Skip to main content

Advertisement

Log in

Sediment characteristics of a thermokarst lagoon in the northeastern Siberian Arctic (Ivashkina Lagoon, Bykovsky Peninsula)

  • Original Article
  • Published:
arktos

Abstract

Lagoon development in ice-rich permafrost environments such as the Alaskan Beaufort Sea coastline and the Yedoma coastlines of northern Siberia represents a key mechanism of marine inundation of permafrost along the Arctic coastal plains. Here we show lithological, geochronological, and geochemical data from a core drilled in 1999 in Ivashkina Lagoon on the Bykovsky Peninsula in northeastern Siberia. This study extends previous studies of the Ivashkina Lagoon, and provides a first dated geochronological context for sedimentation and lithological characteristics. In addition, we report ground temperature measurements from different borehole sites in and around the lagoon to support our analysis of the thermokarst lagoon environment. Furthermore, a change detection study was carried out using historical aerial photography and modern satellite imagery for the 1982–2016 period. Several stages of landscape dynamics were reconstructed, starting with an initial Yedoma Ice Complex that covered the area during the late Pleistocene and which was locally thawed by thermokarst lake development during the Late Glacial with subsequent lacustrine sedimentation. A final stage completed the landscape dynamics during the last few hundreds of years. This stage was characterized by lake drainage and lagoon development, including strong reworking of surface sediments. By extrapolating the organic carbon data from Ivashkina Lagoon to the lagoons of the Bykovsky Peninsula, we estimate that lagoons contain 1.68 ± 0.04 Mt of organic carbon in their upper 6 m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Adams M (1808) Some account of a journey to the frozen-sea, and of the discovery of the remains of a mammoth. Phila Med Phys J Part 1(3):120–137

    Google Scholar 

  2. Andreev AA, Schirrmeister L, Siegert C, Bobrov AA, Demske D, Seiffert M, Hubberten H-W (2002) Paleoenvironmental changes in Northeastern Siberia during the Late Quaternary—evidence from pollen records of the Bykovsky Peninsula. Polarforschung 70:13–25. https://doi.org/10.2312/polarforschung.70.13.

    Article  Google Scholar 

  3. Blott SJ, Pye K (2001) Gradistat: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surf Proc Land 26:1237–1248. https://doi.org/10.1002/esp.261

    Article  Google Scholar 

  4. Bobrov AA, Andreev AA, Schirrmeister L, Siegert Ch (2004) Testate amoebae (Protozoa: Testacea) as bioindicators in the Late Quaternary deposits of the Bykovsky Peninsula, Laptev Sea, Russia. Palaeogeogr Palaeoclimatol Palaeoecol 209:165–181. https://doi.org/10.1016/J.PALAEO.2004.02.012

    Article  Google Scholar 

  5. Bronk Ramsey C, Scott EM, Plicht JVD, Reimer PJ (eds) (2013) Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal BP. Radiocarbon 55(4):2021–2027. https://doi.org/10.2458/azu_js_rc.55.16935

  6. Bunge AA (1895) The Lena expedition 1881–1884. In: Tillo A (ed) Beobachtungen der russischen Polarstation an der Lenamündung. Expedition der Kaiserlichen Russischen Geographischen Gesellschaft, St. Petersburg, pp 1–96 (in German)

    Google Scholar 

  7. Cheverev VG, Vidyapin IYu, Tumskoy VE (2007) Composition and characteristics of the thermokarst lagoon deposits, Bykovsky Peninsula. Kriosfera Zemli 11(3):44–50 (in Russian)

    Google Scholar 

  8. Drachev SS, Savostin LA, Groshev VG, Bruni IE (1998) Structure and geology of the continental shelf of the Laptev Sea, Eastern Russian Arctic. Tectonophysics 298:357–393. https://doi.org/10.1016/S0040-1951(98)00159-0

    Article  Google Scholar 

  9. Drozdova AN, Vetrov AA, Romankevich EA, Prokuda NA, Sukhoverkhov SV, Bratskaya SYu, Sergienko VI, Semiletov IP, Ulyantsev AS (2016) Polycyclic aromatic hydrocarbons in Holocene–Pleistocene sediments of the Laptev Sea. Dokl Earth Sci 468:496–499. https://doi.org/10.1134/S1028334X16050123

