗ + E∗

Zu∗ + y∗ + (−S̃∗a∗, a∗) in Z̃∗. (42)

Now ιY is independent of u, and thus y∗ ∈ Z̃∗, too, and thus actually y∗ ∈ Ỹ ∗.
Similarly, u∗ ∈ Z̃∗ is independent of y and thus E∗

Zu∗ = u∗ ∈ U∗. Splitting (42)
into its components in Ỹ ∗ and U∗ yields (35) and (36) by E∗

Zj∗ = (j∗u, E∗j∗y) (cf.
(6)). By (69), u∗ and y∗ satisfy (38), and (37), respectively. Hence, zopt is a
minimizer of (P), if and only if (35)-(40) is solvable, namely by j∗, u∗, y∗, and a∗.
Finally, (41) follows from Proposition 4.7(i) and (36).
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Theorem 3.4 is now a special case of Theorem 4.8 if U∞ is dense in U , as shown
in Section 3. By reformulation we obtain from Theorem 4.8 another interesting
result.

Corollary 4.9. Suppose that Assumptions 2.3-2.5 hold. zopt = (uopt, yopt) ∈ Z is
a minimizer of (P) if and only if zopt ∈ Z and the following nonlinear system of
equations has a solution (j∗, y∗, u∗, r∗) ∈ Z∗ × Ỹ ∗ × U∗ ×R∗∞:

E∗j∗y + y∗ + A∗∞r∗ = 0 in Y ∗
∞ (43)

S∗j∗y + S̃∗y∗ + j∗u + u∗ = 0 in U∗ (44)

〈y∗, ỹ − yopt〉 ≤ 0 ∀ỹ ∈ Ỹ (45)
〈u∗, u− uopt〉 ≤ 0 ∀u ∈ U (46)

j∗ = (j∗u, j∗y) ∈ ∂j(zopt), r∗ ∈ domA∗∞. (47)

Proof. Solvability of (43)-(45) follows directly from solvability of (35)-(40) if we
solve (35) for a∗ = −E∗j∗y − y∗ and insert this into (36).

For the converse, set a∗ := −E∗j∗y − y∗ ∈ Ỹ ∗. By (43), Ẽ∗a∗ = A∗∞r∗, and by
(44), S̃∗a∗ = j∗u + u∗ ∈ U∗. It is now easy to verify that (35)-(40) hold.

5 Applications

Finally we illustrate the application of our abstract results to optimal control prob-
lems and describe the relation of our theory to known results.

5.1 Relation to known results

Basically two types of known results are available. Both approaches consider the
reduced problem (with differentiable j)

min
u∈U

j(u, Su) + (ιY ◦ S)(u)

and start by application of Theorem B.2, (or a similar result, e.g., [21]) to show

0 ∈ ju(uopt) + S∗jy(Suopt) + ∂(ιY ◦ S)(uopt). (48)

The first type uses the assumption that the control-to-state mapping S : U → Y is
continuous for the choice Y = Y∞. Exemplary works are [5, 6, 1]. Under a Slater
condition, Theorem B.2 can now be used to show ∂(ιY ◦ S)(uopt) = S∗∂ιY(Suopt).
This yields existence of a Lagrange multiplier y∗ ∈ ∂ιY(Suopt) ⊂ Y ∗∞. The most
difficult task is now to interpret S∗ via an adjoint PDE, which yields additional reg-
ularity assertions on the optimal solution. In the case of pointwise state constraints
Y∞ is a space of continuous functions, and thus its dual has a representation as a
space of regular measures.
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This type of results is, at least in an abstract sense, covered by Theorem 3.4 as a
special case, namely the “most regular” extreme case: U∞ = U . Then Ỹ ∼= Y∞, and
Ỹ ∗ ∼= Y ∗∞. So Theorem 3.4 and Theorem 4.8 may be interpreted as a generalizations
of these results.

The second approach corresponds to the “trivial” extreme case of Theorem 4.8,
namely (Z∞, R∞) = ({0}, {0}). Hence, there are no restricting topological as-
sumptions and no Slater condition. But this also means that the structure of the
problem is lost: pointwise equality constraints are not distinguished from inequality
constraints.

