Skip to main content
Log in

Structural model, physiology and regulation of Slr0006 in Synechocystis PCC 6803

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The slr0006 gene of Synechocystis sp. PCC 6803 is upregulated at mRNA and protein level under carbon limitation. The T(N11)A motif in the upstream region of slr0006 is a binding site for transcriptional regulator NdhR, and accumulation of the Slr0006 protein in ndhR deletion mutant grown in high CO2 suggests that NdhR may be a negative regulator of slr0006. Accumulation requires photosynthetic electron transfer, because no Slr0006 was detected in darkness or in the presence of electron transfer inhibitors DCMU and DBMIB. Structural modeling of the Slr0006 protein suggests that it adopts Sua5/YciO/YrdC family fold, which is an α/β twisted open-sheet structure. Similar to the structurally known members of this protein family, the surface of Slr0006 contains positively charged cavity indicating a possible binding site for RNA or nucleotides. Moreover, Slr0006 was co-localized with 30S ribosomal proteins and rRNA, suggesting involvement in processes linked to protein synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agari Y, Sato S, Wakamatsu T, Bessho Y, Ebihara A, Yokoyama S, Kuramitsu S, Shinkai A (2008) X-ray crystal structure of a hypothetical Sua5 protein from Sulfolobus tokodaii strain 7. Proteins 70:1108–1111

    Article  PubMed  CAS  Google Scholar 

  • Battchikova N, Vainonen JP, Vorontsova N, Keranen M, Carmel D, Aro E-M (2010) Dynamic changes in the proteome of Synechocystis 6803 in response to CO2 limitation revealed by quantitative proteomics. J Proteome Res 9:5896–5912

    Article  PubMed  CAS  Google Scholar 

  • Carmel D, Mulo P, Battchikova N, Aro E-M (2011) Membrane attachment of Slr0006 in Synechocystis sp. PCC 6803 is determined by divalent ions. Photosynth Res 108:241–245

    Article  PubMed  CAS  Google Scholar 

  • Carmel D, Battchikova N, Holmström M, Mulo P, Aro E-M (2012) Knock-out of low CO2-induced slr0006 Gene in Synechocystis sp. PCC 6803: Consequences on growth and proteome. In: Lu C (Ed) Photosynthesis: research for food, fuel and future—15th international conference on photosynthesis, Zhejiang University Press, Springer GmbH, New York

  • Colbeau A, Richaud P, Toussaint B, Caballero FJ, Elster C, Delphin C, Smith RL, Chabert J, Vignais PM (1993) Organization of the genes necessary for hydrogenase expression in Rhodobacter capsulatus. Sequence analysis and identification of two hyp regulatory mutants. Mol Microbiol 8:15–29

    Article  PubMed  CAS  Google Scholar 

  • Cole C, Barber JD, Barton GJ (2008) The Jpred 3 secondary structure prediction server. Nucleic Acids Res 36:W197–W201

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, von Wobeser EA, Jonas L, Schubert H, Ibelings BW, Bauwe H, Matthijs HC, Hagemann M (2007) Long-term response toward inorganic carbon limitation in wild type and glycolate turnover mutants of the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 144:1946–1959

    Article  PubMed  CAS  Google Scholar 

  • El Yacoubi B, Lyons B, Cruz Y, Reddy R, Nordin B, Agnelli F, Williamson JR, Schimmel P, Swairjo MA, de Crecy-Lagard V (2009) The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA. Nucleic Acids Res 37:2894–2909

    Article  PubMed  Google Scholar 

  • El Yacoubi B, Hatin I, Deutsch C, Kahveci T, Rousset JP, Iwata-Reuyl D, Murzin AG, de Crecy-Lagard V (2011) A role for the universal Kae1/Qri7/YgjD (COG0533) family in tRNA modification. EMBO J 30:882–893

    Article  PubMed  Google Scholar 

  • Figge RM, Cassier-Chauvat C, Chauvat F, Cerff R (2001) Characterization and analysis of an NAD(P)H dehydrogenase transcriptional regulator critical for the survival of cyanobacteria facing inorganic carbon starvation and osmotic stress. Mol Microbiol 39:455–468

