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Abstract

Adaptive numerical methods in time and space are introduced and
studied for linear poroelastic models in two and three space dimen-
sions.

We present equivalent models for linear poroelasticity and choose
both the displacement-pressure and the stress-pressure formulation for
our computations. Their discretizations are provided by means of lin-
early implicit schemes in time and linear finite elements in space. Our
concept of adaptivity opens a way to a fast and reliable simulation of
different loading cases defined by corresponding boundary conditions.

We present some examples using our code Kardos and show that
the method works efficiently. In particular, it could be used in the
simulation of some bone healing models.

Keywords: Poroelasticity, Biot’s model, bone healing, adaptive finite ele-
ments, adaptive time integration, Rosenbrock methods

1 Introduction

A lot of phenomena in nature can be modelled by poroelastic equations. An
important example is the extraction of oil from its deposit. The context
where this study has been motivated is the initial phase of bone healing.
Here the movement of the fluid in the soft tissue filling the fracture gap is
assumed to influence the generation of new bone tissue.
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Goal of our work is to develop a numerical code which provides solutions
adaptively in time and in space. This might open a way to fast and reli-
able simulation of different loading cases defined by corresponding boundary
conditions.

In the next section we present two equivalent models for linear poroelasticity
as they are presented in WANG [41]. These models yield the same results
as the classical equations introduced by BIoT [6]. In particular, we use a
displacement-pressure and a stress-pressure formulation. The same models
are derived by WILMANSKI [44]. His formulation is the result of a lineariza-
tion in a more general, nonlinear theory derived with help of the theory of
mixtures [43].

In Section 3 we describe the discretization of the poroelastic equations in de-
tail and introduce our numerical code Kardos. A review of other discretization
methods is given by LIPNIKOV [31]. We refer also to recent work of Cu1 ET
AL. [13], CHEN ET AL. [9], GASPAR ET. AL. [22|, EWING ET AL. [21], and
literature cited therein. Our algorithm is based on linearly-implicit Rosen-
brock methods for time discretization and linear finite elements in space, as it
is used by LANG [28] in tradition of a long-time research at ZIB, see BORNE-
MANN [7], DEUFLHARD, LANG, and NOWAK [17], DEUFLHARD, LEINEN and
YSERENTANT (18], BORNEMANN, ERDMANN, and KORNHUBER |[8]. It com-
prises adaptive control of the time steps as well as the adaption of the spatial
meshes which has proven in many applications to be an advantage of this
method. This ansatz is justified by our restriction to the variables displace-
ment, pressure, and stress. It may find its limitation if also the velocity of the
fluid has to be computed. In the latter case mixed finite element methods
should be more advantageous.

In Section 4, we present some examples showing that the method works
efficiently and that it can be used in the simulation of geological problems as
well as for some bone healing models. However, there are also some (extreme)
samples of problem parameters leading to a bad performance of the iterative
solver for the inherent linear algebraic systems in each time step.

2 Biot’s model for linear poroelasticity

A general introduction into the theory of mixtures is given by TRUESDELL
[38] and the application to poroelastic materials by WILMANSKI [42, 45].
Porous media with mass exchange need an extended set of basic fields. Such
systems have been studied for example in ALBERS [3] and MATERA [33]. For
a detailed review of the classical theory of linear poroelasticity as for the first
time given by BIOT [6] we refer to WANG [41] and Coussy [10].



In this paper, we follow the presentation of WANG [41] based on the following
assumptions:

e the temperature of the material is constant,

e there is no mass exchange between the solid phase and fluid phase,

e the fluid behaves macroscopically as an ideal fluid,

e only small deformations occur.

We use the following notation:

u® = (uf, us, u3) displacement vector of the solid
v® = (v5,v5,v5) velocity vector of the solid

vf = (], v],vf) velocity vector of the fluid

T = (045)ij=123 total stress tensor

tr'T = o011 + 099 + 033 trace of stress tensor T’

p
i

pore fluid pressure

Kronecker delta

A set of representative material parameters is assembled in Table 1.
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shear modulus of the poroelastic medium under the drained condition
Young’s modulus

drained Poisson’s ratio

undrained Poisson’s ratio

porosity

Skempton’s coefficient

bulk modulus of the poroelastic medium under the drained condition
fluid bulk modulus

permeability

fluid viscosity

poroelastic stress coefficient

Biot-Willis coefficient

Table 1: Parameters chosen in linear poroelastic models

We have the following relationships between these parameters.
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The formulation we choose to serve as starting point for our considerations is
a linearization of the general nonlinear balance equations with respect to the
deformation. Thus the presented theory is only valid for small deformations
of the solid. A detailed representation of the results of the linearized mixture
theory can be found in [44] and [45].

