Skip to main content
Log in

A preliminary report on the Rare Earth Element + Yttrium (REE+Y) analysis from the Tlayúa Quarry Konservat-Lagerstätte (Tlayúa Formation; Lower Cretaceous, Albian) of Tepexi de Rodríguez, Puebla, Mexico: Results from Zone 13

  • Short Communication
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The Tlayúa Quarry Konservat-Lagerstätte (Albian, Lower Cretaceous; Tepexi de Rodríguez, Puebla, Mexico) is known worldwide for the preservation of its ubiquitous fossil remains. Major and trace element concentrations of selected limestone samples from zone 13 of the Tlayúa Quarry were measured in order to understand the depositional conditions and source of REE + Y. The concentrations of SiO2, Al2O3, P and Zr show little contamination by terrigenous material and phosphates in this zone, at least to instances in which the REE + Y concentrations can be both shale-normalizable and reliable. REE + Y plots display typical modern seawater signals; namely, positive La and Gd anomalies, superchondritic Y/Ho ratios (between 46.421 and 67.777) and slight depletions of LREE and MREE with respect to HREE (x̄ Pr/Yb = 0.201; x̄ Nd/Yb = 0.305 and (x̄ Dy/Yb = 0.683 respectively). Furthermore, sustained negative cerium anomalies could be identified (Ce/Ce* = 0.613), which would indicate oxidating conditions as in modern seawater. The observed REE + Y patterns, which constitute the first palaeoenvironmental inference by means of element analysis performed in Tlayúa, suggest that the limestones from zone 13 still retain their original seawater pattern. Considering that terrigenous and phosphate contamination is overall low in the analysed samples, REE + Y (REY) patterns from the Tlayúa Formation can be useful palaeoenvironmental proxies for the Cretaceous. All this allows the conclusion that, at least during the deposition of these limestones from zone 13, a typical marine signature can be seen. This does not exclude, however, the presence of a tidally or strongly monsoonic-influenced sedimentation in other sediments from zone 13 or from other zones in Tlayúa, as previous works have suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Absar N, Raza MQ, Augustine S, Managave S, Srinivasa Sarma D, Balakrishnan S (2018) Trace, Rare-Earth Elements and C, O isotope systematics of carbonate rocks of Proterozoic Bhima Group, Eastern Dharwar Craton, India: Implications for the source of dissolved components, redox condition and biogeochemical cycling of Mesoproterozoic ocean. In: Mondal MEA (ed) Geological evolution of the Precambrian Indian Shield. Springer, Cham, pp 297–326

    Google Scholar 

  • Alencáster G (1973) Una nueva especie de Toucasia en el Cretácico medio de los Estados de Oaxaca y Puebla. Paleontología Mexicana 36:4–20

    Google Scholar 

  • Alvarado-Ortega J, Espinosa-Arrubarrena L (2008) A new genus of Ionoscopiforms fish (Halecomorphi) from the Early Cretaceous (Albian) lithographic Limestone of the Tlayúa Quarry, Puebla, México. J Paleontol 82:163–175

    Article  Google Scholar 

  • Alvarado-Ortega J, Melgarejo-Damián MP (2017) Paraclupea seilacheri sp. nov., a double armored herring (Clupeomorpha, Ellimmichthyformes) from the Albian limestones of Tlayúa quarry, Puebla, Mexico. Revista Mexicana de Ciencias Geológicas 34:234–249

    Article  Google Scholar 

  • Alvarado-Ortega J, González-Rodríguez KA, Blanco-Piñón A, Espinosa-Arrubarrena L, Ovalles-Damián E (2006) Mesozoic Osteichthyans of Mexico. In: Vega-Vera FJ, Nyborg TG, Perrilliat MC, Montellano-Ballesteros M, Cevallos-Férriz SRS, Quiroz-Barroso SA (eds) Studies on Mexican Paleontology, Topics in Geobiology 24. Springer, Dordrecht, pp 169–207

    Chapter  Google Scholar 

  • Applegate SP (1992) A new genus and species of pycnodont from the Cretaceous (Albian) of Central Mexico, Tepexi de Rodríguez, Puebla. Revista del Instituto de Geología de la Universidad Nacional Autónoma de México 10:164–178