The analysis starts with (48), uses bijectivity of S : U → ranS and reformulates
∂(ιY ◦ S) = S∗(S−∗∂(ιY ◦ S)). Then y∗ ∈ S−∗∂(ιY ◦ S) is called a Lagrange
multiplier. In contrast to the first approach no additional structural information on
the optimal solution can be shown, compared to conclusions drawn from coercivity
of the functional. This type of dual variable can, for example, be observed as the
limit object of the regularization path considered in [12].

5.2 Elliptic Differential Operators as Closed Operators

Let Ω be a smoothly bounded domain of Rd, κ ∈ C(Ω,Rd×d), a ∈ L∞(Ω;R).
Assume that κ is symmetric and uniformly positive definite and 0 6= a ≥ 0.

First we consider the following class of elliptic differential operators in the weak
form:

A : H1(Ω) → (H1(Ω))∗

〈Ay, v〉 =
∫

Ω
〈κ∇y,∇v〉+ ayv dt ∀v ∈ H1(Ω).

(49)

The Lax Milgram lemma asserts that A has a continuous inverse A−1 : (H1(Ω))∗ →
H1(Ω), which is still continuous as a mapping A−1 : (H1(Ω))∗ → L2(Ω), because
H1(Ω) is continuously embedded into L2(Ω). Hence,

A : L2(Ω) ⊃ H1(Ω) → (H1(Ω))∗ (50)

is continuously invertible.
To define an operator A∞ : C(Ω) ⊃ domA∞ → R we have to employ advanced

regularity results, which can be found in the literature in many variants. A concise
account on regularity theory is [2, Section 9]. For our class of problems [2, Theorem
9.3] states that for ∞ > q > d, and q′ = q/(q − 1) the restricted mapping

A : W 1,q(Ω) ↔ (W 1,q′(Ω))∗

is an isomorphism. By the Sobolev embedding theorem W 1,q(Ω) ↪→ C(Ω) densely.
Setting domA∞ := W 1,q(Ω), we conclude by Lemma A.1 closedness and bijectivity
of

A∞ : C(Ω) ⊃ domA∞ → (W 1,q′(Ω))∗. (51)
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As for the adjoint of A∞, we have

A∗∞ : W 1,q′(Ω) ⊃ domA∗∞ → M(Ω)

〈y, A∗∞p〉 =
∫

Ω
〈κ∇y,∇p〉+ ayp dt ∀p ∈ W 1,q(Ω).

(52)

Theorem 5.1. For each µ ∈ M(Ω) the equation
∫

Ω
〈κ∇y,∇p〉+ ayp dt =

∫

Ω
p dµ ∀y ∈ W 1,q(Ω) (53)

has a unique solution p, and ‖p‖W 1,q′ (Ω) ≤ C ‖µ‖M(Ω).

Proof. Since A∞ is bijective, Theorem A.2 yields bijectivity of A∗∞. Because all
adjoint operators are closed, Lemma A.1 (essentially the open mapping theorem)
then asserts continuous invertibility of A∗∞.

The regularity requirements on ∂Ω, and the coefficients can be weakened consid-
erably. The case of discontinuous κ is particularly delicate, and has been analysed
in [1]. Yet, A∞ can still be declared as a closed, bijective operator, and our ab-
stract theory can be applied. All the information we need is stated in [1, Theorem
2], which asserts continuity of

A−1 : (W 1,q′(Ω))∗ → C(Ω) ∩H1(Ω).

However, opposed to the regular case, domA∞ := ranA−1 cannot be characterized
as a Sobolev space. Despite of this lack of information, we still can conclude that

A∗∞ : W 1,q′(Ω) ⊃ domA∗∞ → M(Ω)

is bijective.
The difficulties encountered and solved in [1] now appear merely as the problem

of finding a convenient representation of the functional A∗∞p via integrals. The
difficulty is that the integral on the left hand side in (53) is not necessarily well
defined for all y ∈ domA∞. This is a similar situation as in Section 3.4. Here [1]
resort to an additional uniqueness criterion, which is connected to the formula of
partial integration and to very weak solutions.