Furthermore, an influence of relative accelerations is neglected in our model.
Then the constitutive relations for the total stress and the pore pressure read
as follows.

(u, p)-formulation

DPF:

G 0 ous dp )
. 2 s _ k _ _
GV~ u; 1—2V3$z‘,§1_+a - =0, i=1,2,3 (1)

This can be considered as the displacement-pressure formulation of linear
poroelasticity (DPF).

(o, p)-formulation

Based on the geometric compatibility conditions for the components of the
solid’s strain tensor and the momentum balance V - T" = 0 we can derive
equations only with the components of the stress tensor and the pressure as
unknown fields, which can be written in the form of (3), compare COwIN [12].
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This stress-pressure formulation (BMF) is also well-known as the BELTRAMI-
MIcCHELL model for poroelastic media.

The system (3) of 6 equations leads by some elementary rearrangement to
the following scalar equation (5) for the trace of the stress tensor.

SBMF:
V2[tr T + 4np] = 0 (5)

a |[BotrT Op ko
KB [5 ot +E}_ﬁvp_0 (6)

The equations (5) and (6) can now be used to calculate the unknown quan-
tities tr T" and p. They will be called simplified BELTRAMI-MICHELL formu-
lation (SBMF). It is useful if one is not interested in all the components of
the stress tensor . Otherwise one has to use (1) or (3) instead of (5). Using
the DPF it is possible to calculate the stress tensor from the values of the
displacement field.

We remark that the parabolic equations (2), (4), and (6) are related to
DARCY’s law which describes the relationship between p and v7:

k
vi=vl —v* = ———Vp (7)
Noph

Boundary conditions

Natural boundary conditions are normally derived from jump conditions on
singular walls using the (global) balances of mass, momentum etc.. For
example, boundary conditions are discussed in ALBERS [3]. For the BMF
it is hard to find boundary conditions, because the compatibility conditions
can not be derived from global balances. To provide boundary conditions
for the stress components which fulfill the momentum balance div 7' = 0
is a problem for itself, compare corresponding considerations of PATNAIK,
HoPKINS [34] for linear elastic problems. Due to this lack of a “complete
BELTRAMI-MICHELL” formulation for poroelasticity we only use Dirichlet
boundary conditions for the stress components in our examples.
Considering jump conditions makes only sense if one knows the production of
the considered quantity on the wall. The partial momenta are of no use since
we do not know the effect of friction at the singular wall without any further
information. Other boundary conditions are microscopically motivated or
empirical. In the following we will require the velocity of the solid and the
velocity of the boundary to be the same.



Figure 1: Boundary between solid and fluid in a porous medium.

Conservation of fluid’s mass: We assume vanishing mass sources in the
porous media and the same we require for the boundary. Thus the fluid’s
mass is a conserved quantity. This leads to the jump condition of the mass
flux

pf_(vf__vs).n — pf+(vf+_vs>.n

where v*® - n is the velocity of the boundary identified with the velocity of the
skeleton.
Conservation of the total momentum: The conservation of the total
momentum leads to the jump conditions for the total stress (in the linearized
model)

(TH)n—(T")n=0.

For T~ = —peyl, TT = T (in porous medium) we get the boundary condition
Tn+ pegemn =0.

Normal mass flux: For the normal mass flux we have the DERESIEWICZ
condition

p
with surface permeability ap. Applying DARCY’s law (7) this reads as

= (! — %) - n = apno(p — peat)

_k
—p!m—-Vp-n = apne(p — pest)
o

There are two important special cases

ap — 0 — impermeable boundary
ap — oo  — ideal permeable boundary, i.e., p = pest.



3 Numerical Discretization

Each of the linear poroelastic models DPF, BMF, or SBMF is discretized by
linearly implicit methods in time and adaptive finite elements in space, using
the Kardos library [20, 2].

One of the important requirements that modern software has to meet is to
judge the quality of its numerical approximations in order to assess safely
the modelling process. Adaptive methods provide a posteriori error esti-
mates and appropriate strategies to improve the accuracy. They are now
implemented in real-life applications and becoming a standard feature in
simulation programs. The present paper reports on one successful way to
construct discretization methods adaptive in space and time which are ap-
plicable to a wide range of practically relevant problems.

