Skip to main content

Advertisement

Log in

Degradation of and sensitivity to cholate in Pseudomonas sp. strain Chol1

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A facultative anaerobic bacterium, Pseudomonas sp. strain Chol1, degrading cholate and other bile acids was isolated from soil. We investigated how strain Chol1 grew with cholate and whether growth was affected by the toxicity of this compound. Under anoxic conditions with nitrate as electron acceptor, strain Chol1 grew by transformation of cholate to 7,12-dihydroxy-1,4-androstadiene-3,17-dione (DHADD) as end product. Under oxic conditions, strain Chol1 grew by transformation of cholate to 3,7,12-trihydroxy-9,10-seco-1,3,5(10)-androstatriene-9,17-dione (THSATD), which accumulated in the culture supernatant before its further oxidation to CO2. Strain Chol1 converted DHADD into THSATD by an oxygenase-dependent reaction. Addition of cholate (≥10 mM) to cell suspensions of strain Chol1 caused a decrease of optical density and viable counts but aerobic growth with these toxic cholate concentrations was possible. Addition of CCCP or EDTA strongly increased the sensitivity of the cells to 10 mM cholate. EDTA also increased the sensitivity of the cells to DHADD and THSATD (≤1.7 mM). The toxicity of cholate and its degradation intermediates with a steroid structure indicates that strain Chol1 requires a strategy to minimize these toxic effects during growth with cholate. Apparently, the proton motive force and the outer membrane are necessary for protection against these toxic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnes PJ, Bilton RF, Mason AN, Fernandez F, Hill MJ (1975) The coupling of anaerobic steroid dehydrogenation to nitrate reduction in Pseudomonas N.C.I.B. 10590 and Clostridium paraputrificum. Biochem Soc Trans 3:299–301

    PubMed  CAS  Google Scholar 

  • Bortolini O, Medici A, Poli S (1997) Biotransformations on steroid nucleus of bile acids. Steroids 62:564–577

    Article  PubMed  CAS  Google Scholar 

  • Colborn T (2004) Endocrine disruption overview: are males at risk? Adv Exp Med Biol 545:189–201

    PubMed  CAS  Google Scholar 

  • van der Geize R, Hessels GI, van Gerwen R, van der Meijden P, Dijkhuizen L (2002) Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1. Mol Microbiol 45:1007–1018

    Article  PubMed  Google Scholar 

  • Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913

    PubMed  CAS  Google Scholar 

  • Hancock RE (1984) Alterations in outer membrane permeability. Annu Rev Microbiol 38:237–264

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa S (1982) Microbial transformation of bile acids. A unified scheme for bile acid degradation, and hydroxylation of bile acids. Z Allg Mikrobiol 22:309–326

    PubMed  CAS  Google Scholar 

  • Helenius A, Simons K (1975) Solubilization of membranes by detergents. Biochim Biophys Acta 415:29–79

    PubMed  CAS  Google Scholar 

  • Hesse M, Meier H, Zeeh B (1995) Spektroskopische Methoden in der organischen Chemie, 5th edn. Thieme, Stuttgart

    Google Scholar 

  • Hoben HJ, Somasegaran P (1982) Comparison of the pour, spread, and drop plate methods for enumeration of Rhizobium spp. in inoculants made from presterilized peat. Appl Environ Microbiol 44:1246–1247

    PubMed  CAS  Google Scholar 

  • Horinouchi M, Hayashi T, Yamamoto T, Kudo T (2003) A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes. Appl Environ Microbiol 69:4421–4430

    PubMed  CAS  Google Scholar 

  • Hylemon PB, Harder J (1998) Biotransformation of monoterpenes, bile acids, and other isoprenoids in anaerobic ecosystems. FEMS Microbiol Rev 22:475–488

    PubMed  CAS  Google Scholar 

  • Jenkins RL, Wilson EM, Angus RA, Howell WM, Kirk M (2003) Androstenedione and progesterone in the sediment of a river receiving paper mill effluent. Toxicol Sci 73:53–59

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, Liu WH (1992) Production of androsta-1,4-diene-3,17-dione from cholesterol using immobilized growing cells of Mycobacterium sp. NRRL B-3683 adsorbed on solid carriers. Appl Microbiol Biotechnol 36:598–603

    PubMed  CAS  ADS  Google Scholar 

  • Leppik RA, Park RJ, Smith MG (1982) Aerobic catabolism of bile acids. Appl Environ Microbiol 44:771–776

    PubMed  CAS  Google Scholar 

  • van Niel CB, Allen MB (1952) A note on Pseudomonas stutzeri. J Bacteriol 64:413–422

    PubMed  Google Scholar 

  • Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    Article  PubMed  CAS  Google Scholar 