    Article  Google Scholar 

  10. Forbes DL, Manson GK, Whalen DJR, Couture NJ, Hill PR (2015) Coastal products of marine transgression in cold-temperate and high-latitude coastal-plain settings: Gulf of St Lawrence and Beaufort Sea. In: Martini IP, Wanless HR (eds) Sedimentary coastal zones from high to low latitudes: similarities and differences, vol 388. Geological Society, London, Special Publications, London, pp 131. https://doi.org/10.1144/SP388.18

  11. Fukuda M (1994) Occurrence of Ice-complex (Edoma) in Lena River Delta Region and Big Lhyakovsky Island, High Arctic Eastern Siberia. In: Inoue G (ed) Proc 2nd Symp on the joint Siberian Permafrost Studies between Japan and Russia, pp 5–13

  12. Grigoriev MN (1993) Cryomorphogenesis of the Lena River mouth area. Yakutsk. SO AN SSSR, pp 1–176 (in Russian)

  13. Grigoriev MN, Imaev VS, Koz’min BM, Kunitski VV, Larionov AG, Mikulenko KI, Skryabin RM, Timirshin KV (1996) Geology, seismicity and cryogenic processes in the arctic areas of western Yakutia. Scientific Center SD RAS, Yakutsk pp 1–80 (in Russian)

    Google Scholar 

  14. Grigoriev NF (2008) Cryolithogenesis and lithodynamics of the coastal shelf zones of sea in eastern Siberia. Melnikov Permafrost Institute, Yakutsk, p 291 (in Russian)

    Google Scholar 

  15. Gosink JP, Baker GC (1990) Salt Fingering in subsea permafrost: some stability and energy considerations. J Geophys Res 95(C6):9575–9583. https://doi.org/10.1029/JC095iC06p09575

    Article  Google Scholar 

  16. Grosse G, Schirrmeister L, Kunitsky VV, Hubberten H-W (2005) The use of CORONA images in remote sensing of periglacial geomorphology: an illustration from the NE Siberian coast. Permafrost Periglac 16:163–172. https://doi.org/10.1002/ppp.509

    Article  Google Scholar 

  17. Grosse G, Schirrmeister L, Siegert Ch, Kunitsky VV, Slagoda EA, Andreev AA, Dereviagyn AY (2007) Geological and geomorphological evolution of a sedimentary periglacial landscape in Northeast Siberia during the Late Quaternary. Geomorphology 86(1/2):25–51. https://doi.org/10.1016/j.geomorph.2006.08.005

    Article  Google Scholar 

  18. Günther F, Overduin PP, Yakshina IA, Opel T, Baranskaya AV, Grigoriev MN (2015) Observing Muostakh disappear: permafrost thaw subsidence and erosion of a ground-ice-rich island in response to arctic summer warming and sea ice reduction. Cryosphere 9:151–178. https://doi.org/10.5194/tc-9-151-2015

    Article  Google Scholar 

  19. Harrison WD, Osterkamp TE (1978) Heat and mass transport processes in subsea permafrost 1. An analysis of molecular diffusion and its consequences. J Geophys Res 83(C9):4707–4712. https://doi.org/10.1029/JC083iC09p04707

    Article  Google Scholar 

  20. Hoefs J (1997) Stable isotope geochemistry. Springer, Berlin, p 201

    Book  Google Scholar 

  21. Imaeva L, Imaev VC, Koz’min B, Sergeyenko A, Belolyubskii I, Siegert C (2007) Modern structures, quaternary stratigraphy and recent geodynamics in the Arctic sector of the Northern Verkhoyan coastal shelf zone (North of East Yakutia). Bull Comm Stud Quatern Period 67:6–19 (in Russian)

    Google Scholar 

  22. Ivanov MS, Katasonova EG (1978) Pecularities of cryolithogenic deposits of the Muostakh Island. In: Anisimova NP, Katasonova EG (eds) Geocryologic and hydrogeologic research in Yakutia. Permafrost Institute, SO AN SSSR, Yakutsk, pp 12–25 (in Russian).