The three quasi-stationary formulations DPF, BMF, and SBMF fit into the
scheme of reaction-diffusion problems of the form

B(z,t,u, grad u)oyu = div (D(x, t, u, grad u) grad u) + F(x,t,u, grad u) (8)

with suitable boundary and initial conditions. The vector-valued solution
u = (uy,...,u,)T is supposed to be unique.

In the classical method of lines (MOL) approach, the spatial discretization
is done once and kept fixed during the time integration. Here, we allow a
local spatial refinement in each time step, which results in a discretization
sequence first in time then in space. The spatial discretization is considered as
a perturbation, which has to be controlled within each time step. Combined
with a posteriori error estimates this approach is known as adaptive Rothe
method. First theoretical investigations have been made by BORNEMANN [7]
for linear parabolic equations. LANG and WALTER [30] have generalized the
adaptive Rothe approach to reaction-diffusion systems. A rigorous analysis
for nonlinear parabolic systems is given in LANG [28]. For a comparative
study, we refer to DEUFLHARD, LANG, and NOWAK [17].

Since differential operators give rise to infinite stiffness, often an implicit
method is applied to discretize in time. We use linearly implicit methods
of Rosenbrock type, which are constructed by incorporating the Jacobian
directly into the formula. These methods offer several advantages. They
completely avoid the solution of nonlinear equations, that means no Newton
iteration has to be controlled. There is no problem to construct Rosenbrock
methods with optimum linear stability properties for stiff equations. Accord-
ing to their one-step nature, they allow a rapid change of step sizes and an
efficient adaptation of the spatial discretization in each time step. Moreover,
a simple embedding technique can be used to estimate the error in time satis-



factorily. A description of the main idea of linearly implicit methods is given
in Subsection 3.1.

Linear finite elements are used for the spatial discretization. To estimate
the error in space, the hierarchical basis technique has been extended to
Rosenbrock schemes in LANG [28]. Hierarchical error estimators have been
accepted to provide efficient and reliable assessment of spatial errors. They
can be used to steer a multilevel process, which aims at getting a successively
improved spatial discretization drastically reducing the size of the arising
linear algebraic systems with respect to a prescribed tolerance (BORNEMANN,
ERDMANN, and KORNHUBER [§], DEUFLHARD, LEINEN and YSERENTANT
[18], BANK and SMITH [5]). A brief introduction to multilevel finite element
methods is given in Subsection 3.2.

The described algorithm has been coded in the fully adaptive software pack-
age Kardos at the Konrad-Zuse-Zentrum in Berlin. Several types of embedded
Rosenbrock solvers and adaptive finite elements were implemented. Kardos
is based on the Kaskade-toolbox [19]. Nowadays both codes are efficient and
reliable workhorses to solve a wide class of PDEs in one, two, or three space
dimensions.

3.1 Linearly implicit methods

In this section a short description of the linearly implicit discretization idea
is given. For ease of presentation, we firstly set B=1 in (8) and consider the
autonomous case. Then we can look at (8) as an abstract Cauchy problem
of the form

O = f(u), u(ty) =ug, t>to, (9)

where the differential operators and the boundary conditions are incorpo-
rated into the nonlinear function f(u). Since differential operators give rise
to infinite stiffness, often an implicit discretization method is applied to inte-
grate in time. The simplest scheme is the implicit (backward) Euler method

Up+1 = Up + 7 f(un—i-l) ) (10)

where 7 =t,,,1—t, is the step size and u,, denotes an approximation of w(t)
at t =t,. This equation is implicit in u,;; and thus usually a Newton-like
iteration method has to be used to approximate the numerical solution itself.
The implementation of an efficient nonlinear solver is the main problem for
a fully implicit method.

Investigating the convergence of Newton’s method in function space, DEU-
FLHARD [16] pointed out that one calculation of the Jacobian or an approx-
imation of it per time step is sufficient to integrate stiff problems efficiently.



Using u,, as an initial iterate in a Newton method applied to (10), we find
(I—71Jy) K, = 7f(u,), (11)
Upyr = Up+ K, (12)

where J,, stands for the Jacobian matrix 0, f(u,). The arising scheme is
known as the linearly implicit Euler method. The numerical solution is now
effectively computed by solving the system of linear equations that defines
the increment K,,. Among the methods which are capable of integrating stiff
equations efficiently, the linearly implicit methods are the easiest to program,
since they completely avoid the numerical solution of nonlinear systems.