    Google Scholar 

  • Applegate SP, Espinosa-Arrubarrena L, Alvarado-Ortega J, Benammi M (2006) Revision of recent investigations in the Tlayúa Quarry. In: Vega-Vera FJ, Nyborg TG, Perrilliat MC, Montellano-Ballesteros M, Cevallos-Férriz SRS, Quiroz-Barroso SA (eds) Studies on Mexican Paleontology, Topics in Geobiology 24. Springer, Dordrecht, pp 304–207

    Google Scholar 

  • Applegate SP, Buitrón BE, Solís-Marín FA, Laguarda-Figueras A (2009) Two Lower Cretaceous (Albian) fossil holothurians (Echinodermata) from Tepexi de Rodríguez, Puebla, Mexico. Proc Biol Soc Wash 122:91–102

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionations of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res 79:37–55

    Article  Google Scholar 

  • Bau M, Dulksi P, Möller P (1995) Yttrium and holmium in South Pacific seawater: vertical distribution and possible fractionation mechanisms. Chem Erde 55:1–15

    Google Scholar 

  • Bau M, Koschinsky A, Dulski P, Hein JR (1997) Comparison of the partitioning behaviours of yttrium, rae earth elements, and titanium between hydrogenetic marine ferromanganese crusts and seawater. Geochim Cosmochim Acta 60:1709–1725

    Article  Google Scholar 

  • Beraldi-Campesi H, Cevallos-Ferriz SRS, Centeno-García E, Arenas-Abad C, Fernández LP (2006) Sedimentology and paleoecology of an Eocene-Oligocene alluvial-lacustrine arid system, Southern Mexico. Sediment Geol 191:227–254

    Article  Google Scholar 

  • Bolhar R, Kamber BS, Moorbath S, Fedo CM, Whitehouse MJ (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth Planet Sci Lett 22:43–60

    Article  Google Scholar 

  • Brito PM, Villalobos-Segura E, Alvarado-Ortega J (2019) A new Lower Cretaceous guitarfish (Chondrichthyes, Batomorpha) from the Tlayúa Formation, Puebla, México. J S Am Earth Sci 90:155–161

    Article  Google Scholar 

  • Buitrón-Sánchez BE, Durán-González A, Martín-Cao-Romero C, Solís-Marín FA, Laguarda-Figueras A (2015) Lower Cretaceous (Albian) Asteroidea (Echinodermata) from Tepexi de Rodríguez, Puebla, Mexico. Rev Biol Trop 63:7–15

    Article  Google Scholar 

  • Byrne RH, Lee JH (1993) Comparative yttrium and rare earth element chemistries n sweater. Mar Chem 44:121–130

    Article  Google Scholar 

  • Byrne RH, Liu X, Schijf J (1996) The influence of phosphate coprecipitation on rare earth distributions in natural waters. Geochim Cosmochim Acta 60:3341–3346

    Article  Google Scholar 

  • Cabral-Perdomo MA (2013) Icnofósiles de vertebrados terrestres del Cenozoico Tardío en el área de “Pie de Vaca”, Tepexi de Rodríguez, Estado de Puebla. Paleontología Mexicana 3:51–58

    Google Scholar 

  • Cabral-Perdomo MA, Applegate SP (1994) Pterosaurs from the Tlayúa Quarries near Tepexi de Rodríguez, central Mexico, and its paleoecological significance. J Vertebr Paleontol 14(3 Suppl):19A

    Google Scholar 

  • Cabral-Perdomo MA, Bravo-Cuevas VM, Pérez-Pérez A, García-Cabrera N (2018) Descripción de las huellas de camélidos y félidos de la Localidad Pie de Vaca, Cenozoico Tardío de Puebla, Centro de México y algunas consideraciones paleobiológicas. Bol Soc Geol Mex 70:397–416

    Google Scholar 

  • Crocket, K.C., Hill, E., Abel, R.E., Johnson, C., Gary, S.F., Brand, T. & Hathorne, E.C. 2018. Rare earth element distribution in the NE Atlantic: evidence for benthic sources, longevity of the seawater signal, and biogeochemical cycling. Frontiers in Marine Sciences 5, DOI: https://doi.org/10.3389/fmars.2018.00147.