    Google Scholar 

  23. Kaplina TN, Lozhkin AV (1979) The age of alas sediments of the Primorskoi lowland of Yakutia (radiocarbon data). Izvestiya USSR Acad Sci Geol Ser 2:69–76 (in Russian)

    Google Scholar 

  24. Kholodov AL, Rivkina EM, Gilichinsky DA, Fedorov-Davydov DG, Gubin SV, Sorokovikov VA, Ostroumov VE, Maksimovich SV (2003) Estimation of the organic carbon input into Arctic Ocean due to erosion of Laptev and East-Siberian seashore. Kriosfera Zemli (Earth’ Cryosphere) 7:3–12

    Google Scholar 

  25. Kholodov AL, Zolotareva BN, Shirshova LT (2006) Organic matter in the main types of frozen quaternary deposits of the Bykovsky Peninslua: total content and group compositon of the humus. Kriosfera Zemli (Earth’ Cryosphere) 10:29–34

    Google Scholar 

  26. Kholodov A, Gilichinsky D, Ostroumov V, Sorokovikov V, Abramov A, Davydov S, Romanovsky V (2012) Regional and local variability of modern natural changes in permafrost temperature in the Yakutian coastal lowlands, Northeastern Siberia. In: Proceedings of the Tenth international conference on permafrost, Salekhard, Yamal-Nenets Autonomous District, Russia, pp 25–29

  27. Kienast F, Schirrmeister L, Siegert C, Tarasov P (2005) Palaeobotanical evidence for warm summers in the East Siberian Arctic during the last cold stage. Quatern Res 63(3):283–300. https://doi.org/10.1016/j.yqres.2005.01.003

    Article  Google Scholar 

  28. Kunitsky VV (1989) Kriolitologiya nizo’ev Leny (Cryolithology of the Lower Lena). Permafrost Institute Press, Yakutsk, p 162 (in Russian).

    Google Scholar 

  29. Lantuit H, Atkinson D, Grigoriev M, Rachold V, Grosse G, Hubberten H-W (2011) Coastal erosion dynamics on the permafrost—dominated Bykovsky Peninsula, North Siberia, 1951–2006. Polar Res 30:7341. https://doi.org/10.3402/polar.v30i0.7341

    Article  Google Scholar 

  30. Nagaoka D, Saijo K, Fukuda M (1995) Sedimental environment of the Edoma in high Arctic eastern Siberia. In: Takahashi K, Osawa A, Kanazawa Y (eds) Proceedings of the 3rd symposium on the Joint Siberian Permafrost Studies between Japan and Russia, Hokkaido University, Tsukuba, Japan, pp 8–13

  31. Osterkamp TE (2001) Subsea Permafrost. In: Steele JH, Thorpe SA, Turekian KK (eds), Encyclopedia of ocean sciences. Academic Press, London, pp 2902–2912. https://doi.org/10.1006/rwos.2001.0008

    Chapter  Google Scholar 

  32. Overduin PP, Wetterich S, Günther F, Grigoriev MN, Grosse G, Schirrmeister L, Hubberten H-W, Makarov A (2016) Coastal dynamics and submarine permafrost in shallow water of the central Laptev Sea, East Siberia. Cryosphere 10:1449–1462. https://doi.org/10.5194/tc-10-1449-2016

    Article  Google Scholar 

  33. Overduin PP, Blender F, Bolshiyanov DY, Grigoriev MN, Morgenstern A, Meyer H (2017) Russian–German Cooperation: expeditions to Siberia in 2016, Berichte zur Polar- und Meeresforschung = Reports on polar and marine research, vol 709. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, p 295

    Google Scholar 

  34. Overduin PP, Strzelecki MC, Grigoriev MN, Couture N, Lantuit H, St-Hilaire-Gravel D, Günther F, Wetterich S (2014) Coastal changes in the Arctic. In: Martini IP, Wanless HR (eds) Sedimentary coastal zones from high to low latitudes: similarities and differences, vol 388. Special Publications Geological Society, London. https://doi.org/10.1144/SP388.13

