Skip to main content
Log in

Effects of SiO2 Nanoparticles and Diethyl Carbonate on the Electrochemical Properties of a Fibrous Nanocomposite Polymer Electrolyte for Rechargeable Lithium Batteries

  • Research Article - Special Issue - Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this study, a fibrous nanocomposite polymer electrolyte (NCPE) based on poly(vinylidene fluoride-co-hexafluoropropylene) was prepared through a electrospinning technology. Effects of SiO2 nanoparticles and diethyl carbonate (DEC) on the electrochemical properties of the fibrous NCPE are investigated by linear sweep voltammetry, cyclic voltammogram and electrochemical impedance spectroscopy. The electrolyte uptake and ionic conductivity of the fibrous NCPE are enhanced due to incorporation of SiO2 nanoparticles. Addition of DEC into the electrolyte promotes not only the electrochemical stability but also the ionic conductivity of the fibrous NCPE. The fibrous NCPE has a high ionic conductivity up to 3.48 × 10−3 S cm−1 at 25 °C when it (incorporated with 5 wt% SiO2) absorbs the electrolyte of 1 mol l−1 LiBF4/EMIBF4-DEC (2:1 in volume). It exhibits good lithium striping and depositing properties during cycling accompanying with a discounted thermally stable temperature of 148 °C. The Li/LiFePO4 cells using this NCPE membrane as separator exhibit good rate capability and cycling performance, suggesting its promising application in rechargeable lithium batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chakrabarti, M.H.; Hajimolana, S.A.; Mjalli, F.S.; Saleem, M.; Mustafa, I.: Redox flow battery for energy storage. Arab. J. Sci. Eng. 38(4), 723–739 (2013)

    Article  Google Scholar 

  2. Bhattacharyya, B.; Key, B.; Chen, H.; Best, A.S.; Hollenkamp, A.F.; Grey, C.P.: In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat. Mater. 9, 504–510 (2010)

    Google Scholar 

  3. Lee, Y.-S.; Lee, J.H.; Choi, J.-A.; Yoon, W.Y.; Kim, D.W.: Cycling characteristics of lithium powder polymer batteries assembled with composite gel polymer electrolytes and lithium powder anode. Adv. Funct. Mater. 23(8), 1019–1027 (2013)

    Article  Google Scholar 

  4. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

    Google Scholar 

  5. Liao, Y.; Singh, P.; Park, K.-S.; Li, W.; Goodenough, J.B.: Li6Zr2O7 interstitial lithium-ion solid electrolyte. Electrochim. Acta 102, 446–450 (2013)

    Article  Google Scholar 

  6. Bouchet, R.; Maria, S.;Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J.P.; Phan, T.N.T.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013)

  7. Tatsumisago, M.; Nagao, M.; Hayashi, A.: Recent development of sulfide solid electrolytes and interfacial modification for all-solid-state rechargeable lithium batteries. J. Asian. Ceram. Soc. 1(1), 17–25 (2013)

    Article  Google Scholar 

  8. Lewandowski, A.; Swiderska-Mocek, A.; Waliszewski, L.: Li+ conducting polymer electrolyte based on ionic liquid for lithium and lithium-ion batteries. Electrochim. Acta 92, 404–411 (2013)

  9. Wang, M.F.; Shan, Z.Q.; Tian, J.H.; Yang, K.; Liu, X.S.; Liu, H.J.; Zhu, K.L.: Mixtures of unsaturated imidazolium based ionic liquid and organic carbonate as electrolyte for Li-ion batteries. Electrochim. Acta 95, 301–307 (2013)

  10. Armand, M.; Endres, F.; Macfarlane, D.R.; Ohno, H.; Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8(8), 621–629 (2009)

    Google Scholar 

  11. Scrosati, B.; Hassoun, J.; Sun, Y.-K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287–3295 (2011)

    Article  Google Scholar 

  12. Lewandowski, A.; Świderska-Mocek, A.: Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. J. Power Sources 194(2), 601–609 (2009)

  13. Chai, M.; Jin, Y.; Fang, S.; Yang, L.; Hirano, S.; Tachibana, K.: Ether-functionalized pyrazolium ionic liquids as new electrolytes for lithium battery. Electrochim. Acta 66, 67–74 (2012)