    Article  PubMed  CAS  Google Scholar 

  • Fu TM, Liu X, Li L, Su XD (2010) The structure of the hypothetical protein smu.1377c from Streptococcus mutans suggests a role in tRNA modification. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 66:771–775

    Article  CAS  Google Scholar 

  • Galperin MY, Koonin EV (2004) ‘Conserved hypothetical’ proteins: prioritization of targets for experimental study. Nucleic Acids Res 32:5452–5463

    Article  PubMed  CAS  Google Scholar 

  • Gombos Z, Wada H, Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: a mechanism of chilling tolerance. Proc Natl Acad Sci USA 91:8787–8791

    Article  PubMed  CAS  Google Scholar 

  • Gouet P, Courcelle E, Stuart DI, Metoz F (1999) ESPript: analysis of multiple sequence alignments in PostScript. Bioinformatics 15:305–308

    Article  PubMed  CAS  Google Scholar 

  • Hihara Y, Sonoike K, Kanehisa M, Ikeuchi M (2003) DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185:1719–1725

    Article  PubMed  CAS  Google Scholar 

  • Hooft RW, Vriend G, Sander C, Abola EE (1996) Errors in protein structures. Nature 381:272

    Article  PubMed  CAS  Google Scholar 

  • Illergard K, Ardell DH, Elofsson A (2009) Structure is three to ten times more conserved than sequence a study of structural response in protein cores. Proteins 77:499–508

    Article  PubMed  CAS  Google Scholar 

  • Jia J, Lunin VV, Sauve V, Huang LW, Matte A, Cygler M (2002) Crystal structure of the YciO protein from Escherichia coli. Proteins 49:139–141

    Article  PubMed  CAS  Google Scholar 

  • Johnson MS, Lehtonen JV (eds) (2000) Bioinformatics. Oxford university press, United Kingdom

    Google Scholar 

  • Kuratani M, Kasai T, Akasaka R, Higashijima K, Terada T, Kigawa T, Shinkai A, Bessho Y, Yokoyama S (2011) Crystal structure of Sulfolobus tokodaii sua5 complexed with l-threonine and AMPPNP. Proteins 79:2065–2075

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK- a program to check the stereochemical quality of protein structures. J Appl Cryst 26:283–291

    Article  CAS  Google Scholar 

  • Lehtonen JV, Still DJ, Rantanen VV, Ekholm J, Björklund D, Iftikhar Z, Huhtala M, Repo S, Jussila A, Jaakkola J, Pentikäinen O, Nyrönen T, Salminen T, Gyllenberg M, Johnson MS (2004) BODIL: a molecular modeling environment for structure-function analysis and drug design. J Comput Aided Mol Des 18:401–419

    Article  PubMed  CAS  Google Scholar 

  • Lieman-Hurwitz J, Haimovich M, Shalev-Malul G, Ishii A, Hihara Y, Gaathon A, Lebendiker M, Kaplan A (2009) A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression. Environ Microbiol 11:927–936

    Article  PubMed  CAS  Google Scholar 

  • Montero M, Eydallin G, Viale AM, Almagro G, Munoz FJ, Rahimpour M, Sesma MT, Baroja-Fernandez E, Pozueta-Romero J (2009) Escherichia coli glycogen metabolism is controlled by the PhoP-PhoQ regulatory system at submillimolar environmental Mg2+ concentrations, and is highly interconnected with a wide variety of cellular processes. Biochem J 424:129–141

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T (1991) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci U S A 88:4275–4279

    Article  PubMed  CAS  Google Scholar 

  • Ohkawa H, Price GD, Badger MR, Ogawa T (2000) Mutation of ndh genes leads to inhibition of CO2 uptake rather than HCO3 uptake in Synechocystis sp. strain PCC 6803. J Bacteriol 182:2591–2596

    Article  PubMed  CAS  Google Scholar 

  • Omata T, Gohta S, Takahashi Y, Harano Y, Maeda S (2001) Involvement of a CbbR homolog in low CO2-induced activation of the bicarbonate transporter operon in cyanobacteria. J Bacteriol 183:1891–1898

    Article  PubMed  CAS  Google Scholar 

  • Parthier C, Görlich S, Jaenecke F, Breithaupt C, Bräuer U, Fandrich U, Clausnitzer D, Wehmeier UF, Böttcher C, Scheel D, Stubbs MT (2012) The O-carbamoyltransferase TobZ catalyzes an ancient enzymatic reaction. Angew Chem Int Ed 51:4046–4052