  • Cruse AM, Lyons TW, Kidder DL (2000) Rare-earth element behaviour in phosphates and organic-rich host shales: an example from the Upper Carboniferous of Midcontinent North America. Marine Authigenesis: From Global to Microbial. SEPM Spec Publ 66:445–453

    Google Scholar 

  • De Baar HJW, Brewer PG, Bacon MP (1985) Anomalies in rare earth distributions in seawater: Gd and Tb*. Geochim Cosmochim Acta 49:1961–1969

    Article  Google Scholar 

  • De Carlo EH, Green WJ (2002) Rare earth elements in the water column of Lake Vanda, McMurdo Dry Valleys, Antarctica. Geochimica et Cosmochimica Acta 66 (8):1323–1333

    Article  Google Scholar 

  • Delecat, S. 2005. Porifera-microbialites of the Lower Liassic (Northern Calcareous Alps)-resettlement strategies on submarine mounds of dead Rhaetian reefs by ancestral benthic communities. Ph.D. Thesis. University of Göttingen. 114 pp. Göttingen.

  • Deng Y, Ren J, Guo Q, Cao J, Wang H, Liu C (2017) Rare earth element geochemistry characteristics of seawater and porewater from deep sea in Western Pacific. Nat Sci Rep 7:16539. https://doi.org/10.1038/s41598-017-16379-1

    Article  Google Scholar 

  • Derry LA, Jacobsen SB (1988) The Nd and Sr isotopic evolution of proterozoic seawater. Geophys Res Lett 15:397–400

    Article  Google Scholar 

  • Espinosa-Arrubarrena L, Applegate SP (1996) A possible model for the paleoecology of the vertebrate bearing beds in the Tlayúa quarries, near Tepexi de Rodríguez, Puebla, México. In: Arratia G, Viohl G (eds) Mesozoic Fishes—Systematics and Paleoecology, Verlag Dr. Friedrich Pfeil, Munich, pp 539–550

    Google Scholar 

  • Fernández-Becerra, S. (1985). Levantamiento a detalle de columnas estratigráficas en el área de Tepexi de Rodríguez, Puebla - “Cantera de Tlayúa”. Petróleos Mexicanos, Superintendencia General de Exploración, Zona Centro, Distrito Poza Rica, 31 pp. Mexico. (Unpublished report)

  • Garassino A, Pasini G, Vega FJ (2013) First report of penaeid (Crustacea, Decapoda, Penaeoidea) from the Lower Cretaceous (Albian) of the Tlayúa quarry, Tepexi de Rodríguez (Puebla, Central Mexico). Bol Soc Geol Mex 65:369–372

    Google Scholar 

  • Ge L, Jiang S-Y, Swennen R, Yang T, Yang J-H, Wu N-Y, Liu J, Chen D-H (2010) Chemical environment of cold seep carbonate formation on the northern continental slope of South China Sea: evidence from trace and rare earth element geochemistry. Mar Geol 277:21–30

    Article  Google Scholar 

  • Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem Geol 99:65–82

    Article  Google Scholar 

  • Hohl SV, Becker H, Gamper A, Jiang S-Y, Wiechert U, Yang J-H, Wei H-Z (2015) Secular changes in shallow-water Ediacaran ocean: evidence from carbonates at Xiaofenghe, Three Gorges area, Yangtze Platform, South China. Precambrian Res 270:50–79

    Article  Google Scholar 

  • Junya N, Congqiang L, Dequan Z, Zhuming W (2002) REE geochemical study of the Permian-Triassic marine sedimentary environment in Guizhou Province. Chin J Geochem 21:348–361

    Article  Google Scholar 

  • Kashiyama Y, Fastovsky DE, Rutherford S, King J, Montellano M (2004) Genesis of a locality of exceptional fossil preservation: paleoenvironments of Tepexi de Rodríguez (mid-Cretaceous, Puebla, Mexico). Cretac Res 25:153–177

    Article  Google Scholar 

  • Kemp RA, Trueman CN (2002) Rare earth elements in Solnhofen biogenic apatite: geochemical clues to the palaeoenvironment. Sediment Geol 155:109–127

    Article  Google Scholar 

  • Lawrence MG, Greig A, Collerson KD, Kamber BS (2006) Rare earth element and yttrium variability in South East Queensland Waterways. Aquat Geochem 12:39–72

    Article  Google Scholar 

  • Madhavaraju J, González-León C (2012) Depositional conditions and source of rare earth elements in carbonate strata of the Aptian-Albian Mural Formation, Pitaycachi section, northeastern Sonora, Mexico. Revista Mexicana de Ciencias Geológicas 29:478–491