    Article  Google Scholar 

  14. Quartarone, E.; Mustarelli, P.: Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chem. Soc. Rev. 40(5), 2525–2540 (2011)

    Article  Google Scholar 

  15. Liao, K.S.; Sutto, T.E.; Andreoli, E.; Ajayan, P.; McGrady, K.A.; Curran, S.A.: Nano-sponge ionic liquid-polymer composite electrolytes for solid-state lithium power sources. J. Power Sources 195(3), 867–871 (2010)

  16. Kumar, Y.; Hashmi, S.A.; Pandey, G.P.: Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 201(1), 73–80 (2011)

    Article  Google Scholar 

  17. Chaurasia, S.K.; Singh, R.K.; Chandra, S.: Structural and transport studies on polymeric membranes of PEO containing ionic liquid, EMIM-TY: evidence of complexation. Solid State Ionics 183(1), 32–39 (2011)

    Article  Google Scholar 

  18. Liu, L.L.; Li, Z.H.; Xia, Q.L.; Xiao, Q.Z.; Lei, G.T.; Zhou, X.D.: Electrochemical study of P(VDF-HFP)/PMMA blended polymer electrolyte with high-temperature stability for polymer lithium secondary batteries. Ionics 18(3), 275–281(2012)

  19. Liu, L.; Yang, P.; Li, L.; Cui, Y.; An, M.: Application of bis(triflu oromethanesul-fonyl)imidelithium-N-methyl-N-butylpiperidinium-bis(trifluoromethanesulfonyl)imide-poly(vinylidene difluoride-co-hexafluoropropylene) ionic liquid gel polymer electrolytes in Li/LiFePO4 batteries at different temperatures. Electrochim. Acta 85, 49–56 (2012)

  20. Li, M.; Yang, B.; Zhang, Z.; Wang, L.; Zhang, Y.: Polymer gel electrolytes containing sulfur-based ionic liquids in lithium battery applications at room temperature. J. Appl. Electrochem. 43(5), 515–521 (2013)

    Article  Google Scholar 

  21. Bideau, J.L.; Viau, L.; Vioux, A.: Ionogels, ionic liquid based hybrid materials. Chem. Soc. Rev. 40(2), 907–925 (2011)

    Article  Google Scholar 

  22. Li, Z.H.; Cheng, C.; Zhan, X.Y.; Wu, Y.P.; Zhou, X.D.: A foaming process to prepare porous polymer membrane for lithium ion batteries. Electrochim. Acta 54(18), 4403–4407 (2009)

    Article  Google Scholar 

  23. Xiao, W.; Li, X.; Guo, H.; Wang, Z.; Zhang, Y.; Zhang, X.: Preparation of core–shell structural single ionic conductor SiO2@Li+ and its application in PVDF-HFP-based composite polymer electrolyte. Electrochim. Acta 85, 612–621 (2012)

  24. Wang, J.-H.; Zhang, Y.-H.; Xu, Y.-Y.; Zhu, B.-K.; Xu, H.: Fabrication of hydrophilic and sponge-like PVDF/brush-like copolymer blend membranes using triethylphosphate as solvent. Chin. J. Polym. Sci. 32(2), 143–150 (2014)

  25. Jeong, H.-S.; Lee, S.-Y.: Closely packed SiO2 nanoparticles/poly(vinylidene fluoride-hexafluoropropylene) layers-coated polyethylene separators for lithium-ion batteries. J. Power Sources 196(16), 6716–6722 (2011)

  26. Saikia, D.; Wu, H.-Y.; Pan, Y.-C.; Lin, C.-P.; Huang, K.-P.; Chen, K.-N.; Fey, G.T.K.; Kao, H.-M.: Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG–PEG–PPG diamine for Li-ion batteries. J. Power Sources 196(5), 2826–2834 (2011)

  27. Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195(15), 4554–4569 (2010)

    Article  Google Scholar 

  28. Carol, P.; Ramakrishnan, P.; John, B.; Cheruvally, G.: Preparation and characterization of electrospun poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries. J. Power Sources 196(23), 10156–10162 (2011)