5.3 State constrained boundary control

As an example and illustration of our abstract results we consider the following op-
timal control problem on a smoothly bounded domain Ω ⊂ R3 and with coefficients
κ and a as defined in the above section.

min
(u,y)∈U×Y

j(y, u) =
1
2
‖y − yd‖2

L2(Ω) +
α

2
‖u‖2

L2(Γ) (54)
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subject to the state equation in the weak formulation
∫

Ω
〈κ∇y,∇v〉+ ayv dt =

∫

Γ
u · γ(v) dt ∀v ∈ H1(Ω), (55)

(γ is the boundary trace operator), a pointwise state constraint, and a control
constraint

y ≤ y a.e. in Ω, u ≤ u a.e. in Γ. (56)

We assume that y is continuous and that there is a Slater point (ŭ, y̆) ∈ Ls0(Γ) ×
C(Ω) with s0 > 2 that satisfies the state equation, the control constraint, and
y̆ − y ≥ τ > 0 a.e..

A class of control problems similar to our example has been analysed in [6, 1],
however under the assumption that uopt ∈ Ls(Γ) for some s > 2 and thus yopt ∈
C(Ω). This can only be guaranteed a-priori by bilateral L∞-control constraints,
or by a functional with stronger coercivity properties. In our setting, the optimal
state may be unbounded and discontinuous.

Existence of an optimal solution (uopt, yopt) ∈ L2(Γ)×L2(Ω) is standard. Unique-
ness follows from the strict convexity of j. By convexity of the problem, (uopt, yopt)
also minimizes our problem with the modification that u ≤ u is only required on
the active set

A := {t ∈ Γ : uopt = u},
which is defined up to a set of measure zero.

Before stating our optimality conditions, let us first describe, how this problem
fits into our abstract setting. Choose ∞ > q > 3 and s0 > s > 2 such that for
s′ = s/(s−1) and q′ = q/(q−1) the boundary trace operator γ maps W 1,q′(Ω) into
Ls′(Γ). This does not hold for q > 3 and s′ = s = 2.

For Framework 2.1 define U := L2(Γ \ A) × Ls(A), Y := L2(Ω) and R :=
(H1(Ω))∗. Since u ∈ L∞(Γ), clearly uopt ∈ U and U∗ ∼= L2(Γ \ A) × Ls′(A).
Then, A as defined in (50) is continuously invertible. Since the boundary trace
operator γ : H1(Ω) → U∗ is continuous (it is even continuous onto L2(Γ) ↪→ U∗),
the following representation of its adjoint operator

B : U → R

u 7→ 〈Bu, v〉 =
∫

Γ
uγ(v) ds ∀v ∈ H1(Ω)

(57)

is continuous, too, and thus S := A−1B is continuous.
For Framework 2.2 define U∞ := Ls(Γ), Y∞ := C(Ω), R∞ := (W 1,q′(Ω))∗.

Choose A∞ as in (51). Clearly, A∞ and A coincide for y ∈ domA∞ = W 1,q(Ω).
By our choice of s, γ maps W 1,q′(Ω) into Ls′(Γ) and thus by duality, B maps
U∞ = Ls(Γ) into R∞ = (W 1,q′(Ω))∗. Because A∞ is bijective, SU∞ = A−1∞ BU∞ ∈
domA∞.

We can now define the tailored space Ỹ = ranS + Y∞ = ranS + C(Ω) as in
Definition 3.2. It contains all solutions of the Neumann boundary value problem
and all continuous functions.
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Theorem 5.2. Let (uopt, yopt) ∈ U × Y be the optimal solution of the problem
(54)-(56). Then the following assertion holds.

There exist p ∈ W 1,q′(Ω), y∗ ∈ Ỹ with representation 0 ≤ µ ∈ M(Ω), and
0 ≤ u∗ ∈ Ls′(A) that satisfy

∫

Ω
ϕ(yopt − yd) dt +

∫

Ω
〈κ∇ϕ,∇p〉+ aϕp dt−

∫

Ω
ϕdµ = 0 ∀ϕ ∈ W 1,q(Ω) (58)

αuopt − u∗ − γ(p) = 0 a.e. in Γ (59)

〈y∗, δy〉 ≥ 0 ∀0 ≤ δy ∈ Ỹ (60)
〈y∗, yopt − y〉 = 0. (61)

Equations (60) and (61) have a representation of the form (12).
If in converse the system (58)-(61) is solvable for given feasible (uopt, yopt), then

(uopt, yopt) is the optimal solution of the problem (54)-(56).