    Google Scholar 

  • Madhavaraju J, Pacheco-Olivas SA, González-León CM, Espinoza-Maldonado IG, Sánchez-Medrano PA, Villanueva-Amadoz U, Monreal R, Pi-Puig T, Ramírez-Montoya E, Grijalva-Noriega FJ (2017) Mineralogy and geochemistry of the Lower Cretaceous siliciclastic rocks of the Morita Formation, Sierra San José section, Sonora, Mexico. J S Am Earth Sci 76:397–411

    Article  Google Scholar 

  • Martill DM (1989) A new “Solenhofen” in Mexico. Geol Today 5:25–28

    Article  Google Scholar 

  • McLennan, S.M. 1989. Rare earth elements in sedimentary rocks;influence of provenance and sedimentary processes. In: Lipin, B.R. and McKay, G.A. (Eds.), Geochemistry and Mineralogy of rare earth elements. Reviews in Mineralogy 21, 169–200.

  • Merschel G, Bau M (2015) Rare earth elements in the aragonitic shell of freshwater mussel Coricula fluminea and the bioavailability of anthropogenic lanthanum, samarium and gadolinium in river water. Sci Total Environ 533:91–101

    Article  Google Scholar 

  • Morán-Zenteno DJ, Böhnel H, Urrutia-Fucugauchi J (1988) Paleomagnetismo de rocas jurásicas del norte de Oaxaca y sus implicaciones tectónicas. Geofis Int 27:485–518

    Google Scholar 

  • Nothdurft LD, Webb GE, Kamber BS (2004) Rare earth element geochemistry of Late Devonian reefal carbonates, Canning Basin, Western Australia: confirmation of a seawater REE proxy in ancient limestones. Geochim Cosmochim Acta 68:263–283

    Article  Google Scholar 

  • Nozaki Y, Zhang J, Amakawa H (1997) The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett 148:329–340

    Article  Google Scholar 

  • Olivarez AM, Owen RM (1991) The europium anomaly of seawater: implications for fluvial versus hydrothermal REE inputs to the oceans. Chem Geol 92:317–328

    Article  Google Scholar 

  • Olivier N, Boyet M (2006) Rare earth and trace elements of microbialites in Upper Jurassic coral- and sponge-microbialite reefs. Chem Geol 230:105–123

    Article  Google Scholar 

  • Pantoja-Alor J (1992) Geología y paleoambiente de la Cantera Tlayúa, Tepexi de Rodríguez, Estado de Puebla. Revista del Instituto de Geología de la Universidad Nacional Autónoma de México 9:156–159

    Google Scholar 

  • Planavsky N, Bekker A, Rouxel OJ, Kamber B, Hofmann A, Knudsen A, Lyons TW (2010) Rare earth element and yttrium compositions of Archaean and Paleoproterozoic Fe formations revisited: New perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74:6387–6405

    Article  Google Scholar 

  • Quinn KA, Byrne R, Schijf J (2004) Comparative scavenging of yttrium ad the rare earth elements in seawater: competitive influences of solution and surface chemistry. Aquat Geochem 10:59–80

    Article  Google Scholar 

  • Reynoso VH (1998) Huehuecuetzpalli mixtecus, gen. et sp. nov. a basal squamate (Reptilia) from the Early Cretaceous of Central México. J Vertebr Paleontol 17:52–59

    Article  Google Scholar 

  • Reynoso VH (2000) An unusual aquatic sphenodontian from the Tlayúa Formation (Albian), Central México. J Paleontol 74:133–148

    Article  Google Scholar 

  • Reynoso VH (2006) Research on fossil amphibians and reptiles in Mexico, from 1869 to early 2004 (including marine forms but excluding pterosaurs, dinosaurs, and obviously, birds). In: Vega-Vera FJ, Nyborg TG, Perrilliat MC, Montellano-Ballesteros M, Cevallos-Férriz SRS, Quiroz-Barroso SA (eds) Studies on Mexican Paleontology, Topics in Geobiology 24. Springer, Dordrecht, pp 209–231

    Chapter  Google Scholar 

  • Rimmer S (2004) Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol 206:373–391

    Article  Google Scholar 

  • Riquelme F, Ruvalcaba-Sil JL, Alvarado-Ortega J (2006) Palaeometry: Non destructive analysis of fossil materials. Bol Soc Geol Mex 61:177–183

    Google Scholar 

  • Sánchez-Beristain JF, García-Barrera P (2017) Geoquímica aplicada a la paleontología y paleoecología en ambientes carbonatados marinos: principales métodos y tipos de análisis utilizados. In: Cevallos-Ferriz SRS, Huerta-Vergara AR (eds) Paleobiología: Interpretando procesos de la vida pasada. Dirección General de Publicaciones y Fomento Editorial, Facultad de Ciencias / Instituto de Geología, UNAM, Mexico City, pp 95–123