    Chapter  Google Scholar 

  35. Reimer PJ, Bard E, Bayliss A, Beck JW, Blackwell PG, Bronk Ramsey C, Buck CE, Cheng H, Edwards RL, Friedrich M, Grootes PM, Guilderson TP, Haflidason H, Hajdas I, Hatté C, Heaton TJ, Hoffmann DL, Hogg AG, Hughen KA, Kaiser KF, Kromer B, Manning SW, Niu M, Reimer RW, Richards DA, Scott EM, Southon JR, Staff RA, Turney CSM, van der Plicht J (2013) INTCAL13 and MARINE13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):1869–1887

    Article  Google Scholar 

  36. Reineck H-E, Sing IB (1980) Depositional sedimentary environments, 2nd rev. Springer, Berlin, p 551

    Book  Google Scholar 

  37. Rethemeyer J, Dewald A, Fülöp R, Hajdas I, Höfle S, Patt U, Stapper B, Wacker L (2013) Status report on sample preparation facilities for 14C analysis at the new CologneAMS centre. Nucl Instrum Methods Phys Res B 294:168–172. https://doi.org/10.1016/j.nimb.2012.04.030

    Article  Google Scholar 

  38. Romankevich EA, Vetrov AA, Belyaev NA, Ulyantsev AS, Sergienko VI, Sukhoverkhov SV, Bratskaya SY, Prokuda NA, Semiletov IP (2017) Alkanes in quaternary deposits of the Laptev Sea. Dokl Earth Sci 472(1):36–39. https://doi.org/10.1134/S1028334X17010093

    Article  Google Scholar 

  39. Romanovskii NN, Gavrilov AV, Tumskoy VE, Grigoriev MN, Hubberten H-W, Siegert C (1999) Thermokarst and its role in the formation of the near shore zone of the Laptev Sea shelf. Cryosphere Earth III(3):79–91 (in Russian)

    Google Scholar 

  40. Romanovskii NN, Gavrilov AV, Tumskoy VE, Kholodov AL, Siegert C, Hubberten H-W, Sher AV (2000) Environmental evolution in the Laptev Sea region during the Late Pleistocene and Holocene. Polarforschung 67:237–245. https://doi.org/10.2312/polarforschung.68.237

    Article  Google Scholar 

  41. Romanovskii NN, Hubberten H-W, Gavrilov AV, Tumskoy VE, Grigoriev MN, Tipenko GS, Siegert C (2000) Thermokarst and land–ocean interactions, Laptev Sea region, Russia. Permafrost Periglac 11(2):137–152. https://doi.org/10.1002/1099-1530(200004/06)11:2<137::AID-PPP345>3.0.CO;2-L

    Article  Google Scholar 

  42. Romanovsky VE, Drozdov DS, Oberman NG, Malkova GV, Kholodov AL, Marchenko SS, Moskalenko NG, Sergeev DO, Ukraintseva NG, Abramov AA, Gilichinsky DA, Vasiliev AA (2010) Thermal state of permafrost in Russia. Permafrost Periglac 21:136–155. https://doi.org/10.1002/ppp.683

    Article  Google Scholar 

  43. Schirrmeister L, Kunitsky VV, Grosse G, Wetterich S, Meyer H, Schwamborn G, Babiy O, Derevyagin AY, Siegert C (2011) Sedimentary characteristics and origin of the Late Pleistocene Ice Complex on North-East Siberian Arctic coastal lowlands and islands—a review. Quatern Int 241:3–25. https://doi.org/10.1016/j.quaint.2010.04.004

    Article  Google Scholar 

  44. Schirrmeister L, Oezen D, Geyh A (2002) 230Th/U dating of frozen peat, Bol’shoy Lyakhovsky Island (North Siberia). Quatern Res 57:253–258. https://doi.org/10.1006/qres.2001.2306

    Article  Google Scholar 

  45. Schirrmeister L, Siegert C, Kuznetsova T, Kuzmina S, Andreev AA, Kienast F, Meyer H, Bobrov AA (2002) Paleoenvironmental and paleoclimatic records from permafrost deposits in the Arctic region of Northern Siberia. Quatern Int 89:97–118

