Skip to main content

Advertisement

Log in

Assessment of impact of climate change on water resources in a hilly river basin

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

The sensitivity of Sutlej river sub-basin (middle catchment) which is located in N-W Himalaya is investigated for its hydrologic response to potential changes in climate variability. The predictors of two global climate models (GCMs) that are found to perform well over Indian sub-continents are downscaled, and future time series of temperature (maximum and minimum) and precipitation is generated using statistical downscaling model (SDSM) under A1B, A2, and B2 emission scenarios. An overall increase in mean annual temperature and precipitation is predicted under both the models for future periods. The predicted increase in temperature is relatively higher for HadCM3 model compares to CGCM3 model whereas it is opposite for precipitation. The model also predicts considerable shift in monthly pattern of temperature and precipitation. Further, soil and water assessment tool (SWAT) is employed to appraise future changes in stream flow and water balance of the sub-basin under projected climate scenarios. The simulation results show that in future, increase in mean annual stream flow are likely to range from 1.3 to 7.8 % for CGCM3 model and 0.3 to 3.4 % for HadCM3 model, respectively. However, decrease in mean monthly stream flow is predicted under scenarios of CGCM3 model (from January to May and from November to December) and HadCM3 model (from January to April and from October to December), respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abbaspour KC (2011) SWAT-CUP4: SWAT calibration and uncertainty programs—a user manual. Swiss Federal Institute of Aquatic Science and Technology, Eawag

    Google Scholar 

  • Abbaspour KC, Johnson CA, Van Genuchten MT (2004) Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J 3:1340–1352

    Article  Google Scholar 

  • Abbaspour KC, Yang J, Maximov I et al (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430

    Article  Google Scholar 

  • Abu-Allaban M, El-Naqa A, Jaber M, Hammouri N (2014) Water scarcity impact of climate change in semi-arid regions: a case study in Mujib basin, Jordan. Arab J Geosci. doi:10.1007/s12517-014-1266-5

    Google Scholar 

  • Agarwal CS, Garg PK (2002) Textbook on remote sensing: in natural resources monitoring and management. AH Wheeler Publishing Co Ltd, pp 220

  • Ageta Y, Kadota T (1992) Predictions of changes of glacier mass balance in the Nepal Himalaya and Tibetan Plateau: a case study of air temperature increase for three glaciers. Ann Glaciol 16:89–94

    Google Scholar 

  • Aherne J, Futter MN, Dillion PJ (2008) The impacts of future climate change and sulphur emission reductions on acidification recovery at Plastic Lake, Ontario. Hydrol Earth Syst Sci 12(2):383–392

    Article  Google Scholar 

  • Anandhi A, Shrinivas VV, Nanjundiah RS, Kumar DN (2008) Downscaling precipitation to river basin in India for IPCC SRES scenarios using support vector machine. Int J Climatol 28(3):401–420. doi:10.1002/joc.1529

    Article  Google Scholar 

  • Arnell W (1999) The effect of climate change on hydrological regimes in Europe: A continental perspective. Glob Environ Chang 9:5–23

    Article  Google Scholar 

  • Arnell NW, van Vuuren DP, Isaac M (2011) The implications of climate policy for the impacts of climate change on global water resources. Glob Environ Chang 21:592–603

    Article  Google Scholar 

  • Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol Process 19(3):563–572. doi:10.1002/hyp.5611

    Article  Google Scholar 

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: Model development. J Am Water Resour Assoc 34(1):73–89. doi:10.1111/j.1752-1688.1998.tb05961.x

    Article  Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438:303–309

    Article  Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (2008) Climate Change and Water. Technical Paper of the Intergovernmental Panel on Climate Change. http://ipcc.ch/pdf/technical-papers/climate-change-water-en.pdf. Accessed 30 Jul 2010

  • Bekiaris IG, Panagopoulos IN, Mimikou MA (2005) Application of the swat (soil and water assessment tool) model in the Ronnea catchment of Sweden. Global NEST 7(3):252–257

    Google Scholar 

  • Bhutiyani MR, Kale VS, Pawar NJ (2008) Changing stream flow patterns in the rivers of northwestern Himalaya: Implications of global warming in the 20th century. Curr Sci 95(5):618–624