    Article  CAS  Google Scholar 

  • Petkun S, Shi R, Li Y, Asinas A, Munger C, Zhang L, Waclawek M, Soboh B, Sawers RG, Cygler M (2011) Structure of hydrogenase maturation protein HypF with reaction intermediates shows two active sites. Structure 19:1773–1783

    Article  PubMed  CAS  Google Scholar 

  • Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27

    Article  PubMed  CAS  Google Scholar 

  • Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  • Shomura Y, Higuchi Y (2012) Structural basis for the reaction mechanism of S-carbamoylation of HypE by HypF in the maturation of [NiFe]-hydrogenases. J Biol Chem 287:28409–28419

    Article  PubMed  CAS  Google Scholar 

  • Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17:355–362

    Article  PubMed  CAS  Google Scholar 

  • Teplova M, Tereshko V, Sanishvili R, Joachimiak A, Bushueva T, Anderson WF, Egli M (2000) The structure of the yrdC gene product from Escherichia coli reveals a new fold and suggests a role in RNA binding. Protein Sci 9:2557–2566

    Article  PubMed  CAS  Google Scholar 

  • Trebst A (2007) Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynth Res 92:217–224

    Article  PubMed  CAS  Google Scholar 

  • Tuominen I, Pollari M, von Wobeser EA, Tyystjarvi E, Ibelings BW, Matthijs HC, Tyystjarvi T (2008) Sigma factor SigC is required for heat acclimation of the cyanobacterium Synechocystis sp. strain PCC 6803. FEBS Lett 582:346–350

    Article  PubMed  CAS  Google Scholar 

  • Tyystjärvi T, Herranen M, Aro E-M (2001) Regulation of translation elongation in cyanobacteria: membrane targeting of the ribosome nascent-chain complexes controls the synthesis of D1 protein. Mol Microbiol 40:476–484

    Article  PubMed  Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2004) Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. J Biol Chem 279:5739–5751

    Article  PubMed  CAS  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35:W407–W410

    Article  PubMed  Google Scholar 

  • Woodger FJ, Bryant DA, Price GD (2007) Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. Strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189:3335–3347

    Article  PubMed  CAS  Google Scholar 

  • Yee A, Chang X, Pineda-Lucena A, Wu B, Semesi A, Le B, Ramelot T, Lee GM, Bhattacharyya S, Gutierrez P, Denisov A, Lee CH, Cort JR, Kozlov G, Liao J, Finak G, Chen L, Wishart D, Lee W, McIntosh LP, Gehring K, Kennedy MA, Edwards AM, Arrowsmith CH (2002) An NMR approach to structural proteomics. Proc Natl Acad Sci U S A 99:1825–1830

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Prof. Ogawa for providing the mutants ∆ndhD1/D2, ∆ndhD3/D4 and ∆ndhB, and Dr. Burnap for providing the ∆ndhR strain. Drs. T. Tyystjärvi, M. Eisenhut, S. Järvi and S. Kangasjärvi are gratefully acknowledged for fruitful discussions. Prof. M. Johnson is acknowledged for the excellent facilities at the Structural Bioinformatics Laboratory at the Department of Biochemistry and Pharmacy at Åbo Akademi University. Use of Biocenter Finland infrastructure at Åbo Akademi (bioinformatics, structural biology, and translational activities) and the National Doctoral Programme in Informational and Structural Biology is also acknowledged. This study was financially supported by the Academy of Finland (Grants Number: 118637 and 263667), Maj and Tor Nessling Foundation, the Finnish Graduate School of Plant Biology, Åbo Akademi Graduate School, Sigrid Juselius Foundation, and the Tor, Joe and Pentti Borgs Foundation.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tiina A. Salminen or Paula Mulo.

Additional information

Communicated by Erko Stackebrandt.

Dalton Carmel and Käthe M. Dahlström have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carmel, D., Dahlström, K.M., Holmström, M. et al. Structural model, physiology and regulation of Slr0006 in Synechocystis PCC 6803. Arch Microbiol 195, 727–736 (2013). https://doi.org/10.1007/s00203-013-0924-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-013-0924-4

Keywords

Navigation