A generalization of the linearly implicit approach we will follow here leads to
Rosenbrock methods (ROSENBROCK [35]). They have found wide-spread use
in the ODE context. Applied to (9) a so-called s-stage Rosenbrock method
has the recursive form

i—1 i—1
(I = it Jn) i = 7f(un+Y iy Knj) + 70 Y 755 Ky, i = 1(1)s, (13)
j=1 j=1

Upy1 = Uy + Z szm > (14)
=1

where the step number s and the defining formula coefficients b;, «;;, and
7i; are chosen to obtain a desired order of consistency and good stability
properties for stiff equations (see e.g., HAIRER and WANNER [25], IV.7). We
assume y; = v > 0 for all ¢, which is the standard simplification to derive
Rosenbrock methods with one and the same operator on the left-hand side
of (13). The linearly implicit Euler method mentioned above is recovered for
s=1and y=1.

For the general system

B(t,u)ou = f(t,u), u(ty) =uy, t>to, (15)

an efficient implementation that avoids matrix-vector multiplications with
the Jacobian was given by LUBICH and ROCHE [32]. In the case of a time- or
solution-dependent matrix B, an approximation of d;u has to be taken into
account, leading to the generalized Rosenbrock method of the form

i—1
1 Cij
Btny n _Jn Um - thz _Btna n - Un zOn
(Bt = 52 ) Ui = F000) = Bltw) 32 0y

™ =1

(16)



where the internal values are given by
i—1 i—1 5.
li=t, + oy, Ui:un—f—;aijUnj? ZZ:(l_O-Z)Zn—i_X;%Un]a
J= J=

and the Jacobians are defined by

Jn = au(f(t, u) — B(t,u)z)m:un,t:tn,z:zn )
Co = ([t u) = Bt ) 2) jumu =ty 2=, -

This yields the new solution

s
Upt1 = Up + E m; Uni

i=1
and an approximation of the temporal derivative 0,u

i

> 1
Zn+l = Zn + Zml (; Z(Cij — Sij)Un]’ + (Oi — 1)Zn) .
=1

Jj=1

The new coeflicients can be derived from «;;, 5, and b; [32]. In the special
case B(t,u)=1, we get (13) setting Up;=7>_,_, 7%iKn; i=1,....s.
Various Rosenbrock solvers have been constructed to integrate systems of the
form (15). An important fact is that the formulation (15) includes problems
of higher differential index. Thus, the coefficients of the Rosenbrock meth-
ods have to be specially designed to obtain a certain order of convergence.
Otherwise, order reduction might happen. Among the Rosenbrock methods
suitable for index 1 problems we mention Ros2 [15], Ros2ros[40], Ros3p
[29], and RoDAs4 [25]. More information can be found in [28]. These solvers
are appropriate for our simulations in the displacement-pressure formulation
1), (2).

Usually, one wishes to adapt the step size in order to control the temporal
error. For linearly implicit methods of Rosenbrock type a second solution of
inferior order, say p, can be computed by a so-called embedded formula

S
Upy1 = un+2 miUp; ,
=1

S (3

R .1
Zn+l = Zn + m; (; (Cij — 3ij>Unj + (O’i - 1)271) ;
i=1 =1
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where the original weights m; are simply replaced by m;. If p is the order
of w41, we call such a pair of formulas to be of order p(p). Introducing an
appropriate scaled norm || - ||, the local error estimator

Tny1 = Hun+1 - an+1H + HT(Zn+1 - 2n+1)H (17>

can be used to propose a new time step by

T ( TOL,r, )1/ @+
Tn -

Tn—1

(18)

Tn+1 =
Tn+1 Tn+1

Here, TOL,; is a desired tolerance prescribed by the user. This formula is
related to a discrete PI-controller first established in the pioneering works of
GUSTAFSSON, LUNDH, and SODERLIND [24, 23].

Rosenbrock methods offer several structural advantages. They preserve con-
servation properties like fully implicit methods. There is no problem to
construct Rosenbrock methods with optimum linear stability properties for
stiff equations. Because of their one-step nature, they allow a rapid change of
step sizes and an efficient adaptation of the underlying spatial discretizations
as will be seen in the next section. Thus, they are attractive for solving real
world problems.