    Article  Google Scholar 

  46. Sergienko AI, Belolyubsky IN, Grinenko OV (2004) Stratigraphic scheme of Quaternary deposits of the northern Verkhoyan (Eastern Yakutia). Otechestvennaya Geol 4:88–92 (in Russian)

    Google Scholar 

  47. Shakhova N, Semiletov I, Gustafsson O, Sergienko V, Lobkovsky L, Dudarev O, Tumskoy V, Grigoriev M, Mazurov A, Salyuk A, Ananiev R, Koshurnikov A, Kosmach D, Charkin A, Dmitrevsky N, Karnaukh V, Gunar A, Meluzov A, Chernykh D (2017) Current rates and mechanisms of subsea permafrost degradation in the East Siberian Arctic Shelf. Nat Commun 8:15872. https://doi.org/10.1038/ncomms15872

    Article  Google Scholar 

  48. Shakhova N, Semiletov I, Sergienko V, Lobkovsky L, Yusupov V, Salyuk A, Salomatin A, Chernykh D, Kosmach D, Panteleev G, Nicolsky D, Samarkin V, Joye S, Charkin A, Dudarev O, Meluzov A, Gustafsson O (2015) The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Philos Trans A 373: 20140451. doi.https://doi.org/10.1098/rsta.2014.0451

    Article  Google Scholar 

  49. Sher AV, Kuzmina SA, Kuznetsova TV, Sulerzhitsky LD (2005) New insights into the Weichselian environment and climate of the East Siberian Arctic, derived from fossil insects, plants, and mammals. Quatern Sci Rev 24:533–569. https://doi.org/10.1016/j.quascirev.2004.09.007

    Article  Google Scholar 

  50. Siegert C, Schirrmeister L, Babiy O (2002) The sedimentological, mineralogical and geochemical composition of late Pleistocene deposits from the ice complex on the Bykovsky peninsula, northern Siberia. Polarforschung 70(2000):3–11. https://doi.org/10.2312/polarforschung.70.3

    Article  Google Scholar 

  51. Slagoda EA (1991) Microstructure features of the deposits of Ice Complexes in Northern Yakutia (by the example of Bykov Peninsula). In: Gilichinskiy DA (ed) Kriologiya pochv. IPFS PNTs AN SSSR, Pushchino, pp 38–47 (in Russian)

    Google Scholar 

  52. Slagoda EA (1993) Genesis and microstructure of cryolithogenic deposits at the Bykovsky Peninsula and the Muostakh Island. Diss., RAS Sibirian Section. Permafrost Institute, Yakutsk, pp 1–218 (in Russian)

    Google Scholar 

  53. Slagoda EA (2004) Cryolithogenic deposits of the Laptev Sea coastal plain: lithology and micromorphology. Publishing and Printing Centre Express, Tyumen, p 119 (in Russian)

    Google Scholar 

  54. Strauss J, Schirrmeister L, Grosse G, Wetterich S, Ulrich M, Herzschuh U, Hubberten HW (2013) The deep permafrost carbon pool of the Yedoma region in Siberia and Alaska. Geophys Res Lett 40:6165–6170. https://doi.org/10.1002/2013GL058088

    Article  Google Scholar 

  55. Strauss J, Schirrmeister L, Grosse G, Fortier D, Hugelius G, Knoblauch C, Romanovsky V, Schädel C, Schneider von Deimling T, Schuur EAG, Shmelev D, Ulrich M, Veremeeva A (2017) Deep Yedoma permafrost: a synthesis of depositional characteristics and carbon vulnerability. Earth Sci Rev 172:75–86. https://doi.org/10.1016/j.earscirev.2017.07.007

    Article  Google Scholar 

  56. Stuiver M, Polach HA (1977) Discussion: reporting of 14C Data. Radiocarbon 19:355–363

    Article  Google Scholar 

  57. Tomirdiaro SV, Chernen’k’ii BI (1987) Cryogenic deposits of East Arctic and Sub Arctic. AN SSSR Far-East-Science Center, Magadan, pp 1–196 (in Russian)

