Skip to main content
Log in

Complex Assessment of Atmospheric Air Quality in the City of Gelendzhik

  • Optical Models and Databases
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The atmospheric air quality is determined by the concentrations of some gaseous pollutants and mass concentrations of aerosol particles of different sizes. A wide range of atmospheric pollutants in both gaseous and aerosol phases was studied in the vicinity of Gelendzhik in July 2009, simultaneously at several land sites, in the water area of the bay, and at altitudes of up to 2200m. No such complex experiments were carried out in that region before. The following characteristics of the atmospheric aerosol (3 nm–32 μm in size) were studied: elemental composition of particles (23 chemical elements) and concentrations of polyaromatic hydrocarbons (14 compounds), unsaturated hydrocarbons, total protein, biotoxins, and culturable microorganisms. The concentration fields of different air pollutants and the complex air pollution index were constructed using mathematical models of pollutant propagation and data on the hydrometeorological conditions during the period of measurements. The sources of aerosols in the region were detected from the study of the chemical composition of airborne particles. The results allowed us to estimate air pollutants and to calculate the complex air pollution index for the Gelendzhik area. The daily average concentrations of all the pollutants were compared to the daily average maximum permissible concentrations. All these concentrations were less than daily average maximum permissible concentrations. The complex air pollution index did not exceed 1. Hence, the air in the vicinity of Gelendzhik did not contain any significant pollutants in the period under study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Wark and C. F. Warner, Air Pollution: Its Origin and Control (Harper and Row Publishers, NY, 1981).

    Google Scholar 

  2. Y. H. Zhang, M. Hu, L. J. Zhong, A. Wiedensohler, S. C. Liu, M. O. Andreae, W. Wang, and S. J. Fan, “Regional integrated experiments on air quality over Pearl river delta 2004 (PRIDE-PRD2004): Overview,” Atmos. Environ. 42 (25), 6157–6173 (2008).

    Article  ADS  Google Scholar 

  3. I. Balcilar, A. Zararsiz, Y. Kalayci, G. Dogan, and G. Tuncel, “Chemical composition of eastern Black Sea aerosol—Preliminary results,” Sci. Total. Environ. 488–489, 422–428 (2014). doi 10.1016/j.scitotenv. 2013.12.023

    Article  Google Scholar 

  4. M. Marc, M. Tobiszewski, B. Zabiegala, M. de la Guardia, and J. Namiesnik, “Current air quality analytics and monitoring: A review,” Anal. Chim. Acta 853, 116–126 (2015).

    Article  Google Scholar 

  5. M. Yu. Arshinov, B. D. Belan, N. G. Voronetskaya, A. K. Golovko, D. K. Davydov, A. S. Kozlov, G. S. Pevneva, D. V. Simonenkov, and A. V. Fofonov, “Organic aerosol in air of Siberia and the Arctic. Part 1. Geographic features and temporal dynamics,” Opt. Atmos. Okeana 30 (8), 716–722 (2017).

    Google Scholar 

  6. D. P. Starodymova, A. A. Vinogradova, V. P. Shevchenko, E. V. Zakharova, V. V. Sivonen, and V. P. Sivonen, “Elemental composition of near-ground aerosol near the northwestern coast of Kandalaksha Bay of the White Sea,” Atmos. Ocean. Opt. 31 (1), 181–186 (2018).

    Article  Google Scholar 

  7. P. S. Monks, C. Granier, S. Fuzzie, A. Stohl, M. L. Williams, H. Akimoto, M. Amann, A. Baklanov, U. Baltensperger, I. Bey, N. Blake, R. S. Blake, K. Carslaw, O. R. Cooper, F. Dentenero, D. Fowler, E. Fragkou, G. J. Frost, S. Generoso, P. Ginoux, V. Grewe, A. Guenther, H. C. Hansson, S. Henne, J. Hjorth, A. Hofzumahaus, H. Huntrieser, I. S. A. Isaksen, M. E. Jenkin, J. Kaiser, M. Kanakidou, Z. Klimont, M. Kulmala, P. Laj, M. G. Lawrence, J. D. Lee, C. Liousse, M. Maione, G. McFiggans, A. Metzger, A. Mieville, N. Moussiopoulos, J. J. Orlando, C. D. O' Dowd, P. I. Palmer, D. D. Parrish, A. Petzold, U. Platt, U. Poschl, A. S. H. Prevot, C. E. Reeves, S. Reimann, Y. Rudich, K. Sellegri, R. Steinbrecher, D. Simpson, H. Brink, J. Theloke, G. R. van der Werf, R. Vautard, V. Vestreng, C. Vlachokostas, and R. von Glasow, “Atmospheric composition change–global and regional air quality,” Atmos. Environ. 43 (33), 5268–5350 (2009).