3.2 Multilevel finite elements

In the context of PDEs, system (16) consists of linear elliptic boundary
value problems. In the spirit of spatial adaptivity a multilevel finite ele-
ment method is used to solve this system. The main idea of the multilevel
technique consists of replacing the solution space by a sequence of discrete
spaces with successively increasing dimension to improve their approximation
property. A posteriori error estimates provide the appropriate framework to
determine where a mesh refinement is necessary and where degrees of freedom
are no longer needed. Adaptive multilevel methods have proven to be a use-
ful tool for drastically reducing the size of the arising linear algebraic systems
and to achieve high and controlled accuracy of the spatial discretization (see
e.g., BANK [4], DEUFLHARD, LEINEN, and YSERENTANT [18], LANG [27]).
Let T}, be an admissible finite element mesh at ¢ =¢, and S} be the asso-
ciated finite dimensional space consisting of all continuous functions which
are polynomials of order ¢ on each finite element T € T},. Then the standard
Galerkin finite element approximation U € S} of the intermediate values
U,,; satisfies the equation

(Lo U, 8) = (1, ¢)  forall ¢ € S, (19)

11



where L, is the weak representation of the differential operator on the left-
hand side in (16) and r,; stands for the entire right-hand side in (16). Since
the operator L,, is independent of 7 its calculation is required only once within
each time step.

The linear systems are solved by direct or iterative methods. While di-
rect methods work quite satisfactorily in one-dimensional and even two-
dimensional applications, iterative solvers such as Krylov subspace methods
perform considerably better with respect to CPU-time and memory require-
ments for large two- and three-dimensional problems. We mainly use the
BicasTaB- [39] or the GMRES-algorithm [36] with ILU-preconditioning as
iterative solver and the library UmfPack Version 4.4 [14] for direct solution.
After computing the approximate intermediate values U, a posteriori error
estimates can be used to give specific assessment of the error distribution.
Considering a hierarchical decomposition

St = St 7 (20)

where ZZ+1 is the subspace that corresponds to the span of all additional
basis functions needed to extend the space S} to higher order, an attractive
idea of an efficient error estimation is to bound the spatial error by evalu-
ating its components in the space Z,qfl only. This technique is known as
hierarchical error estimation and has been accepted to provide efficient and
reliable assessment of spatial errors (BORNEMANN, ERDMANN, and KORN-
HUBER [8], DEUFLHARD, LEINEN and YSERENTANT [18], BANK and SMITH
[5]). In LANG [28], the hierarchical basis technique has been carried over to
time-dependent nonlinear problems. Defining an a posteriori error estimator
E' € ZI by

n+1 = Eho + Z m;E (21)

with E", approximating the projection error of the initial value u, in Zqul
and E" estimating the spatial error of the intermediate value U the local
spatial error for a finite element T' € T}, can be estimated by ny:=||E%, ||r.
The error estimator E”,, is computed by linear systems which can be de-
rived from (19). For practical computations the spatially global calculation
of E" ns1 18 normally approximated by a small element-by-element calculation.
This leads to an efficient algorithm for computing a posteriori error estimates
which can be used to determine an adaptive strategy to improve the accu-
racy of the numerical approximation where needed. A rigorous a posteriori
error analysis for a Rosenbrock-Galerkin finite element method applied to

nonlinear parabolic systems is given in LANG [28]. In our applications we

12



utilize linear finite elements and measure the spatial errors in the space of
quadratic functions.

In order to produce a nearly optimal mesh, those finite elements 7" having
an error ny larger than a certain threshold are refined. After the refinement
improved finite element solutions U" defined by (19) are computed. The
whole procedure solve-estimate-refine is applied several times until a pre-
scribed spatial tolerance | E", || <TOL, is reached. To maintain the nesting
property of the finite element subspaces coarsening takes place only after an
accepted time step before starting the multilevel process at a new time.

4 Applications

Our numerical experiments are focused on solving the displacement-pressure
formulation (DPF) based on the equations (1), (2) and the simplified stress-
pressure formulation (SBMF) based on (5), (6). As an alternative we intro-
duced the stress-pressure formulation (BMF) using six equations (3) for the
components of the stress tensor instead of (5). The BMF is expected to show
the same numerical behavior as the SBMF.

We investigate whether our algorithm works for different loading cases for
both soft and stiff matter, e.g., charcoal granite or physiological tissues like
cortical bone and granulation tissue.