  29. Choi, S.W.; Jo, S.M.; Lee, W.S.; Kim, Y.-R.: An electrospun poly(vinylidene fluoride) nanofibrous membrane and its battery applications. Adv. Mater. 15(23), 2027–2032 (2003)

  30. Raghavan, P.; Zhao, X.; Kim, J.-K.; Manuel, J.; Chauhan, G.S.; Ahn, J.-H.; Nah, C.: Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers. Electrochim. Acta 54(2), 228–234 (2008)

  31. Jung, H.-R.; Ju, D.-H.; Lee, W.-J.; Zhang, X.; Kotek, R.: Electrospun hydrophilic fumed silica/polyacrylonitrile nanofiber-based composite electrolyte membranes. Electrochim. Acta 54(13), 3630–3637 (2009)

  32. Cho, T.H.; Sakai, T.; Tanase, S.; Kimura, K.; Kondo, Y.; Tarao, T.; Tanaka, M.: Electrochemical performances of polyacrylonitrile nanofiber-based nonwoven separator for lithium-ion battery. Electrochem. Solid State. Lett. 10(7), A159–A162 (2007)

  33. Choi, E.-S.; Lee, S.-Y.: Particle size-dependent, tunable porous structure of a SiO2/poly(vinylidene fluoride-hexafluoropropylene)-coated poly(ethylene terephthalate) nonwoven composite separator for a lithium-ion battery. J. Mater. Chem. 21, 14747–14754 (2011)

  34. Wu, N.; Cao, Q.; Wang, X.; Li, S.; Li, X.; Deng, H.: In situ ceramic fillers of electrospun thermoplastic polyurethane/poly(vinylidene fluoride) based gel polymer electrolytes for Li-ion batteries. J. Power Sources 196(22), 9751–9756 (2011)

  35. Costa, C.M.; Silva, M.M.; Lanceros-Mendez, S.: Battery separators based on vinylidene fluoride (VDF) polymers and copolymers for lithium ion battery applications. RSC Adv. 29, 11404–11417 (2013)

  36. Fuller, J.; Carlin, R.T.; Osteryoung, R.A.: The room temperature ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate: electrochemical couples and physical properties. J. Electrochem. Soc. 144(11), 3881–3886 (1997)

  37. Seki, S.; Ohno, Y.; Kobayashi, Y.; Miyashiro, H.; Usami, A.; Mita, Y.; Tokuda, H.; Watanabe, M.; Hayamizu, K.; Tsuzuki, S.; Hattori, M.; Terada, N.: Imidazolium-based room-temperature ionic liquid for lithium secondary batteries. J. Electrochem. Soc. 154(3), A173–A177 (2007)

  38. Bahadori, L.; Manan, N.S.A.; Chakrabarti, M.H.; Hashim, M.A.; Mjalli, F.S.; AlNashef, I.M.; Hussain, M.A.; Low, C.T.J.: The electrochemical behaviour of ferrocene in deep eutectic solvents based on quaternary ammonium and phosphonium salts. Phys. Chem. Chem. Phys. 15(5), 1707–1714 (2013)

  39. Lethesh, K.C.; Dehaen, W.; Binnemans, K.: Base stable quaternary ammonium ionic liquids. RSC Adv. 4(9), 4472–4477 (2014)

    Article  Google Scholar 

  40. Seki, S.; Kobayashi, Y.; Miyashiro, H.; Ohno, Y.; Usami, A.; Mita, Y.; Kihira, N.; Watanabe, M.; Terada, N.: Lithium secondary batteries using modified-imidazolium room-temperature ionic liquid. J. Phys. Chem. B. 110(21), 10228–10230 (2006)

  41. Sun, J.; MacFarlane, D.R.; Byrne, N.; Forsyth, M.: Zwitterion effect in polyelectrolyte gels based on lithium methacrylate-N,N-dimethyl acrylamide copolymer. Electrochim. Acta 51(19), 4033–4038 (2006)

  42. Li, Z.H.; Xia, Q.L.; Liu, L.L.; Lei, G.T.; Xiao, Q.Z.; Gao, D.S.; Zhou, X.D.: Effect of zwitterionic salt on the electrochemical properties of a solid polymer electrolyte with high temperature stability for lithium ion batteries. Electrochim. Acta 56(2), 804–809 (2010)