    Google Scholar 

  • Bosch DD, Sheridan JM, Batten HL, Arnold JG (2004) Evaluation of the SWAT model on a coastal plain agricultural watershed. Trans ASAE 47(5):1493–1506. doi:10.13031/2013.17629

    Article  Google Scholar 

  • Cao W, Bowden WB, Davie T, Fenemor A (2006) Multi-variable and multi-site calibration and validation of SWAT in a large mountainous catchment with high spatial variability. Hydrol Process 20:1057–1073

    Article  Google Scholar 

  • Chattopadhyay S, Jha MK (2014) Hydrological response due to projected climate variability in Haw River Watershed, North Carolina. Hydrol Sci J. doi:10.1080/02626667.2014.934823

    Google Scholar 

  • Combalicer EA, Cruz RVO, Lee S, Im S (2010) Assessing climate change impacts on water balance in the Mount Makiling forest, Philippines. J Earth Syst Sci 119(3):265–283

    Article  Google Scholar 

  • Dibike YB, Coulibaly P (2005) Hydrologic impact of climate change in the Saguenay watershed: comparison of downscaling methods and hydrologic models. J Hydrol 307:145–163

    Article  Google Scholar 

  • Eckhardt K, Fohrer N, Frede HG (2005) Automatic model calibration. Hydrol Process 19:651–658

    Article  Google Scholar 

  • Gagnon S, Singh B, Roussselle J, Roy L (2005) An Application of the statistical downscaling model (SDSM) to simulate climatic data for stream flow modelling in Québec. Can Water Resour J 30(4):297–314

    Article  Google Scholar 

  • Garg PK (1991) Development of a catchment scale erosion model for semiarid environment and its implementation through remote sensing. Ph.D. Thesis, University of Bristol, UK

  • Githui F, Gitan W, Mutua F, Bauwens W (2009) Climate change impact on SWAT simulated stream flow in western Kenya. Int J Climatol 29(12):1823–1834. doi:10.1002/joc.1828

    Article  Google Scholar 

  • Goyal MK, Burn DH, Ojha CSP (2012) Statistical downscaling of temperatures under climate change scenarios for Thames river basin, Canada. Int J Glob Warm 4(1):13–30

    Article  Google Scholar 

  • Gupta HV, Sorooshian S, Yapo PO (1999) Status of automatic calibration for hydrologic models: comparison with multilevel expert calibration. J Hydrol Eng 4(2):135–143

    Article  Google Scholar 

  • Huang J, Zhang J, Zhang Z, Xu CY, Wang B, Yao J (2011) Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stoch Env Res Risk A 25(6):781–792

    Article  Google Scholar 

  • IPCC (2007) Summary for Policymakers. In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ and Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, p 7–22

  • IPCC (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, p 1535

  • Jain SK, Goswami A, Saraf AK (2009) Assessment of snowmelt runoff using remote sensing and effect of climate change on runoff. Water Resour Manag 24:1763–1777

    Article  Google Scholar 

  • Jayakrishnan R, Srinivasan R, Santhi C, Arnold JG (2005) Advances in the application of the SWAT model for water resources management. Hydrol Process 19(3):749–762. doi:10.1002/hyp.5624

    Article  Google Scholar 

  • Johnson RR (1998) An investigation of curve number applicability to watersheds in excess of 25000 hectares (250 km2). J Environ Hydrol. http://www.hydroweb.com/jeh/jeh1998/johnson.pdf. Accessed 10 Nov 2014

  • Kalnay E, Kanamitsu M, Kistler R et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–471. doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

    Article  Google Scholar 

  • Kistler R, Collins W, Saha S et al (2001) The NCEP–NCAR 50–year reanalysis: monthly means CD–ROM and documentation. Bull Am Meteorol Soc 82:247–267. doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2

    Article  Google Scholar 

  • Koutroulis AG, Tsanis IK, Daliakopoulos IN, Jacob D (2013) Impact of climate change on water resources status: a case study for Crete Island, Greece. J Hydrol 479:146–158

    Article  Google Scholar 

  • Kripalani RH, Oh JH, Kulkarni A, Sabade SS, Chaudhari HS (2007) South Asian summer monsoon precipitation variability: coupled climate model simulations and projections under IPCC AR4. Theor Appl Climatol 90(3):133–159. doi:10.1007/s00704-006-0282-0