Table 2 shows the values of the parameters for those materials we study in
the following examples, compare [41], [11], or [26].

charcoal granite bone tissue granulation tissue

G [Pa] 19.0-10° 5.0-10” 0.86-10°
E [Pa] 48.3-10° 13.2-10° 2.00-10°
v 0.27 0.32 0.167
Uy 0.30 0.33 0.5
0] 0.02 0.05 0.80
B 0.55 0.40 1.0
K [Pa] 35.0-10° 12.0-10° 1.0-10°
k [m?] 1-1071 1.5-10720 1-10717
I 0.001 0.001 0.001
a 0.27 0.14 1.0

Table 2: Poroelastic parameters for some materials

Due to the term div u in equation (2) the DPF has first to be modified in
order to match the shape of system (8) which we can treat in our code Kardos.
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This is done by introducing a new variable A fulfilling the equation A = div u.
We choose the Rosenbrock method Ros3Pp for time discretization. It is of
discretization order 3 also in case of time-dependent boundary conditions.
Compared to other schemes, e.g., R0s2 or RoDpAs4, it proved to be the
most efficient time integrator in this context. Estimation of the error in time
leads to continuously increasing time steps in all the examples. This makes
the method more efficient than one based on constant time steps. However,
we note that the choice of larger time steps is not surprising because the small
values of the permeability & diminish the influence of the diffusion terms in
equation (2) or (4). Hence, the lack of further reaction terms let expect that
there is only small dynamics in time. With other words: the control of time
steps is not the important mean for efficiency in these examples. But possibly
for other materials.

The discretization in space is always started on an initial mesh as coarse as
possible but fine enough to resolve the characteristics of the particular geom-
etry. All the computations are done for local error tolerances TOL, = 0.001
in time and TOL, = 0.001 in space. Furthermore, due to restriction in the
memory of our machine, we request for the problem in three space dimen-
sions (3D) in each time step that the adaptive grid refinement stops when
the number of nodes exceeds 100,000. This results in local refinement of
depth not less than 3, i.e., at least one of the tetrahedra in the coarse grid
is refined 3 times. Assuming that this provides the same accuracy as an cor-
responding uniform mesh it gets clear that adaptivity may have an eminent
advantage for problems with local dynamics. In this report we abstain from
investigating this assumption in detail, but refer to the book of LANG [28].

Figure 2: Initial tetrahedral mesh of a cylindrical body.
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Sometimes the requested accuracy in space is not achieved due to the re-
striction of the maximum number of nodes in the mesh. Nevertheless the
method terminates successfully in all examples with estimated errors close
to the requested tolerances.

As an example we present some simulations of loading cases of a cylindrical
body.

We use the DPF and the SBMF applying increasing displacement of the top
face resp. increasing stress on top and bottom face. In the DPF, the top
face is pressed 0.0001 [m] for stiff or 0.001 [m] for soft material uniformly
over one second towards the bottom face which is fixed. These two faces are
impermeable for the fluid, thus (v¥ — v/) - n = 0 holds. At the lateral faces
we have for the stress tensor 7°n = 0 and for pore pressure p = 0 (i.e., the
body is drained).

The extent of the body (height: 0.03 m, radius: 0.013 m) and the initial grid
for the multilevel algorithm is shown in Figure 2.

4.1 Charcoal granite

First, we want to compare both formulations SBMF and DPF for charcoal
granite as an example for stiff tissue. The material parameters and the load-
ing cases are defined above.

R
NS

SN

[

/
NSNAAAAA AL Dadee

Figure 3: DPF for charcoal granite. Isolines of pore pressure at maximum of
loading and corresponding adaptive mesh.

DPF: As initial time step 6t = 0.01 is chosen. The adaptive mesh at final
time £ = 1.0 and the corresponding solution for the pore pressure on a section
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plane is shown in Figure 3. The final time is reached after 3 time steps instead
of 100 steps in case of absence of adaptive time control.

SBMEF': Here, we solve the analogous problem using the SBMF equations for
the trace of the stress tensor 1" and the pore pressure p. The displacement
of the top face corresponds to increasing stress on top and bottom.

2 _[Pa](*e+8) M

l-1.4e+03
Figure 4: Charcoal granite. Trace of stress tensor 7" at time t = 1 on the
boundary (left) and on a line through the top face (right).

For comparison with the DPF we take boundary values for stress as they
resulted in the preceding calculation showing the typical singularities in the
corners for the stress components. The profile of the trace of the stress tensor
T at time t = 1 on the top face is presented in Figure 4. In our computation
we scale the boundary values for the components of 7' linearly by the time
t, 0 <t < 1fsec]. In general it might be difficult to provide reasonable
boundary conditions for the stress in the BMF or in the SBMF.

