Skip to main content
Log in

Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

A genomic analysis of putative penicillin-binding proteins (PBPs) that are involved in the synthesis of the peptidoglycan layer of the cell wall and are encoded in 12 cyanobacterial genomes was performed in order to help elucidate the role(s) of these proteins in peptidoglycan synthesis, especially during cyanobacterial cellular differentiation. The analysis suggested that the minimum set of PBPs needed to assemble the peptidoglycan layer in cyanobacteria probably does not exceed one bifunctional transpeptidase–transglycosylase Class A high-molecular-weight PBP; two Class B high-molecular-weight PBPs, one of them probably involved in cellular elongation and the other in septum formation; and one low-molecular-weight PBP. The low-molecular-weight PBPs of all of the cyanobacteria analyzed are putative endopeptidases and are encoded by fewer genes than in Escherichia coli. We show that in Anabaena sp. strain PCC 7120, predicted proteins All2981 and Alr4579, like Alr5101, are Class A high-molecular-weight PBPs that are required for the functional differentiation of aerobically diazotrophic heterocysts, indicating that some members of this class of PBPs are required specifically for cellular developmental processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

HMW:

High molecular weight

LMW:

Low molecular weight

PBP:

Penicillin-binding protein

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  PubMed  CAS  Google Scholar 

  • Asano Y, Kato Y, Yamada A, Kondo K (1992) Structural similarity of d-aminopeptidase to carboxypeptidase DD and beta-lactamases. Biochemistry 31:2316–2328

    Article  PubMed  CAS  Google Scholar 

  • Asano Y, Ito H, Dairi T, Kato Y (1996) An alkaline d-stereospecific endopeptidase with beta-lactamase activity from Bacillus cereus. J Biol Chem 271:30256–30262

    Article  PubMed  CAS  Google Scholar 

  • Bryant A (2003) The beauty in small things revealed. Proc Natl Acad Sci USA 100:9647–9649

    Article  PubMed  CAS  Google Scholar 

  • Castenholz RW (2001) Phylum BX. Cyanobacteria, oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, vol I, 2nd edn. Springer, Berlin Heidelberg New York, pp 473–599

    Google Scholar 

  • Cserzo M, Tallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in procaryotic membrane proteins: the dense alignment surface method. Protein Eng 10:673–676

    Article  PubMed  CAS  Google Scholar 

  • Denome SA, Elf PK, Henderson TA, Nelson DE, Young KD (1999) Escherichia coli mutants lacking all possible combinations of eight penicillin binding proteins: viability, characteristics, and implications for peptidoglycan synthesis. J Bacteriol 181:3981–3993

    PubMed  CAS  Google Scholar 

  • Elhai J, Vepritskiy A, Muro-Pastor AM, Flores E, Wolk CO (1997) Reduction of conjugal transfer efficiency by three restriction activities of Anabaena sp. strain PCC 7120. J Bacteriol 279:1998–2005

    Google Scholar 

  • Ernst A, Black T, Cai Y, Panoff J-M, Tiwari DN, Wolk CP (1992) Synthesis of nitrogenase in mutants of the cyanobacterium Anabaena sp. strain PCC 7120 affected in heterocyst development or metabolism. J Bacteriol 174:6025–6032

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Fredriksson C, Bergman B (1997) Ultrastructural characterization of cells specialized for nitrogen fixation in a non-heterocystous cyanobacterium Trichodesmium erythraeum. Protoplasma 197:995–1001

    Article  Google Scholar 

  • Fuhrman J (2003) Genome sequences from the sea. Nature 424:1001–1002

    Article  PubMed  CAS  Google Scholar 

  • Gantar M, Elhai J, Jia J, Ow M (1995) Predisposition towards heterocyst differentiation by individual cells of Anabaena. Abstracts of the Fifth Cyanobacterial Molecular Biology Workshop, Pacific Grove, CA, Abstract, p 25

  • Ghuysen JM (1994) Molecular structures of penicillin-binding proteins and β-lactamases. Trends Microbiol 2:372–380

    Article  PubMed  CAS  Google Scholar 

  • Goffin C, Ghuysen JM (1998) Multimodular penicillin-binding proteins: an enigmatic family of orthologs and paralogs. Microbiol Mol Biol Rev 62:1079–1093

    PubMed  CAS  Google Scholar 

  • Goffin C, Ghuysen JM (2002) Biochemistry and comparative genomics of SxxK superfamily acyltransferases offer a clue to the mycobacterial paradox: presence of penicillin-susceptible target proteins versus lack of efficiency of penicillin as therapeutic agent. Microbiol Mol Biol Rev 66:702–738

    Article  PubMed  CAS  Google Scholar 

  • Henderson TA, Yound KD, Denome SA, Elf PK (1997) AmpC and AmpH, proteins related to the class C β-lactamases, bind penicillin and contribute to the normal morphology of Escherichia coli. J Bacteriol 179:6112–6121

    PubMed  CAS  Google Scholar 

  • Herdman M, Janvier M, Rippka R, Stanier RY (1979) Genome size of cyanobacteria. J Gen Microbiol 11:73–85

    Google Scholar 

  • Herrero A, Muro-Pastor AM, Valladares A, Flores E (2004) Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28:469–487

    Article  PubMed  CAS  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    Article  PubMed  CAS  Google Scholar 

  • Höltje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    PubMed  Google Scholar 

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739

    Article  PubMed  CAS  Google Scholar 

  • Huang G, Fan Q, Lechno-Yossef S, Wojciuch E, Wolk CP, Kaneko T, Tabata S (2005) Clustered genes required for the synthesis of heterocyst envelope polysaccharide in Anabaena sp. strain PCC 7120. J Bacteriol 187:1114–1123