    Article  ADS  Google Scholar 

  8. V. R. Despres, J. A. Huffman, S. M. Burrows, C. Hoose, A. S. Safatov, G. Buryak, J. Frohlich- Nowoisky, W. Elbert, M. O. Andreae, U. Poschl, and R. Jaenicke, “Primary biological aerosols in the atmosphere: Observations and relevance,” Tellus B 64, 1–58 (2012).

    Article  Google Scholar 

  9. E. A. Joy, B. D. Horne, and S. Bergstrom, “Addressing air quality and health as a strategy to combat climate change,” Ann. Intern. Med. 164 (9), 626–627 (2016).

    Article  Google Scholar 

  10. A. S. Larr and M. Neidell, “Pollution and climate change,” Future Child 26 (1), 93–113 (2016).

    Article  Google Scholar 

  11. C. A. Pope, III, “Mortality effects of longer term exposures to fine particulate air pollution: review of recent epidemiological evidence,” Inhal. Toxicol. 19 (1), 33–38 (2007).

    Article  Google Scholar 

  12. T. Gordon, “Linking health effects to pm components, size, and sources,” Inhal. Toxicol. 19 (1), 3–6 (2007).

    Article  Google Scholar 

  13. H. R. Anderson, “Air pollution and mortality: A history,” Atmos. Environ. 43 (1), 142–152 (2009).

    Article  ADS  Google Scholar 

  14. Y. Fang, V. Naik, L. W. Horowitz, and D. L. Mauzerall, “Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present,” Atmos. Chem. Phys. 13, 1377–1394 (2013).

    Article  ADS  Google Scholar 

  15. K.-H. Kim, E. Kabir, and S. Kabir, “A review on the human health impact of airborne particular matter,” Environ. Int. 74, 136–143 (2015).

    Article  Google Scholar 

  16. B. Brunekreef and R. L. Maynard, “A note on the 2008 EU standards for particulate matter,” Atmos. Environ. 42 (26), 6425–6430 (2008).

    Article  ADS  Google Scholar 

  17. M. Krzyzanowski and A. Cohen, “Update of WHO air quality guidelines,” Air Qual. Atmos. Health 1, 7–13 (2008).

    Article  Google Scholar 

  18. C. Vahlsing and K. R. Smith, “Global review of national ambient air quality standards for PM10 and SO2 (24 h),” Air Qual. Atmos. Health 5 (4), 393–399 (2012).

    Article  Google Scholar 

  19. B. Brunekreef, N. Kunzil, J. Pekkanen, I. Annesi- Maesano, B. Forsberg, T. Sigsgaard, M. Keuken, F. Forastiere, M. Barry, X. Querol, and R. Harrison, “Clear air in Europe: Beyond the horizon?,” Eur. Respire. J. 45, 7–10 (2015).

    Article  Google Scholar 

  20. K. Kuklinska, L. Wolska, and J. Namiesnik, “Air quality policy in the U.S. and the EU—a review,” Atmos. Pollut. Res 6 (1), 129–137 (2015).

    Article  Google Scholar 

  21. X. Qiao, D. Jaffe, Y. Tang, M. Bresnahan, and J. Song, “Evaluation of air quality in Chengdu, Sichuan basin, China: Are China’s air quality standards sufficient yet?” Environ. Monit. Assess 187 (5), 250 (2015).

    Article  Google Scholar 

  22. RD 52.04.186-89. Guidelines for Air Pollution Control (Goskomgidromet SSSR, Moscow, 1991) [in Russian].

    Google Scholar 

  23. Review of the National Ambient Air Quality Standards for Particulate Matter: Policy Assessment of Scientific and Technical Information OAQPS Staff Paper. https:// www3.epa.gov/ttn/naaqs/standards/pm/data/1996pmstaffpaper. pdf (Cited November 13, 2017).