As initial time step ot = 0.01 is chosen. The final time is reached after only
3 adaptive time steps: 0t = 0.01, 0.171, 0.819. That proves the efficiency of
time control.

The adaptive mesh at time t = 1.0 and the corresponding solution for the
pore pressure is shown in Figure 5. As expected the solution looks very
similar to that of the DPF above. We get a good adaptation of the mesh
close to the lateral boundary due to the steep gradient of the solution.
Figure 6 illustrates the change in pore pressure during one second of uniform
increasing the loading on top and bottom.

All the linear algebraic systems in the finite element approximation are solved

16



N

TR NN A
T Co
%NN’/‘MMWWW?E&“

/1A
a e
A

1
g
ard)
(1 Vﬂ'n
o
e
N
N
NSKT

AT
oo

N
N
R

N

N

a

Vvl

]

]
NRRRRN

v
v

]
CAVAVAPA
1
7
]

' hss
RRRR

1

v

1
AN

1

i
1V VA V4V VYA VAN NNNINN|

vAvaYdl

1 VA Vd A

]
pavdVd
/4

VAV
Al

NN
RN nsﬂﬁs

N

N

NV

0
=R
KR

Vaval
A VAVAVAVVAVAVAYAYAYA'Ad
%%aﬁmmuuuuggr

I 4.7e+07 |

NN
/17|
A%

17

N
]
]

2.35e+07

(VAVAVAVAN
7
7 VA4Vl
aaze

(V4VA%)

Figure 5: BMF for charcoal granite. Isolines of pore pressure at maximum
of loading and corresponding adaptive mesh.

Figure 6: Charcoal granite. Development of pore pressure for time 0.1, 0.2,
0.4 (first row) and 0.6, 0.8, 1.0 sec (second row).

with the iterative solver which uses a moderate number of iterations, e.g.,
100 — 260 iterations for systems with about 430,000 unknowns or 400 — 450
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iterations for about 2,300,000 unknowns. A direct solver is not competitive

for such systems.

4.2 Soft tissue

Next, we use the DPF for a simulation of soft material behavior based on
the parameters of granulation tissue. However, the specific permeability
k=1.0-10"" [m?] is chosen larger by reason explained later.

We consider the loading case as described above and already studied for the
charcoal granite, but this time we displace the top face 1 mm in direction of
the bottom face which is fixed.
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Figure 7: DPF for soft tissue. Isolines of pore pressure at maximum of
loading and corresponding adaptive mesh.

As initial time step ot = 0.025 is chosen. The adaptive mesh at final time
t = 1.0 and the corresponding solution for the pore pressure on a section
plane is shown in Figure 7. The final time is reached after 5 time steps
instead of 40 steps in case of absence of adaptive time control: dt = 0.025,
0.075, 0.184, 0.346, and 0.370.

Figure 8 illustrates the change of pore pressure during one second of uniform
increasing the loading on top and bottom.

If we use initial time steps too small in this example, i.e., 6t ~ 0.005, the
solution of the linear system fails. Such phenomena are well-known in the
context of algebraic-differential equations. They do not occur in the SBMF
but therefor it is necessary to provide suitable profiles for the trace of the

stress tensor on the boundary.
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Figure 8: Soft tissue. Development of pore pressure for time 0.1, 0.2, 0.4
(first row) and 0.6, 0.8, 1.0 sec (second row).

4.3 Granulation tissue

Granulation tissue is also a soft tissue. It occurs for example in the gaps
of bone fractures. It is defined by the parameters given in Table 2 which
are the same as for the soft tissue we simulated in the section above, but
the value for the specific permeability k£ is now reduced by factor 1000, i.e.,
k = 1.0-107' [m?. To get a good resolution of the solution in the 3D
model the calculation would exceed the capacities of our computers. So, we
utilize the axisymmetry of the problem and do the simulation in two space
dimensions (2D).

Due to the axial symmetry of the cylinder we can easily transform the last
3D configuration to a 2D problem with coordinates r and z, see [41]. On the
axis of symmetry, » = 0, we have the conditions 7¢n = 0 and grad p-n = 0.
DPF: We start with the DPF assuming the same loading as in the study
of soft tissue. Hence we have the same boundary conditions. Starting with
do = 0.025 as initial time step on a coarse initial grid (corresponding to the
mesh in 3D) we reach the final time ¢t = 1.0 by adaptive control already after
3 time steps: & = 0.025,0.206,0.769. Figure 9 shows the solution and the
mesh for the final time. A more precise impression of the dynamics in the
solution and the adaptive refinement is given by Figure 10 which is zoomed in
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Figure 9: DPF for granulation tissue. Pore pressure at maximum of loading
and corresponding adaptive mesh.

the upper right corner of the last figure. We recognize the correct adaptation
of the mesh at the lateral boundaries and around the maximum of p due
to the steep gradients. In particular it becomes clear why the analogous
computation in 3D would take so much resources of memory.