    Article  Google Scholar 

  • Krysanova V, Arnold JG (2008) Advances in ecohydrological modelling with SWAT—a review. Hydrol Sci J 53(5):939–947. doi:10.1623/hysj.53.5.939

    Article  Google Scholar 

  • Latkovska I, Apsīte E, Elferts D, Kurpniece L (2012) Forecasted changes in the climate and the river runoff regime in Latvian river basins. Baltica 25(2):143–152

    Article  Google Scholar 

  • Majone B, Bovolo CI, Bellin A, Blenkinsop S, Fowler HJ (2012) Modeling the impacts of future climate change on water resources for the Ga´llego river basin (Spain). Water Resour Res. doi:10.1029/2011WR010985

    Google Scholar 

  • Mantua NJ, Tohver I, Hamlet A (2010) Climate change impacts on stream flow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Clim Chang. doi:10.1007/s10584-010-9845-2

    Google Scholar 

  • Matonse AH, Pierson DC, Frei A, Zion MS, Anandhi A, Schneiderman E, Wright B (2013) Investigating the impact of climate change on New York City’s primary water supply. Clim Chang 116:437–456

    Article  Google Scholar 

  • Morán-Tejeda E, Lorenzo-Lacruz J, López-Moreno IJ, Rahman R, Beniston M (2014) Stream flow timing of Mountain Rivers in Spain: recent changes and future projections. J Hydrol 517:1114–1127

    Article  Google Scholar 

  • Motovilov YG, Gottschalk L, Engeland K, Rodhe A (1999) Validation of distributed hydrological model against spatialobservations. Agric For Meteorol 98:257–277

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models, part I—a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2005) Soil and Water Assessment Tool, Theoretical Documentation: Version 2005. Temple, TX.USDA Agricultural Research Service and Texas A&M Black land Research Centre. http://swat.tamu.edu/media/1292/swat2005theory.pdf. Accessed 15 Feb 2012.

  • Neitsch SL, Arnold JG, Kiniry JR, Williams JR (2011) Soil and Water Assessment Tool, Theoretical Documentation: Version 2009. Texas Water Resources Institute Technical Report No. 406. http://swat.tamu.edu/media/99192/swat2009-theory.pdf. Accessed 30 Sept 2012

  • Nossent J (2012) Sensitivity and uncertainty analysis in view of the parameter estimation of a SWAT model of the river Kleine Nete, Belgium. PhD thesis. http://www.vub.ac.be/infovoor/onderzoekers/research/team_theses.php?team_code=HYDR. Accessed 14 Jul 2014

  • Rostamian R, Jaleh A, Afyuni M et al (2008) Application of a SWAT model for estimating runoff and sediment in two mountainous watersheds in central Iran. Hydrol Sci J 53(5):977–988

    Article  Google Scholar 

  • SANDRP (2014) Hydro-electric projects in Sutlej River Basin. http://sandrp.in/basin_maps/Hydro_Electric_Projects_on_Sutlej_River_in%20HP.pdf. Accessed 20 Oct 2014

  • Shrestha B, Babel MS, Maskey S, van Griensven A, Uhlenbrook S, Green A, Akkharath I (2013) Impact of climate change on sediment yield in the Mekong River basin: a case study of the Nam Ou basin, Lao PDR. Hydrol Earth Syst Sci 17:1–20. doi:10.5194/hess-17-1-2013

    Article  Google Scholar 

  • Singh AK, Yadava MG, Ramesh R (2007) High resolution monsoon records from land and the ocean: what have we learnt during the last decade? Jal Vigyan Sameeksha (Hydrol Rev) 22:177–190

    Google Scholar 

  • Singh V, Bankar N, Salunkhe SS, Bera AK, Sharma JR (2013) Hydrological stream flow modelling on Tungabhadra catchment: parameterization and uncertainty analysis using SWAT CUP. Curr Sci 104(9):1187–1199

    Google Scholar 

  • Singh D, Gupta RD, Jain SK (2014) Study of long-term trend in river discharge of Sutlej river N-W Himalayan region, India. Geogr Environ Sustain 3(7):87–96