  43. Liu, S.; Wang, H.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Yang, J.: Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide into polymer electrolyte on Li dendrite formation in Li/poly(ethylene oxide)-Li(CF3SO2)2N/Li. J. Power Sources 196(18), 7681–7686 (2011)

  44. Holzapfel, M.; Jost, C.; Prodi-Schwab, A.; Krumeich, F.; Wursig, A.; Buqa, H.; Novak, P.: Stabilisation of lithiated graphite in an electrolyte based on ionic liquids: an electrochemical and scanning electron microscopy study. Carbon 43(7), 1488–1498 (2005)

  45. Profatilova, I.A.; Choi, N.S.; Roh, S.W.; Kim, S.S.: Electrochemical and thermal properties of graphite electrodes with imidazolium- and piperidinium-based ionic liquids. J. Power Sources 192(2), 636–643 (2009)

  46. Chagnes, A.; Diaw, M.; Carré, B.; Willmann, P.; Lemordant, D.: Imidazolium-organic solvent mixtures as electrolytes for lithium batteries. J. Power Sources 145(1), 82–88 (2005)

  47. Xu, K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303–4417 (2004)

    Article  Google Scholar 

  48. Aurbach, D.; Gottlieb, H.: The electrochemical behavior of selected polar aprotic systems. Electrochim. Acta 34(2), 141–156(1989)

    Article  Google Scholar 

  49. Lane, G.H.; Best, A.S.; MacFarlane, D.R.; Forsyth, M.; Bayley, P.M.; Hollenkamp, A.F.: The electrochemistry of lithium in ionic liquid/organic diluent mixtures. Electrochim. Acta 55(28), 8947–8952 (2010)

  50. Ping, P.; Wang, Q.; Sun, J.; Feng, X.; Chen, C.: Effect of sulfites on the performance of LiBOB/γ-butyrolactone electrolytes. J. Power Sources 196(2), 776–783 (2011)

  51. Xiao, Q.C.; Liu, H.Y.; Xia, Q.L.; Xiao, Q.Z.; Lei, G.T.; Li, Z.H.: A nanocomposite polymer electrolyte with high-temperature stability for rechargeable lithium batteries. Arab. J. Sci. Eng. (in press)

  52. Rosenberg, Y.; Sigmann, A.; Narkis, M.; Shkolnik, S.: The sol/gel contribution to the behavior of γ-irradiated poly(vinylidene fluoride). J. Appl. Polym. Sci. 43(3), 535–541 (1991)

    Article  Google Scholar 

  53. Zhang, P.; Yang, L.C.; Liu, L.L.; Ding, M.L.; Wu, Y.P.; Holze, R.: Enhanced electrochemical and mechanical properties of P(VDF-HFP)-based composite polymer electrolytes with SiO2 nanowires. J. Membr. Sci. 379(1-2), 80–85 (2011)

  54. Li, Z.H.; Su, G.Y.; Wang, X.Y.; Gao, D.S.: Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3 nanoparticles. Solid State Ionics 176(23–24), 1903–1908 (2005)

  55. Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M.A.: Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochim. Acta 46(16), 2457–2461 (2001)

    Article  Google Scholar 

  56. Rao, M.; Geng, X.; Liao, Y.; Hu, S.; Li, W.: Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J. Membr. Sci. 399–400, 37–42 (2012)

  57. Kim, J.-K.; Niedzicki, L.;Scheers, J.; Shin, C.-R.; Lim, D.-H.; Wieczorek, W.; Johansson, P.; Ahn, J.-H.; Matic, A.; Jacobsson, P.: Characterization of N-butyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide-based polymer electrolytes for high safety lithium batteries. J. Power Sources 224, 93–98 (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. H. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C.L., Liu, H.Y., Xia, Q.L. et al. Effects of SiO2 Nanoparticles and Diethyl Carbonate on the Electrochemical Properties of a Fibrous Nanocomposite Polymer Electrolyte for Rechargeable Lithium Batteries. Arab J Sci Eng 39, 6711–6720 (2014). https://doi.org/10.1007/s13369-014-1192-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-014-1192-6

Keywords

Navigation