  24. Yu. M. Timofeyev, Ya. A. Virolainen, S. P. Smyshlyaev, and M. A. Motsakov, “Ozone over St. Petersburg: Comparison of experimental data and numerical simulation,” Atmos. Ocean. Opt. 30 (3), 263–268 (2017).

    Article  Google Scholar 

  25. B. J. Reich, M. Fuentes, and J. Burke, “Analysis of the effects of ultrafine particulate matter while accounting for human exposure,” Environmetrics 20 (2), 131–146 (2008).

    Article  MathSciNet  Google Scholar 

  26. S. Helleburst, A. Allanic, I. P. O’Connor, C. Jourdan, D. Healy, and J. R. Sodeau, “Sources of ambient concentrations and chemical composition of PM2.5–0.1 in Cork Harbour, Ireland,” Atmos. Res. 95 (2–3), 136–149 (2010).

    Article  Google Scholar 

  27. G. Spindler, E. Bruggemann, T. Gnauk, A. Gruner, K. Muller, and H. Herrmann, “A four-year size-segregated characterization study of particles PM10, PM2.5, and PM1 Depending on air mass origin at Melpitz,” Atmos. Environ. 44 (2), 164–173 (2010).

    Article  ADS  Google Scholar 

  28. P. Quiencey and D. Butterfield, “Ambient air particulate matter PM10 and PM2.5: Developments in European measurement methods and legislation,” Biomarkers 14 (1), 34–38 (2009).

    Article  Google Scholar 

  29. A. F. Poryadin and A. D. Khovanskii, Estimation and Control of the Natural Environment Quality (NUMTs Minprirody Rossii, ID Priboi, Moscow, 1996) [in Russian].

    Google Scholar 

  30. GOST 17.2.1.03-84. Natural Conservancy. Atmosphere. Terms and Definitions of Pollution Control (Izd. Standartov, Moscow, 1984) [in Russian].

    Google Scholar 

  31. GN 2.1.6.1338-03. Health Standards. Maximum Permissible Concentrations (MPC) of Pollutants in the Atmospheric Air of Populated Areas (STK Ayaks, Moscow, 2003) [in Russian].

    Google Scholar 

  32. GN 2.1.6.2604-10. Health Standards. Maximum Permissible Concentrations (MPC) of Pollutants in the Atmospheric Air of Populated Areas, Suppl. 8 to GN 2.1.6.1338-03 (Federal’nyi Tsentr Gigieny i Epidemiologii Rospotrebnadzora, Moscow, 2010) [in Russian].

    Google Scholar 

  33. H. Bardouki, H. Liakakoku, C. Economou, J. Sciare, J. Smolik, V. Zdimal, K. Eleftherriadis, M. Lazaridis, C. Dye, and N. Mihalopoulos, “Chemical composition of size-resolved atmospheric aerosols in the Eastern Mediterranean during summer and winter,” Atmos. Environ. 37 (2), 195–208 (2003).

    Article  ADS  Google Scholar 

  34. J. H. Kroll and J. H. Seinfeld, “Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere,” Atmos. Environ. 42 (16), 3593–3624 (2008).

    Article  ADS  Google Scholar 

  35. J. R. Brook, K. L. Demerjian, G. Hidy, L. T. Molina, W. T. Pennell, and R. Scheffe, “New directions: Results-oriented multi-pollutant air quality management,” Atmos. Chem. Phys. 43 (12), 2091–2093 (2009).

    Google Scholar 

  36. A. Zelenyuk, M. J. Ezell, V. Perraud, S. N. Johnson, E. A. Bruns, Y. Yu, D. Imre, M. L. Alexander, and B. J. Finlayson-Pitts, “Characterization of organic coatings on hygroscopic salt particles and their atmospheric impacts,” Atmos. Environ. 44 (9), 1209–1218 (2010).

    Article  ADS  Google Scholar 

  37. U. Poschl, “Atmospheric aerosols: Composition, transformation, climate and health effects,” Angew. Chem. 44 (46), 7520–7540 (2005).

    Article  Google Scholar 

  38. A. Boobis, R. Budinsky, S. Collie, K. Crofton, M. Embry, S. Felter, R. Hertzberg, D. Kopp, G. Mihlan, M. M. Mumtaz, P. Price, K. Solomon, L. Teuschler, R. Yang, and R. Zaleski, “Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for risk assessment,” Crit. Rev. Toxicol. 41 (5), 369–383 (2011).