Figure 11 shows the development of the solution for decreasing values of
permeability, i.e., kK = 107, & = 107", &k = 1076, and k& = 1077. It
illustrates the more and more singular character of the solution and makes
understandable the need of highly resolved meshes.

SBMFEF': Finally, we compute solutions of the model SBMF for the 2D sim-
plification of the cylindrical geometry. As boundary condition for the trace
of the stress tensor we use the results of the preceding calculation. For pore
pressure we assume the same boundary condition as in the DPF.

The adaptive process starts on the same initial grid as in the calculation
based on the DPF. The qualitative and quantitative behavior of the pressure
is very similar to that in the DPF, compare the pore pressure p in Figure 12
and Figure 9. As expected there is a high agreement in the adaptive refined
grids.

The calculation of the solution in the SBMF is much faster than the analo-
gous calculation in the DPF because we have only two equations. However,
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Figure 10: DPF for granulation tissue: Pore pressure at maximum of loading
and corresponding adaptive mesh zoomed in the upper right corner of the
region.

Figure 11: DPF for granulation tissue using different values for the specific
permeability (K = 107 & = 107%%, k = 107!%, and k = 107'7). Pore
pressure at maximum of loading in the upper right corner of the region.

we note again that in general it is not easy to find reasonable boundary
conditions for the trace of the stress tensor.
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Figure 12: SBMF-model for granulation tissue. Pore pressure at time t
1.0 and corresponding adaptive grid.

4.4 Bone

Bone is a stiff tissue. It is defined by the parameters given in Table 2.
Simulations of the DPF in 3D would exceed our computational resources
as in the case of granulation tissue. Therefore, we also restrict to the 2D
calculation using the axisymmetry of the problem.

We assume the same loading as in the study of charcoal granite. Hence we
have the same boundary conditions. We choose ¢ = 0.01 as initial time step
and reach the final time ¢ = 1.0 by adaptive control already after 3 time
steps: 6 = 0.01,0.95,0.04. Figure 13 shows the solution and the adaptive
mesh for the final time. We prefer solving the linear algebraic systems in
the FEM approximation by the direct method, because the iterative solver
(GMRES preconditioned by ILU) takes too much iterations, e.g., 143 for a
system with 2,232 unknowns, or 1,450 for 58,080 unknowns.

Here we abstain from presenting the corresponding results of the SBMF for
bone. It provides the same results for the pore pressure if we invest the profile
of the trace of the stress tensor resulting from the preceding calculation. In
this model the iterative solver takes less iterations and becomes competitive,
e.g., 20 iterations for a systems with 1,114 unknowns, or 160 iterations for
38,010 unknowns.
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Figure 13: DPF for bone. Pore pressure at maximum of loading and corre-
sponding adaptive mesh.

5 Conclusion and Outlook

In all our examples the adaptive mechanism of Kardos performed very well
both for soft and stiff tissues. Hence, this method offers a way to find so-
lutions efficiently in all cases where local dynamics occur in space or time.
Especially, the control of time steps allowed to find the solution at final time
by a small number of time steps. Both error estimation in time and space
guarantee the reliability of the solution process.

Some disadvantage inherent the BELTRAMI-MICHELL description of linear
poroelasticity is the difficulty of defining compatible boundary conditions.
This problem does not occur in the displacement-pressure formulation (1)
where the boundary conditions are canonically given by displacements. How-
ever, our code proved to be very efficient for the BELTRAMI-MICHELL model
if the boundary conditions are known. This model might get more impor-
tance if it would be possible to provide a complete set of boundary conditions
like in the complete BELTRAMI-MICHELL model for linear elasticity.
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Solving the equations of the displacement-pressure model with our code, there
occur problems in finding a solution for extreme values of the material pa-
rameters (as for granulation tissue or bone) or for too small time steps.
Furthermore we observed a high number of iterations for solving the linear
algebraic systems associated to the spatial discretization.

Future work will address these problems and try to extend the range of
applications especially in three space dimensions.
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