    Google Scholar 

  • Suárez MB, González MA, Ludvigson GA, Vega FJ, Alvarado-Ortega J (2009) Isotopic composition of low-latitude paleoprecipitation during the Cretaceous. Geol Soc Am Bull 121:1584–1595

    Article  Google Scholar 

  • Tanaka M, Shimizu H, Masuda A (1990) Features of the heavy rare-earth elements in seawater. Geochem J 24:39–46

    Article  Google Scholar 

  • Tostevin R, Shields GA, Tarbuck GM, He T, Clarkson MO, Wood RA (2016) Effective use of cerium anomalies as a redox proxy in carbonate-dominated marine settings. Chem Geol 438:146–162

    Article  Google Scholar 

  • Vega FJ, García-Barrera P, Coutiño M, Nyborg T, Cifuentes-Ruiz P, González-Rodríguez K, Martens A, Delgado CR, Carbot G (2003) Early Cretaceous arthropods from plattenkalk facies in Mexico. Contrib Zool 72:187–189

    Article  Google Scholar 

  • Vega FJ, Bruce NL, Serrano L, Bishop GA, Perrilliat MC (2005) A review of the Lower Cretaceous (Tlayúa Formation: Albian) Crustacea from Tepexi de Rodríguez, Puebla, Central Mexico. Bull Mizunami Fossil Museum 32:25–30

    Google Scholar 

  • Villanueva-Amadoz U, Calvillo-Canadell L, Cevallos-Ferriz SRS (2014) Síntesis de los trabajos paleobotánicos del Cretácico en México. Bol Soc Geol Mex 66:97–121

    Google Scholar 

  • Wang C, Konhauser KO, Zhang L (2015) Depositional environment of the Paleoproterozoic Yuanjiacun Banded Iron Formation in Shanxi Province, China. Econ Geol 110:1515–1539

    Article  Google Scholar 

  • Webb G, Kamber BS (2000) Rare earth elements in Holocene reefal microbialites: a new shallow seawater proxy. Geochim Cosmochim Acta 64:1557–1565

    Article  Google Scholar 

  • Zhao H, Jones B (2013) Distribution and interpretation of rare earth elements and yttrium in Cenozoic dolostones and limestones on Cayman Brac, British West Indies. Sediment Geol 284:26–38

    Article  Google Scholar 

Download references

Acknowledgements

Mr. Rodolfo Aranguthy (Tepexi de Rodríguez, Puebla, Mexico) as well as all members of the Aranguthy family are highly acknowledged for assistance and guidance in the field. We also thank Dr. Ligia Pérez-Cruz (Instituto de Geofísica, UNAM) for providing the machinery and equipment to extract the lithological nuclei. Dr. Andreas Kronz (GZG, Universität Göttingen) conducted the microprobe analyses, for which we are deeply grateful. Engr. Martín Espinoza (Instituto de Geofísica, UNAM) is acknowledged for technical support in the fieldwork (extraction of nuclei). Edwin Aldrin Juárez-Aguilar, B.Sc. (Facultad de Ciencias, UNAM) and Yunuén Reygadas-Langarica (Texas State University) are highly acknowledged for figure processing. We are highly grateful to Dr. Domenico Doronzo (Barcelona) for his valuable help and assistance during the editing process of our manuscript.

Funding

This study is financially supported by the project PAPIIT-IN-116417 [Geoquímica (análisis de elementos mayores, menores, traza y tierras raras) del Miembro Medio de la Formación Tlayúa (Cretácico Inferior, Albiano), en Tepexi de Rodríguez, Puebla, México; DGAPA-UNAM], headed by FSB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Sánchez-Beristain.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial handling: Domenico M. Doronzo

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reygadas-Langarica, Y., Sánchez-Beristain, F., Simon, K. et al. A preliminary report on the Rare Earth Element + Yttrium (REE+Y) analysis from the Tlayúa Quarry Konservat-Lagerstätte (Tlayúa Formation; Lower Cretaceous, Albian) of Tepexi de Rodríguez, Puebla, Mexico: Results from Zone 13. Arab J Geosci 12, 524 (2019). https://doi.org/10.1007/s12517-019-4698-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-019-4698-0

Keywords

Navigation