    Article  Google Scholar 

  39. How to Organize Public Environmental Monitoring. Guidelines for Non-governmental Organizations, Ed. by M. V. Khotulevoi (M., 1997) [in Russian].

    Google Scholar 

  40. A. Ankilov, A. Baklanov, M. Colhoun, K.-H. Enderle, J. Gras, Yu. Julanov, D. Kaller, A. Lindner, A. A. Lushnikov, R. Mavliev, F. McGovern, A. Mirme, T. C. O’Connor, J. Podzimek, O. Preining, G. P. Reischl, R. Rudolf, G. J. Sem, W. W. Szymanski, E. Tamm, A. E. Vrtala, P. E. Wagner, W. Winklmayr, and V. Zagaynov, “Intercomparison of number concentration measurements by various aerosol particle counters,” Atmos. Res. 62 (3–4), 177–207 (2002).

    Article  Google Scholar 

  41. APA Filters. Catalogue-Guide (Atomizdat, Moscow, 1970) [in Russian].

  42. RD 52.04.333-93. Chromatographic Method for Estimation of Concentrations of Chlorides, Nitrates, Sulfates, Lithium, Ammonium, and Potassium in Atmospheric Precipitation (State Committee of RF on Hydrometeorology, Moscow, 1993) [in Russian].

    Google Scholar 

  43. W. W. You, R. P. Haugland, D. K. Ryan, and R. P. Haugland, “3-(4-carboxybenzoyl)quinoline-2-carboxaldehyde, a reagent with broad dynamic range for the assay of proteins and lipoproteins in solution,” Anal. Biochem. 244 (2), 277–282 (1997).

    Article  Google Scholar 

  44. RD 52.44.589-97. Estimation of the Mass Concentration of Priority Polycyclic Aromatic Hydrocarbons in Atmospheric Air. Reversed Liquid Chromatography Measurement Technique (Institute of Global Climate and Ecology, Moscow, 1997) [in Russian].

    Google Scholar 

  45. RD 52.24.476-2007. Mass Concentration of Oil Products in Waters. IR Photometric measurement Technique (Hydrochemical Institute, Rostov-on-Don, 2007) [in Russian].

    Google Scholar 

  46. N. Lang-Yona, Y. Lehahn, B. Herut, N. Burshtein, and Y. Rudich, “Marine aerosol as possible source for endotoxins in coastal areas,” Sci. Total Environ. 499, 311–318 (2014).

    Article  ADS  Google Scholar 

  47. A. N. Sergeev, A. S. Safatov, A. P. Agafonov, I. S. Andreeva, M. Yu. Arshinov, B. D. Belan, G. A. Buryak, V. M. Generalov, Yu. R. Zakharova, N. A. Lapteva, S. E. Ol’kin, M. V. Panchenko, V. V. Parfenova, I. K. Reznikova, D. V. Simonenkov, T. V. Teplyakova, and V. A. Ternovoi, “Comparison of the presence of chemical and biomarkers in the surface microlayer in water areas of health resort zones of Lake Baikal and in atmospheric aerosol of this region,” Atmos. Ocean. Opt. 22 (4), 467–477 (2009).

    Article  Google Scholar 

  48. B. M. Desyatkov, S. R. Sarmanaev, and A. I. Borodulin, “Numerical-analytical model of the aerosol transport in a thermally stratified boundary layer of the atmosphere,” Atmos. Ocean. Opt. 9 (6), 517–520 (1996).

    Google Scholar 

  49. A. I. Borodulin, B. M. Desyatkov, and A. A. Yarygin, Computer Program. Reg. No. 2007610293, January 16, 2007.

    Google Scholar 

  50. B. M. Desyatkov and N. A. Lapteva, “Method for constructing optimal network monitoring stations of gases and aerosols emissions,” Opt. Atmos. Okeana 30 (4), 354–359 (2017).

    Google Scholar 

  51. I. Kopanakis, K. Eleftheriadis, N. Mihalopoulos, N. Lydakis-Simantiris, E. Katsivela, D. Pentari, P. Zarmpas, and M. Lazaridis, “Physico-chemical characteristics of particulate matter in the Eastern Mediterranean,” Atmos. Res. 106, 93–107 (2012).