  • Owen RW, Bilton RF (1983) The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590 under anaerobic conditions. Biochem J 216:641–654

    PubMed  CAS  Google Scholar 

  • Palleroni NJ, Doudoroff M, Stanier RY, Solanes RE, Mandel M (1970) Taxonomy of the aerobic pseudomonads: the properties of the Pseudomonas stutzeri group. J Gen Microbiol 60:215–231

    PubMed  CAS  Google Scholar 

  • Park RJ (1984) Phenolic 9,10-secosteroids as products of the catabolism of bile acids by a Pseudomonas sp. Steroids 44:175–193

    Article  PubMed  CAS  Google Scholar 

  • Park RJ, Dunn NW, Ide JA (1986) A catecholic 9,10-seco steroid as a product of aerobic catabolism of cholic acid by a Pseudomonas sp. Steroids 48:439–450

    PubMed  CAS  Google Scholar 

  • Perez C, Falero A, Llanes N, Hung BR, Herve ME, Palmero A, Marti E (2003) Resistance to androstanes as an approach for androstandienedione yield enhancement in industrial mycobacteria. J Ind Microbiol Biotechnol 30:623–626

    Article  PubMed  CAS  Google Scholar 

  • Plesiat P, Nikaido H (1992) Outer membranes of gram-negative bacteria are permeable to steroid probes. Mol Microbiol 6:1323–1333

    PubMed  CAS  Google Scholar 

  • Poole K (2004) Efflux-mediated multiresistance in Gram-negative bacteria. Clin Microbiol Infect 10:12–26

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Wagner D, Friedrich MW, Wagner B, Brune A (2003) Phylogenetic diversity, abundance, and axial distribution of bacteria in the intestinal tract of two soil-feeding termites (Cubitermes spp.). Appl Environ Microbiol 69:6007–6017

    PubMed  CAS  Google Scholar 

  • Sih CJ, Lee SS, Tsong YY, Wang KC (1966) Mechanisms of steroid oxidation by microorganisms. 8. 3,4-Dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione, an intermediate in the microbiological degradation of ring A of androst-4-ene-3,17-dione. J Biol Chem 241:540–550

    PubMed  CAS  Google Scholar 

  • Smith MG, Park RJ (1984) Effect of restricted aeration on catabolism of cholic acid by two Pseudomonas species. Appl Environ Microbiol 48:108–113

    PubMed  CAS  Google Scholar 

  • Strijewski A (1982) The steroid-9 alpha-hydroxylation system from Nocardia species. Eur J Biochem 128:125–135

    Article  PubMed  CAS  Google Scholar 

  • Tai HH, Sih CJ (1970) 3,4-Dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione 4,5-dioxygenase from Nocardia restrictus. I. Isolation of the enzyme and study of its physical and chemical properties. J Biol Chem 245:5062–5071

    PubMed  CAS  Google Scholar 

  • Tenneson ME, Owen RW, Mason AN (1977) The anaerobic side-chain cleavage of bile acids by Escherichia coli isolated from human faeces. Biochem Soc Trans 5:1758–1760

    PubMed  CAS  Google Scholar 

  • Tenneson ME, Baty JD, Bilton RF, Mason AN (1979) The degradation of cholic acid by Pseudomonas sp. N.C.I.B. 10590. Biochem J 184:613–618

    PubMed  CAS  Google Scholar 

  • Thanassi DG, Cheng LW, Nikaido H (1997) Active efflux of bile salts by Escherichia coli. J Bacteriol 179:2512–2518

    PubMed  CAS  Google Scholar 

  • Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Article  PubMed  CAS  Google Scholar 

  • Widdel F, Kohring GW, Mayer F (1983) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch Microbiol 134:286–294

    Article  CAS  Google Scholar 

  • Zietz E, Spiteller G (1974) Zur Lokalisierung funktioneller Gruppen mit Hilfe der Massenspektrometrie-XI. Tetrahedron 30:585–596

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors like to thank Antje Karst and René Schoenenberger for excellent technical assistance and Normen Szesni, Dirk Schmitt-Wagner, Melanie Hempel, and Steffi Schneider for help with some experiments. Janosch Klebensberger is acknowledged for valuable discussions. Financial support to B.P. by the Deutsche Forschungsgemeinschaft (project PH71/2-1) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bodo Philipp.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Philipp, B., Erdbrink, H., Suter, M.J.F. et al. Degradation of and sensitivity to cholate in Pseudomonas sp. strain Chol1. Arch Microbiol 185, 192–201 (2006). https://doi.org/10.1007/s00203-006-0085-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-006-0085-9

Keywords

Navigation