Proof. To apply Theorem 3.4 and derive first order optimality conditions we have
to verify the Assumptions 2.3-2.5. For this purpose choose q > 3 and s > 2 as
stated above.

Defining Y via (56) and U via u ≤ u on A, Assumptions 2.3 are easily verified,
and j is even Gâteaux differentiable with j′(uopt, yopt) = (αuopt, yopt−yd). Existence
of a Slater point y̆ − y ≥ τ > 0 has been assumed in the statement of our problem,
and by our choice Y∞ = C(Ω) this directly translates into Assumption 2.4(ii).
Assumption 2.4(iii) follows from our particular construction of U , which is restricted
to Ls on the active set. Clearly, all spaces involved are complete, and as shown in
Section 5.2, A∞ as defined in (51) satisfies Assumption 2.5.

Clearly, U∞ is dense in U . Hence, Theorem 3.4 can be applied, which yields
solvability of (7)-(10). By Proposition 3.5 y∗ has a representation as a measure µ.

Now (58) and (59) are equivalent to (7) (via the definition of A∗) and (8) (via
the fact that (8) is an equation in U∗, which is an Lp-space here). The remaining
positivity assertions on y∗ and u∗ are equivalent to (9) and (10) by (71) and (72).

Remark 5.3. There are several remarks in order:

(i) Observe that (58) is really the weak form of a PDE with a measure right
hand side. This holds, because all test functions ϕ ∈ W 1,q(Ω) ↪→ C(Ω) are
continuous.

(ii) As usual, our result holds for all small q > d. So p ∈ ⋂
q′<d/(d−1) W 1,q′(Ω).

This is the same regularity assertion as in the known cases. Even more, (59)
in combination with the trace theorem shows that p has got a little bit more
regular boundary trace: γ(p)|Γ\A ∈ L2∩W 1−1/q′,q′ , because L2 6↪→ W 1−1/q′,q′ .

(iii) From our result we can derive additional regularity properties for uopt. In
particular, (59) yields uopt|A ∈ L∞ and uopt|Γ\A ∈ L2 ∩W 1−1/q′,q′ .
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(iv) Notice, how Assumption 2.4(iii) necessitates that the active setA is taken into
account for the construction of U . The too large space U = L2(Γ) would yield
λ ∈ L2(A), which is “too good to be true”. The too small space U = Ls(Γ)
would not contain all possible candidates for a minimizer.

(v) Bilateral state constraints can be treated similarly if they yield a bounded
(but possibly discontinuous) optimal state. We obtain a Lagrange multiplier
y∗ ∈ Ỹ ∗ and a representation µ ∈ M(Ω) for the combined constraints. We can
split y∗ into two positive functionals in L∞(Ω)∗ by Theorem B.2 and µ into
two positive measures by the Jordan decomposition. It is unclear, however,
if the summands are in Ỹ ∗ again. This does not affect the adjoint equation,
because the test functions are continuous.

5.4 Missing density

In the following example U∞ is not dense in U . As a consequence Theorem 3.4
cannot be applied, and we will show that indeed Lagrange multipliers cannot be
represented as measures. Consider the unit ball in R3 and the following control
problem with a one dimensional control u ∈ R:

min
y∈H1

0 (Ω),u∈R
1
2
|u + 1|2 s.t.

∫

Ω
〈∇y,∇v〉 dt =

∫

Ω
〈f · u, v〉 dt, y ≥ −1;

For appropriate choice of σ set f = |t|−σ, such that y is an unbounded rational
function with a pole at the origin, but still in H1

0 (Ω).
Clearly, for every u < 0 we have limt→0 y(t) = −∞, which implies violation of the

boundary conditions. Hence, our problem attains the minimum at uopt = 0 and thus
ju(uopt) = 1. Without state constraints, the minimum would have been u = −1,
and thus the state constraints are strongly active. But ess inft∈Ω y − (−1) = 1 > 0
and the active constraint set is empty. Consequently, any positive element of M(Ω)
or L∞(Ω)∗ that satisfies a complementarity condition (72) must be zero.