    Article  Google Scholar 

  52. E. Koulouri, S. Saarikoski, C. Theodosi, Z. Markaki, E. Gerasopoulos, G. Kouvarakis, T. Makela, R. Hillamo, and N. Mihalopoulos, “Chemical composition and sources of fine and coarse aerosol particles in the Eastern Mediterranean,” Atmos. Environ. 42 (26), 6542–6550 (2008).

    Article  ADS  Google Scholar 

  53. X. Querol, A. Alastuey, J. Pey, M. Cusak, N. Perez, M. Mihalopoulos, C. Theodosi, E. Gerasopoulos, N. Kubilay, and M. Kocak, “Variability in regional background aerosols within the Mediterranean,” Atmos. Chem. Phys. 9 (14), 4575–4591 (2009).

    Article  ADS  Google Scholar 

  54. K. Adachi and P. R. Buseck, “Changes in shape and composition of sea-salt particles upon aging in an urban atmosphere,” Atmos. Environ. 100, 1–9 (2015).

    Article  ADS  Google Scholar 

  55. T. Zielinski, “Studies of aerosol physical properties in coastal area,” Aerosol Sci. Technol. 38 (5), 513–524 (2004).

    Article  ADS  Google Scholar 

  56. C. Perrino, S. Caneperi, M. Catrambone, Torre S. Dalla, E. Rantica, and T. Sargolini, “Influence of natural events on the concentration and composition of atmospheric particulate matter,” Atmos. Environ. 43 (31), 4766–4779 (2009).

    Article  ADS  Google Scholar 

  57. Aerosols—Science and Technology, Ed. by I. E. Agranovski (Wiley, Wienheim, 2010).

    Google Scholar 

  58. T. S. Bates, P. K. Quinn, A. A. Frossard, L. M. Russell, J. Hakala, T. Petaja, M. Kulmala, D. S. Covert, C. D. Cappa, S.-M. Li, K. L. Hayden, I. Nuaaman, R. McLaren, P. Massoli, M. R. Canagaranta, T. B. Onasch, D. Sueper, D. R. Worsnop, and W. C. Keene, “Measurements of Ocean derived aerosol off the coast of California,” J. Geophys. Res. 117 (D21), V15 (2012).

    Article  Google Scholar 

  59. Y. Tong and B. Lighthart, “Diurnal distribution of total and culturable atmospheric bacteria at a rural site,” Aerosol Sci. Technol. 30 (2), 246–254 (1999).

    Article  ADS  Google Scholar 

  60. Y. Tong and B. Lighthart, “The annual bacterial particle concentration and size distribution in the ambient atmosphere in a rural area of the Willamette Valley, Oregon,” Aerosol Sci. Technol. 32 (5), 393–403 (2000).

    Article  ADS  Google Scholar 

  61. A. S. Safatov, T. V. Teplyakova, B. D. Belan, G. A. Buryak, I. G. Vorob’eva, I. N. Mikhailovskaya, M. V. Panchenko, and A. N. Sergeev, “Atmospheric aerosol fungi concentration and diversity in the south of Western Siberia,” Atmos. Ocean. Opt. 23 (1), 73–80 (2010).

    Article  Google Scholar 

  62. S. M. Burrows, W. Elbert, M. G. Lawrence, and U. Poschl, “Bacteria in the global atmosphere—Part 1: Review and synthesis of literature data for different ecosystems,” Atmos. Chem. Phys. 9 (23), 9263–9280 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Safatov.

Additional information

Original Russian Text © A.S. Safatov, A.P. Agafonov, M.Yu. Arshinov, A.M. Baklanov, B.D. Belan, G.A. Buryak, A.V. Fofonov, V.M. Generalov, A.S. Kozlov, N.A. Lapteva, S.B. Malyshkin, Yu.V. Marchenko, S.E. Olkin, I.K. Reznikova, A.N. Sergeev, D.V. Simonenkov, V.A. Ternovoi, Yu.V. Tumanov, V.P. Shmargunov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safatov, A.S., Agafonov, A.P., Arshinov, M.Y. et al. Complex Assessment of Atmospheric Air Quality in the City of Gelendzhik. Atmos Ocean Opt 31, 519–531 (2018). https://doi.org/10.1134/S1024856018050159

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018050159

Keywords

Navigation