Skip to main content
Log in

Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

The elastic buckling behavior of quadrilateral single-layered graphene sheets (SLGS) under bi-axial compression is studied employing nonlocal continuum mechanics. Small-scale effects are taken into consideration. The principle of virtual work is employed to derive the governing equations. The Galerkin method in conjunction with the natural coordinates of the nanoplate is used as a basis for the analysis. The buckling load of skew, rhombic, trapezoidal, and rectangular nanoplates considering various geometrical parameters are obtained. It is shown that nonlocal effects are very important in arbitrary quadrilateral graphene sheets and their inclusion results in smaller buckling loads. Also the effects of geometrical parameters such as aspect ratio, angle, and mode number on the buckling load decrease when scale coefficient increases, for all arbitrary quadrilateral SLGS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  2. Sakhaee-Pour A., Ahmadian M.T., Vafai A.: Applications of single-layered grapheme sheets as mass sensors and atomistic dust detectors. Solid State Commun. 147, 336–340 (2008)

    Article  Google Scholar 

  3. Stankovich S. et al.: Graphene-based composite materials. Nat. Lett. 442, 282–286 (2006)

    Article  Google Scholar 

  4. Wong E.W., Sheehan P.E., Lieber C.M.: Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)

    Article  Google Scholar 

  5. Sorop T.G., de Jongh L.J.: Size-dependent anisotropic diamagnetic screening in superconducting Sn nanowires. Phys. Rev. B 75, 014510 (2007)

    Article  Google Scholar 

  6. Murmu T., Pradhan S.C.: Buckling of Bi-axially compressed orthotropic plates at Sm all scales. Mech. Res. Commun. 36, 933–938 (2009)

    Article  Google Scholar 

  7. Zhou S.J., Li Z.Q.: Length scales in the static and dynamic torsion of a circular cylindrical micro-bar. J Shandong Univ. Technol. 31, 401–407 (2001)

    Google Scholar 

  8. Fleck N.A., Hutchinson J.W.: Strain gradient plasticity. Adv. Appl. Mech. 33, 296–358 (1997)

    Google Scholar 

  9. Yang F., Chong A.C.M., Lam D.C.C., Tong P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids struct. 39, 2731–2743 (2002)

    Article  MATH  Google Scholar 

  10. Eringen A.C.: On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  Google Scholar 

  11. Chen Y., Lee J.D., Eskandarian A.: Atomistic viewpoint of the applicability of microcontinuum theories. Int. J. Solids Struct. 41, 2085–2097 (2004)

    Article  MATH  Google Scholar 

  12. Lu P., Lee H.P., Lu C., Zhang P.Q.: Dynamic properties of flexural beams using a nonlocal elasticity model. J. Appl Phys. 99, 073510 (2006)

    Article  Google Scholar 

  13. Aydogdu M.: Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E 41, 861–864 (2009)

    Article  Google Scholar 

  14. Duan W.H., Wang C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007)

    Article  Google Scholar 

  15. Murmu T., Pradhan S.C.: Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J. Appl. Phys. 105, 064319 (2009)

    Article  Google Scholar 

  16. Pradhan S.C., Phadikar J.K.: Small scale effect on vibration of embedded multilayered graphene sheets based on nonlocal continuum models. Phys. Lett. A 37, 1062–1069 (2009)

    Article  Google Scholar 

  17. Wang C.M., Duan W.H.: Free vibration of nanorings/arches based on nonlocal elasticity. J. Appl. Phys. 104, 014303 (2008)

    Article  Google Scholar 

  18. Reddy J.N., Pang S.D.: Nonlocal continuum theories of beams for the analysis of carbon nanotubes. J. Appl. Phys. 103, 023511 (2008)

    Article  Google Scholar 

  19. Murmu T., Pradhan S.C.: Buckling analysis of a single-walled carbon nanotube embedded in an elastic medium based on nonlocal elasticity and Timoshenko beam theory and using DQM. Physica E 41, 1232–1239 (2009)

    Article  Google Scholar 

  20. Heireche H., Tounsi A., Benzair A., Maachou M., Adda Bedia E.A.: Sound wave propagation in single-walled carbon nanotubes. Physica E 40, 2791–2799 (2008)

    Article  Google Scholar 

  21. Wan L.: Dynamical behaviors of double-walled carbon nanotubes conveying fluid accounting for the role of small length scale. Comput. Mater. Sci. 45(2), 584–588 (2009)

    Article  Google Scholar 

  22. Pradhan S.C., Murmu T.: Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics. Comput. Mater. Sci. 47, 268–274 (2009)

    Article  Google Scholar 

  23. Wang L., Hu H.: Flexural wave propagation in single-walled carbon nanotubes. Phys. Rev. B 71, 195412 (2005)

    Article  Google Scholar 

  24. Zhang Y.Q., Liu G.R., Xie X.Y.: Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity. Phys. Rev. B 71, 195404 (2005)

    Article  Google Scholar 

  25. Duan W.H., Wang C.M., Zhang Y.Y.: Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamics. J. Appl. Phys. 101, 024305 (2007)

    Article  Google Scholar 

  26. Duan W.H., Wang C.M.: Exact solutions for axisymmetric bending of micro/nanoscale circular plates based on nonlocal plate theory. Nanotechnology 18, 385704 (2007)

    Article  Google Scholar 

  27. Liew K.M., Han J.B.: A four-note differential quadrature method for straight-sided quadrilateral Reissner/Mindlin plates. Commun. Num. Meth. Eng. 13, 73–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Civalek Ö.: Application of differential quadrature (DQ) and harmonic differential quadrature (HDQ) for buckling analysis of thin isotropic plates and elastic columns. Eng. Struct. 26(2), 171–186 (2004)

    Article  Google Scholar 

  29. Civalek Ö: Free vibration and buckling analyses of composite plates with straight-sided quadrilateral domain based on DSC approach. Finite Elem. Anal. Des. 43, 1013–1022 (2007)

    Article  Google Scholar 

  30. Pradhan S.C.: Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys. Lett. A 373(45), 4182–4188 (2009)

    Article  MATH  Google Scholar 

  31. Civalek Ö.: A four-node discrete singular convolution for geometric transformation and its application to numerical solution of vibration problem of arbitrary straight-sided quadrilateral plates. Appl. Math. Model. 33(1), 300–314 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Q., Wang, C.M.: The constitutive relation and small scale parameter of nonlocal continuum mechanics for modeling carbon nanotubes. Nanotechnology 18(7), Art. No. 075702 (2007)

    Google Scholar 

  33. Reddy J.N.: Theory and Analysis of Elastic Plates. Taylor and Francis, Philadelphia, PA (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Babaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babaei, H., Shahidi, A.R. Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method. Arch Appl Mech 81, 1051–1062 (2011). https://doi.org/10.1007/s00419-010-0469-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00419-010-0469-9

Keywords

Navigation