Still, Corollary 4.9 can be applied. Since Su is unbounded for every u 6= 0, we
have to choose U∞ = {0}, which is clearly not dense in U = R. Further, we choose
Y∞ = {0} and R∞ = {0}. Then Ỹ = ranS. Corollary 4.9 yields the optimality
system (43)-(44). Equation (43) vanishes and (44) reads in our case S∗y∗ + j∗u = 0
in U∗ = R. Hence, y∗ ∈ Ỹ is of the following form: let Ỹ 3 y = Su, then
〈y∗, y〉 = 〈−ju, u〉. This and (45) yield the condition 〈ju, u− uopt〉 ≥ 0 if Su ≥ −1,
or equivalently, if u ≥ 0. This holds, if and only if uopt = 0 and thus characterizes
the optimal solution.

This illustrates nicely how y∗ behaves in the absence of a Slater point. It is
rather the dual variable for an implicit control constraint (u ≥ 0), than for the
state constraint.
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6 Conclusion and Outlook

We have presented a new technique for the analysis of state constrained optimal
control problems. It allows to exploit Slater conditions in cases, where this seemed
impossible. Abstract first order optimality conditions were derived, and their con-
venient application to control problems was demonstrated. Under a density as-
sumption the Lagrange multipliers for the state constraints have a representation
via measures.

While we have answered one question, many other theoretical and practical
questions arise. First of all, the application of our results to various classes of opti-
mal control problems may be explored systematically. In particular the extension to
nonlinear, non-convex problems should be explored, and the consequences of these
results to second order optimality conditions. Equally important is the analysis of
algorithms. It will be interesting to study the convergence behaviour of infeasible
regularization methods (cf. e.g. [12, 14]) in the light of our new results, and it is
very likely that barrier methods in function space (cf. e.g. [17]) can also be analysed
in this setting. For that, the indicator function ιY may be simply replaced by an
appropriate barrier function bY . Finally, the construction of discretization schemes
and their analysis remains as a challenging topic, because L∞-error estimates for
the state will not be available in general.
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A Tools from the theory of unbounded operators

We give a brief introduction to some basic concepts of the theory of unbounded
operators that we have used in our work. Unbounded operators possess a rich theory
that generalizes the theory of continuous operators in many respects, while retaining
a large number of important results. For a detailed exposition we refer to [11],
but most textbooks of functional analysis contain an introduction to unbounded
operators.

Consider normed spaces Y and R. An unbounded operator

A : Y ⊃ domA → R

is usually not defined everywhere, but has got a domain of definition domA. We
say that A is injective, surjective, or bijective, if the mapping A : domA → R has
this algebraic property. If domA is dense in Y , then A is called densely defined.

For example, if A is a differential operator and Y is some function space, then
domA may be a subspace of functions that are differentiable in a suitable sense. The
distinction between Y (which yields the topological structure) and domA (which
yields the algebraic structure) allows for additional flexibility when it comes to
choosing an analytical framework for the problem under consideration. In an opti-
mal control setting this allows us to consider problems with differential operators,
using a topology that is suited for state constrained problems, e.g. the topology of
C(Ω).

We will use unbounded operators mainly to formulate our results in a way that is
more directly applicable to PDE constrained optimal control problems than results
stated in terms of S and S∗. In particular, the adjoint PDE follows instantly from
our abstract optimality conditions. We will demonstrate this in Section 5.

A.1 Closed operators

A standard regularity assumption for unbounded operators is closedness. A is called
closed if domA ⊃ yk → y and Ayk → r imply y ∈ domA and Ay = r. If A is
closed, Y and R are complete, and domA = Y , then A is continuous by the well
known closed graph theorem. Closedness has also a geometrical interpretation: A
is closed, if and only if

graph(A) := {(y, r) ∈ domA×R : Ay = r} ⊂ Y ×R (62)

is closed in Y × R. Continuous operators that are defined on the whole domain
space are closed, because yk → y already implies Ayk → Ay. Closed operators have
closed kernels, which follows from considering sequences with Ayk = 0.

Lemma A.1. Let Y and R be normed spaces and let A : Y ⊃ domA → R be a
linear operator. If A possesses a continuous inverse A−1 : R → Y , then A is closed.
If Y and R are complete, then each closed bijective linear operator has a continuous
inverse.
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Proof. Clearly, bijectivity is equivalent to existence of an inverse A−1. If A−1 is
continuous and defined on all of R, its graph is closed and

graph(A) = {(y, r) : Ay = r} = {(y, r) : y = A−1r} = graph(A−1).