    Google Scholar 

  • Singh D, Gupta RD, Jain SK (2015a) Statistical analysis of long term spatial and temporal trends of temperature parameters over Sutlej river basin, India. J Earth Syst 124(1):17–35. doi:10.1007/s12040-014-0530-0

    Article  Google Scholar 

  • Singh D, Jain SK, Gupta RD (2015b) Statistical Downscaling and Projection of Future Temperature and Precipitation Change in Middle Catchment of Sutlej River Basin, India. J Earth Syst (In Press)

  • Stehr A, Debels P, Romero F, Alcayaga H (2008) Hydrological modelling with SWAT under conditions of limited data availability: evaluation of results from a Chilean case study. Hydrol Sci J 53(3):588–601. doi:10.1623/hysj.53.3.588

    Article  Google Scholar 

  • Stewart IT (2009) Changes in snowpack and snowmelt runoff for key mountain regions. Hydrol Proc 23:78–94

    Article  Google Scholar 

  • Szépszó G, Lingemann I, Klein B, Kovács M (2014) Impact of climate change on hydrological conditions of Rhine and Upper Danube rivers based on the results of regional climate and hydrological models. Nat Hazards 72(1):241–262

    Article  Google Scholar 

  • Tekle A, Tadele K (2014) Assessment of climate change impact on water availability of Bilate watershed, Ethiopian Rift Valley Basin. J Environ Earth Sci 4(15):148–156

    Google Scholar 

  • USDA-SCS (United States Department of Agriculture – Soil Conservation Service) 1972 National engineering handbook, Section 4 Hydrology, Chapter 4–10, USDA-SCS, Washington, USA

  • Van Griensven A, Bauwens W (2003) Multiobjective autocalibration for semidistributed water quality models. Water Resour Res 39(12):1348

    Google Scholar 

  • Van Liew MW, Arnold JG, Bosch DD (2005) Problems and potential of autocalibrating a hydrologic model. Trans Am Soc Agric 48(3):1025–1040

    Article  Google Scholar 

  • Viviroli D, Archer DR, Buytaert W et al (2011) Climate change and mountain water resources: overview and recommendations for research, management and policy. Hydrol Earth Syst Sci 15:471–504. doi:10.5194/hess-15-471-2011

    Article  Google Scholar 

  • Wilby RL, Dawson CW (2007) SDSM user manual- a decision support tool for the assessment of regional climate change impacts; Available at https://copublic.lboro.ac.uk/cocwd/SDSM/main.html. Accessed 20 Oct 2012

  • Wilby RL, Dawson CW (2013) The Statistical Down Scaling Model: insights from one decade of application. Int J Climatol 33:1707–1719. doi:10.1002/joc.3544

    Article  Google Scholar 

  • Wilby RL, Dawson CW, Barrow EM (2002) SDSM—a decision support tool for the assessment of regional climate change impacts. Environ Model Softw 17:147–159

    Article  Google Scholar 

  • Wu F, Zhan J, Wang Z, Zhang Q (2014) Stream flow variation due to glacier melting and climate change in upstream Heihe River Basin, Northwest China. Phys Chem Earth. doi:10.1016/j.pce.2014.08.002

    Google Scholar 

  • Xu H, Zhou B, Song Y (2011) Impacts of climate change on headstream runoff in the Tarim River Basin. Hydrol Res. doi:10.2166/nh.2010.069

    Google Scholar 

  • Yamada T, Fushimi H, Aryal R, Kadota T et al (1996) Report of avalanches accident at Pangka, Khumbu Region, Nepal in 1995. Japan Soc Snow Ice 58(2):145–155

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour KC, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J Hydrol 358:1–23

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge the financial support in the form of fellowship provided by University Grant Commission (UGC), Government of India, to Mr. Dharmaveer Singh as Research Fellow for carrying out this research. Authors are also thankful to Bhakara Beas Management Board (BBMB), India, for providing the meteorological data used in the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dharmaveer Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Gupta, R.D. & Jain, S.K. Assessment of impact of climate change on water resources in a hilly river basin. Arab J Geosci 8, 10625–10646 (2015). https://doi.org/10.1007/s12517-015-1985-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12517-015-1985-2

Keywords

Navigation