    Google Scholar 

  58. Ulyantsev AS, Romankevich EA, Bratskaya SYu, Prokuda NA, Sukhoverkhov SV, Semiletov IP, Sergienko VI (2017) Characteristics of the Quaternary sedimentation at the Laptev Sea Shelf based on molecular composition of n-Alkanes. Dokl Earth Sci 473(2):449–453. https://doi.org/10.1134/S1028334X17040158

    Article  Google Scholar 

  59. Ulyantsev AS, Romankevich EA, Bratskaya SYu, Semiletov IP, Avramenko VA (2017) Organic and Inorganic carbon in permafrost and thawed deposits from Buor-Khaya Bay (Laptev Sea). Dokl Earth Sci 473(2):467–471. https://doi.org/10.1134/S1028334X17040237

    Article  Google Scholar 

  60. Ulyantsev AS, Bratskaya SYu, Romankevich IP, Semiletov EA, Avramenko VA (2016) Particle size composition of Holocene–Pleistocene deposits of the Laptev Sea (BuorKhaya Bay). Dokl Earth Sci 467(part 1):241–245. https://doi.org/10.1134/S1028334X16030168

    Article  Google Scholar 

  61. Ulyantsev AS, Romankevich EA, Peresypkin VI, Belyaev NA, Vetrov AA, Semiletov IP, Bratskaya SY, Sergienko VI (2016) Lignin as an indicator of the sedimentation conditions of the Arctic Shelf. Dokl Earth Sci 467(1):264–269. https://doi.org/10.1134/S1028334X16030089

    Article  Google Scholar 

  62. Ulyantsev AS, Polyakova NV, Romankevich EA, Semiletov IP, Sergienko VI (2016) Ionic composition of pore water in shallow shelf deposits of the Laptev Sea. Dokl Earth Sci 467(1):308–313. https://doi.org/10.1134/S1028334X16030211

    Article  Google Scholar 

  63. Walter Anthony KM, Zimov SA, Grosse G, Jones MC, Anthony P, Chapin FS III, Finlay JC, Mack MC, Davydov S, Frenzel P, Frolking S (2014) A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch. Nature 511:452–456. https://doi.org/10.1038/nature13560

    Article  Google Scholar 

  64. Wenthworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30(5):377–392. https://doi.org/10.1086/622910

    Article  Google Scholar 

  65. Wetterich S, Overduin PP, Grigoriev MN (2011) Russian–German cooperation SYSTEM LAPTEV SEA: the expedition Eastern Laptev Sea—Buor Khaya Peninsula 2010. Berichte zur Polar- und Meeresforschung/Reports on Polar and Marine Research, vol 629, p 101 (ISSN 1866–3192)

  66. Wetterich S, Schirrmeister L, Pietrzeniuk E (2005) Freshwater ostracodes in Quaternary permafrost deposits from the Siberian Arctic. J Paleolimnol 34:363–376. https://doi.org/10.1007/s10933-005-5801-y

    Article  Google Scholar 

Download references

Acknowledgements

This work is part of the international Russian-German drilling project Bykovsky Spring 2017. We gratefully acknowledge support for this study by the BMBF project CarboPerm, the ERC #338335, and the Helmholtz Strategy and Networking Fund via ERC-0013. We thank Antje Eulenburg for help with hydrochemical lab work and Dyke Scheidemann for the sediment lab work. We also thank the team of Janet Rethemeyer from the Cologne AMS Laboratory. We thank Vladimir. E. Tumskoy from the Moscow State University for his support during field work in 1999. Finally, the paper benefited from English language corrections by Candace O’Connor (Fairbanks, Alaska) and the constructive comments of the two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Schirrmeister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schirrmeister, L., Grigoriev, M.N., Strauss, J. et al. Sediment characteristics of a thermokarst lagoon in the northeastern Siberian Arctic (Ivashkina Lagoon, Bykovsky Peninsula). Arktos 4, 1–16 (2018). https://doi.org/10.1007/s41063-018-0049-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41063-018-0049-8

Keywords

Navigation