So A is closed. If, in converse, A is closed and Y and R are complete, then the appli-
cation of the open mapping theorem (cf. e.g.[20, Satz IV.4.4]) for closed operators
yields continuity of A−1.

A.2 Adjoints of densely defined operators

Let us recapitulate the definition of the adjoint of a densely defined operator A :
Y ⊃ domA → R, which generalizes the adjoint of a continuous operator. For a
normed space R we denote by R∗ its dual, equipped with the canonical norm, and
by 〈·, ·〉 the dual pairing. Define

domA∗ := {r∗ ∈ R∗ : the linear functional 〈r∗, A·〉 is continuous on domA} .

If r∗ ∈ domA∗, then 〈r∗, A·〉 has a unique continuous extension to a functional
y∗ = A∗r∗ ∈ Y ∗, because it is continuous on the dense subset domA ⊂ Y . This
yields the definition of A∗ : R∗ ⊃ domA∗ → Y ∗, and the relation

〈A∗r∗, y〉 = 〈r∗, Ay〉 ∀ y ∈ domA ∀ r∗ ∈ domA∗.

In particular, domA∗ is canonically defined and depends on the topology of Y and
R. Adjoint operators are always closed by [11, Theorem II.2.6].

The following theorem establishes relations between a densely defined operator
and its adjoint. In spite of its unconspicuous appearance, (66) is a deep and impor-
tant existence result. For a normed space X, let U ⊂ X and V ∗ ⊂ X∗. We define
their “orthogonal” complements as following:

U⊥ := {x∗ ∈ X∗ : 〈x∗, x〉 = 0 ∀x ∈ U} (63)
V ∗
⊥ := {x ∈ X : 〈x∗, x〉 = 0 ∀x∗ ∈ V ∗}. (64)

Theorem A.2 (Closed Range Theorem). Let Y,R be normed spaces. Assume that
A : Y ⊃ domA → R is densely defined. Then

ran A = (kerA∗)⊥. (65)

In particular, if A has dense range, then A∗ is injective. If additionally Y and R
are complete and A is closed with closed range, then

ran A∗ = (kerA)⊥. (66)

In particular, if A is injective, then A∗ is surjective.

Proof. Equation (65) follows from [11, Theorem II.3.7]. If A has dense range, then
ranA = R = (kerA∗)⊥ which implies kerA∗ = {0}, and A∗ is injective. Equation
(66) follows from [11, Theorem IV.1.2]. In particular, if A is injective with closed
range, then ranA∗ = (kerA)⊥ = {0}⊥, hence A∗ is surjective (here, the hypothesis
of closed range cannot be dispensed with).
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B Tools from convex analysis

We will introduce some basic concepts and tools from convex analysis. For more
details on convex analysis we refer to [9, Chapter I] or [4, Chapter 4].

It is customary in convex analysis to consider extended real valued functions

f : X → R := R ∪ {∞}.

This makes it possible to consider constrained and unconstrained optimization
problems in one framework, by setting f = ∞ for infeasible points. The set
of points dom f , where f takes a finite value is called the domain of f . Apart
from convexity, standard assumptions on f are lower semi-continuity (i.e. the sets
{x ∈ X : f(x) ≤ α} are closed for all α ∈ R) and properness: dom f 6= ∅.

The indicator function ιM of a set M ⊂ X is defined by

ιM (x) =
{

0 : x ∈ M
∞ : otherwise.

(67)

It is convex and lower semi-continuous if and only if M is convex and closed, respec-
tively, and dom ιM = M . It follows from the definition that ιM1 + ιM2 = ιM1∩M2 .

In convex analysis the usual differentiability concept is replaced by subdifferen-
tiability. The subdifferential ∂f(x) of f : X → R at a point x ∈ dom f is the set of
all x∗ ∈ X∗, for which the relation 〈x∗, x̂− x〉 ≤ f(x̂)− f(x) holds for all x̂ ∈ X. If
f(x) = ∞, then ∂f(x) is defined to be the empty set.

If f is convex and Gâteaux differentiable at x with derivative f ′(x), then ∂f(x) =
{f ′(x)} (cf. [9, Proposition I.5.3]). The following simple relation is a generalization
of Fermat’s principle:

0 ∈ ∂f(xopt) ⇔ 〈0, x− xopt〉 ≤ f(x)− f(xopt) ∀x ∈ X ⇔ f(xopt) ≤ f(x) ∀x ∈ X.
(68)

Hence, minimizers xopt of f are characterized by 0 ∈ ∂f(xopt).