    Article  PubMed  CAS  Google Scholar 

  • Jones DT (1999) Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292:195–202

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213 (see also 8(Suppl):227–253)

    Google Scholar 

  • Kato J, Suzuki H, Hirota Y (1985) Dispensability of either penicillin-binding protein-1a or -1b involved in the essential process for cell elongation in Escherichia coli. Mol Gen Genet 200:272–277

    Article  PubMed  CAS  Google Scholar 

  • Kimura Y, Takashima Y, Tokumasu Y, Sato M (1999) Molecular cloning, sequence analysis, and characterization of a penicillin-resistant DD-carboxypeptidase of Myxococcus xanthus. J Bacteriol 181:4696–4699

    PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245

    Article  PubMed  CAS  Google Scholar 

  • Lazaro S, Fernández-Piñas F, Fernández-Valiente E, Leganés F (2001) pbpB, a gene coding for a putative penicillin-binding protein required for aerobic nitrogen fixation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 183:628–636

    Article  PubMed  CAS  Google Scholar 

  • Marchler-Bauer A, Bryant SH (2004) CD-Search: protein domain annotations on the fly. Nucleic Acids Res 32:W327–W331

    Article  PubMed  CAS  Google Scholar 

  • McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16:404–405

    Article  PubMed  CAS  Google Scholar 

  • McPherson DC, Driks A, Popham DL (2001) Two class A high-molecular-weight penicillin-binding proteins of Bacillus subtilis play redundant roles in sporulation. J Bacteriol 183:6046–6053

    Article  PubMed  CAS  Google Scholar 

  • Mulholland MR, Capone DG (2000) The nitrogen physiology of the marine N2-fixing cyanobacteria Trichodesmium spp. Trends Plant Sci Rev 5:148–153

    Article  CAS  Google Scholar 

  • Nanninga N (1998) Morphogenesis of Escherichia coli. Microbiol Mol Biol Rev 62:110–129

    PubMed  CAS  Google Scholar 

  • Nelson DE, Young KD (2000) Penicillin binding protein 5 affects cell diameter, contour, and morphology of Escherichia coli. J Bacteriol 182:1714–1721

    Article  PubMed  CAS  Google Scholar 

  • Popham DL, Young KD (2003) Role of penicillin-binding proteins in bacterial cell morphogenesis. Curr Opin Microbiol 6:594–599

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Scheffers DJ, Jones LFJ, Errington J (2004) Several distinct localization patterns for penicillin-binding proteins in Bacillus subtilis. Mol Microbiol 51:749–764

    Article  PubMed  CAS  Google Scholar 

  • Schiffer G, Höltje JV (1999) Cloning and characterization of PBP1c, a third member of the multimodular class A penicillin-binding proteins of Escherichia coli. J Bacteriol 274:32031–32039

    CAS  Google Scholar 

  • Siefert JL, Fox GE (1998) Phylogenetic mapping of bacterial morphology. Microbiology 144:2803–2808

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The Clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882

    Article  Google Scholar 

  • Turner S, Pryer KM, Miao VP, Palmer JD (1999) Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338

    Article  PubMed  CAS  Google Scholar 

  • Whitton BA, Potts M (2000) Introduction to the cyanobacteria. In: Whitton BR, Potts M (eds) The ecology of cyanobacteria. Kluwer Academic, Dordrecht, pp 1–11

    Google Scholar 

  • Wilkins MR, Gasteiger E, Bairoch A, Sanchez J-C, Williams KL, Appel RD, Hochstrasser DF (1999) Protein identification and analysis tools in the ExPASy server. Methods Mol Biol 112:531–552

    PubMed  CAS  Google Scholar 

  • Winkenbach F, Wolk CP, Jost M (1972) Lipids of membranes and of the cell envelope in heterocysts of a blue-green alga. Planta 107:69–80

    Article  CAS  Google Scholar 

  • Wolk CP (2000) Heterocyst formation in Anabaena. In: Brun YV, Shimkets LJ (eds) Prokaryotic development. American Society for Microbiology Press, Washington, DC, pp 83–104

    Google Scholar 

  • Wolk CP, Cai Y, Panoff J-M (1991) Use of a transposon with luciferase as a reporter to identify environmentally responsive genes in a cyanobacterium. Proc Natl Acad Sci USA 88:5355–5359

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Khudyakov I, Wolk CP (1997) Lipopolysaccharide dependence of cyanophage sensitivity and aerobic nitrogen fixation in Anabaena sp. strain PCC 7120. J Bacteriol 179:2884–2891

    PubMed  CAS  Google Scholar 

  • Young KD (2003) Bacterial shape. Mol Microbiol 49:571–580

    Article  PubMed  CAS  Google Scholar 

  • Zhou R, Wolk CP (2003) A two-component system mediates developmental regulation of biosynthesis of a heterocyst polysaccharide. J Biol Chem 278:19939–19946

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Jäger K, Black T, Zarka K, Koksharova O, Wolk CP (2001) HcwA, an autolysin, is required for heterocyst maturation in Anabaena sp. strain PCC 7120. J Bacteriol 183:6841–6851

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MCCYT grant BMC2003-03583, United States National Science Foundation grant MCB0090232, and United States Department of Energy grant DOE-FG02-91ER20021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Leganés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leganés, F., Blanco-Rivero, A., Fernández-Piñas, F. et al. Wide variation in the cyanobacterial complement of presumptive penicillin-binding proteins. Arch Microbiol 184, 234–248 (2005). https://doi.org/10.1007/s00203-005-0046-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-005-0046-8

Keywords

Navigation