Lemma B.1. Let X be a normed space and x ∈ M ⊂ X. The subdifferential
∂ιM (x) is the set of all x∗ ∈ X∗, which satisfy

〈x∗, x̂− x〉 ≤ 0 ∀x̂ ∈ M. (69)

If M is a linear subspace of X, then ∂ιM (x) = M⊥. If X and R are Banach
spaces and A : X ⊃ domA → R is a closed, densely defined linear operator with
closed range, then

∂ιker A(x) = ranA∗ ∀x ∈ kerA. (70)

If X is a partially ordered normed space, x ∈ X, and M = {x ∈ X : x ≥ x}, then
∂ιM (x) is the set of all x∗ ∈ X, which satisfy

〈x∗, δx〉 ≤ 0 ∀δx ≥ 0, (71)
〈x∗, x− x〉 = 0. (72)
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Proof. If x∗ ∈ ∂ιM (x), then 〈x∗, x̂ − x〉 ≤ ιM (x̂) − ιM (x) = 0∀x̂ ∈ X, and in
particular for all x̂ ∈ M . This is (69). If x∗ satisfies (69), then ιM (x̂) = ∞ for
x̂ 6∈ M yields 〈x∗, x̂− x〉 ≤ ιM (x̂)− ιM (x)∀x̂ ∈ X, and thus x∗ ∈ ∂ιM (x).

If M is a linear subspace of X and x ∈ M , then (69) holds for δx = ±(x̂−x) ∈ M ,
which yields ∂ιM (x) = M⊥. This, setting M = kerA, together with (66) yields (70).

If x ∈ M , and δx ≥ 0, then also x + δx ∈ M , and (69) yields (71). The
choice δx = x − x, yields x + δx = x ∈ M and x − δx = 2x − x ≥ x ∈ Y, hence
〈x∗,±δx〉 ≤ 0, which yields (72). For the converse let x, x̂ ∈ M , and let x∗ ∈ X∗

satisfy (71) and (72). Define δxM := x − x. Then (72) yields 〈x∗, δxM 〉 = 0.
Moreover, δx̂ := (x̂ − x) + δxM = x̂ − x ≥ 0, because x̂ ∈ M . Thus 〈x∗, x̂ − x〉 =
〈x∗, δx̂− δxM 〉 = 〈x∗, δx̂〉 ≤ 0 by (71). Hence (69) holds, and x ∈ ∂ιM (x).

Apart from the closed range theorem (Theorem A.2) we will use a second deep
existence result - the sum rule of convex analysis. Before we can cite a version of
this theorem, we have to introduce the notion of the core of a subset M of a Banach
space Z (cf. [4, Section 4.1.3]):

z ∈ core(M) ⊂ Z ⇔
⋃

λ>0

λ(M − z) = Z.

In particular, 0 ∈ core(M), if and only if for all z ∈ Z there are λ > 0 and zm ∈ M
such that z = λzm. In this case, M is also called absorbing.

For convex sets M and on Banach spaces, coreM = intM by an open-mapping
type theorem. It is, however easier to verify 0 ∈ coreM than 0 ∈ intM .

Theorem B.2 (Sum Rule and Chain Rule). Let X, Z be Banach spaces and L :
X → Z a continuous linear operator. Let f : X → R and g : Z → R be convex and
lower semi-continuous functions. If the regularity condition

0 ∈ core(dom g − Ldom f) (73)

holds, then
∂(g ◦ L + f)(x) = L∗∂g(Lx) + ∂f(x) ∀x ∈ X. (74)

The condition (73) is equivalent to the statement: for each z ∈ Z there is λ > 0,
zg ∈ dom g, and xf ∈ dom f , such that z = λ(zg − Lxf ).

Proof. This variant of the sum-rule can be found, for example, in [4, Theorem 4.3.3].
The regularity condition (73) is classical and goes back to [16] and [15].

The reader may recognize similarities with the surjectivity condition for cones
imposed in [21]. Actually, this condition could also be used for our theory. However,
Theorem B.2 seems to be more natural and convenient for our purpose.
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